LIBRARY UNIVERSITY OF CALIFORNIA DAVIS # De p # State of California THE RESOURCES AGENCY partment of Water Resources BULLETIN No. 130-64 ## HYDROLOGIC DATA: 1964 Volume IV: SAN JOAQUIN VALLEY DECEMBER 1965 AUG 4 1 1000 HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources ## State of California THE RESOURCES AGENCY ### Department of Water Resources BULLETIN No. 130-64 ## HYDROLOGIC DATA: 1964 Volume IV: SAN JOAQUIN VALLEY DECEMBER 1965 HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources LIBRARY UNIVERSITY OF CALIFORNIA DAVIS #### ORGANIZATION OF BULLETIN NO. 130 SERIES Volume I - NORTH COASTAL AREA Volume II - NORTHEASTERN CALIFORNIA Volume III - CENTRAL COASTAL AREA Volume IV - SAN JOAQUIN VALLEY Volume V - SOUTHERN CALIFORNIA Each volume consists of the following: #### TEXT and Appendix A - CLIMATE Appendix B - SURFACE WATER FLOW Appendix C - GROUND WATER MEASUREMENTS Appendix D - SURFACE WATER QUALITY Appendix E - GROUND WATER QUALITY #### METRIC CONVERSION TABLE | ENGLISH UNIT | EQUIVALENT METRIC UNIT | |-------------------------------|-----------------------------| | Inch (in) | 2.54 Centimeters | | Foot (ft) | 0.3048 Meter | | Mile (mi) | 1.609 Kilometers | | Acre | 0.405 Hectare | | Square mile (sq. mi.) | 2.590 Square kilometer | | U. S. gallon (gal) | 3.785 Liters | | Acre foot (acre-ft) | 1,233.5 Cubic meters | | U. S. gallon per minute (gpm) | 0.0631 Liters per second | | Cubic feet per second (cfs) | 1.7 Cubic meters per minute | #### TABLE OF CONTENTS | | Page | |---|------| | ORGANIZATION OF BULLETIN NO. 130 SERIES | ii | | AREA ORIENTATION MAP | iii | | METRIC CONVERSION TABLE | iv | | LETTER OF TRANSMITTAL | ix | | ORGANIZATION, DEPARTMENT OF WATER RESOURCES | хi | | CHAPTER I. INTRODUCTION | 1 | | Location and General Features of the San Joaquin Valley | 1 | | Scope of Report | 1 | | CHAPTER II. CLIMATE | 3 | | Scope | 3 | | Precipitation | 3 | | Temperatures, Evaporation, and Wind Movement | 6 | | CHAPTER III. SURFACE WATER FLOW | 7 | | Scope | 7 | | Hydrography | 7 | | Hydrographic Activities of Other Agencies | 8 | | Runoff and Water Supply | 8 | | Runoff Comparisons | 8 | | Lakes and Reservoirs | 11 | | Streamflow Measurements | 11 | | Recorders | 11 | | Ratings | 12 | | Use of Water for Irrigation | 12 | | Criteria | 12 | | Irrigation Diversions | 12 | | Imported and Exported Water | 13 | | CHAPTER IV. GROUND WATER MEASUREMENTS | 15 | | Scope | 15 | | Basic Data | 15 | | Processed Data | 16 | | Related Information | 16 | | Cooperative Programs | 16 | | Monthly Program | 16 | | Annual and Semiannual Programs | 16 | | Ground Water Conditions | 17 | | CHAPTER V. SURFACE WATER QUALITY | 21 | | Scope | 21 | | Sampling Program | 21 | | Station Sampling | 21 | | Conductivity Recorders | 21 | | Surface Water Quality Conditions | 21 | #### TABLE OF CONTENTS (Continued) #### PLATES #### (Bound at end of bulletin) | Plate
Number | | |-----------------|--| | A-1 | Location of Climatological Stations | | A-2 | Seasonal Precipitation Distribution for 1963-64 in Percent of 50-year Mean | | B-1 | Location of Surface Water Measurement Stations | | C-1 | Ground Water Level Changes in Districts or Areas, Unconfined and Semiconfined Aquifers,
Spring 1963-Spring 1964 | | C-2 | Ground Water Level Changes in Districts or Areas, Confined and Semiconfined Aquifers,
Spring 1963-Spring 1964 | | C-3 | Location of Selected Observation Wells and Cooperative Program Areas | | C-4 | Map of 19 Ground Water Areas in San Joaquin Valley and Profiles Along Section A-A' Showing Ground Water Levels in 1921, 1951, 1963, and 1964 | | C-5 | Fluctuation of Average Water Level, 1921 to 1964, in 19 Ground Water Areas in San Joaquin Valley | | C-6 | Fluctuation of Water Level in Selected Wells in San Joaquin Valley | | C-7 | Lines of Equal Elevation of Water in Wells, Unconfined Aquifers, San Joaquin Valley,
Spring 1964 (Plate is located in jacket, inside back cover.) | | C-8 | Lines of Equal Elevation of Water in Wells, Pressure Surface, San Joaquin Valley,
Spring 1964 (Plate is located in jacket, inside back cover.) | | E-1 | Location of Selected Observation Wells, Ground Water Quality | | E-2 | Location of Selected Wells, Fresno-Madera Area | | E-3 | Ground Water Quality, Fresno-Madera Area | | E-4 | Nitrate Concentrations in the San Joaquin Valley | #### RTMENT OF WATER RESOURCES X 388 NTO November 1, 1965 Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California Gentlemen: Bulletin No. 130-64, entitled "Hydrologic Data, Volume IV, San Joaquin Valley", presents data on hydrologic conditions in the San Joaquin Valley during the 1964 reporting year. This bulletin is the second of a series which incorporates data on surface water, ground water, and climate published annually. Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes, and appendixes. The collection and publication of data as contained in Bulletin No. 130 are authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the California Water Code. The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130 presents to the public useful, comprehensive, accurate, timely hydrologic data, which are prerequisites for effective planning, design, construction, and operation of water facilities. Collection of much of the data presented has been possible only because of the generous cooperation and assistance of others. I wish to especially acknowledge the assistance of the United States Bureau of Reclamation, Geological Survey, Corps of Engineers, Weather Bureau, and Forest Service, as well as the Kern County Surveyors Office and Kern County Land Company. The districts, private companies, and individuals are too numerous to list here; however, these cooperators are shown in the tables where appropriate. Without their assistance Bulletin 130-64 would be a much less valuable tool. Sincerely yours, 8. Wann Director #### State of California The Resources Agency Department of Water Resources EDMUND G. BROWN, Governor HUGO FISHER, Administrator, The Resources Agency of California WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer This report prepared under the direction of JOHN R. TEERINK, Assistant Chief Engineer, Area Management #### by the #### SAN JOAQUIN DISTRICT | SAN JOAQUIN DISTRICT | |---| | Carl L. Stetson District Engineer, San Joaquin District Floyd I. Bluhm | | Activities covered by this report were under the supervision of | | Cledith L. Chastain | | Collection, correlation, and computation of hydrographic data pertaining to surface water flow, ground water levels, and climatology were supervised by | | Laurence O. Grossnickle Ground Water Water Resources Engineering Associate | | Harry R. Brenner Surface Water Water Resources Technician II | | William A. Mancebo Climatology Water Resources Technician II | | Robert W. Grimshaw Modesto Field Office Water Resources Engineering Associate | | Office and Field Personnel of the Hydraulic Unit | | John Gostanian . Assistant Civil Engineer Keithal B. Dick . Water Resources Technician II Donald R. Henley . Water Resources Technician II Roger G. Neal . Water Resources Technician II Vartkes N. Messerlian . Junior Civil Engineer Donald W. Colburn . Water Resources Technician I Harry H. Tenney . Water Resources Technician I Lloyd Hartwig . Engineering Aid II Henry W. Rogers . Delineator Joseph F. Schweizer . Delineator Anthony D. Camoroda . Drafting Aid II C. Collette Blair . Intermediate Stenographer | | The portions of the report covering water quality activities were prepared by | | Barney H. Perkins | | Assisted by | | James W. Windsor | Reviewed and Coordinated by Statewide Planning Office, Data Coordination Branch #### CHAPTER I. INTRODUCTION This is Volume IV, Bulletin 130-64, entitled "Hydrologic Data". It is the second of an annual series reports which present basic data. The five volumes of the bulletin embrace the entire State of California, h volume being prepared by the area branch or district of the Department responsible for the publication of ic data collected in its respective area. These areas are shown on the frontispiece map. This report contains a record of hydrologic data collected and assembled by the San Joaquin District the Department of Water Resources. It brings together in a permanent and usable form the following types hydrologic basic data collected during the respective time intervals as shown below: Surface Water Flows October 1, 1963 - September 30, 1964 Diversion Data October 1, 1963 - September 30, 1964 Climate Data July 1, 1963 - June 30, 1964 Ground Water Level Measurements July 1, 1963 - June 30, 1964 Surface Water Quality October 1, 1963 - September 30, 1964 Ground Water
Quality October 1, 1963 - September 30, 1964 #### Location and General Features of the San Joaquin Valley The San Joaquin Valley includes approximately the southern two-thirds of the Great Central Valley California. It is a broad structural trough surrounded on three sides by mountains: the Sierra Nevada the east, the Coast Range on the west, and the Tehachapi and San Emigdio Mountains on the south. It is arated from the Sacramento Valley on the north by the combined deltas of the Sacramento and San Joaquin ers. The Valley extends 250 miles southeasterly from Stockton to Grapevine at the foot of the Tehachapi ntains; the width of the valley floor ranges from 25 miles near Bakersfield to 55 miles near Visalia and rages about 35 miles. The area of the valley floor is 10,000 square miles, excluding the rolling thills that skirt the mountains. East of the San Joaquin Valley the Sierra Nevada rises in a distance of 45 to 60 miles to altitudes 14,000 feet or more; to the west the Coast Range rises to 6,000 feet; and on the south the Valley is losed by the San Emigdio and Tehachapi Mountains which rise to altitudes of about 8,000 feet. Only at quinez Strait, a break in the Coast Range east of San Francisco Bay, does the Great Central Valley n to the sea. The valley floor rises gently from sea level at the north end to 500 feet above sea level about miles south of Bakersfield; alluvial fans along the valley borders rise to altitudes as high as 700 to 00 feet. The gentle northward gradient of the valley floor is interrupted by a low divide in the ghborhood of the Kings River, about 15 miles west of Hanford; the San Joaquin Valley is divided at that no two separate drainage basins to the San Joaquin River Basin and the Tulare Basin. #### Scope of Report The areal scope of this volume of the report is depicted on Plates A-1, B-1, C-1, D-1, and E-1. elocation of climatological stations for which data are presented is shown on Plate A-1 and the location surface water gaging stations on Plate B-1. The districts or areas in the San Joaquin Valley for which bund water levels are reported are shown on Plate C-1. The locations of surface water sampling stations a shown on Plate D-1, and the ground water quality well locations are shown on Plates E-1 and E-2. The following chapters present information on precipitation, evaporation, temperature, surface noff, diversions, reservoir storage, imported water supplies, ground water conditions, and surface and ground ter quality. The tabulated basic data are presented in Appendixes A through E. These appendixes include all sic data collected pertaining to climate, surface water flow, ground water levels, and surface and ground ter quality. #### CHAPTER II. CLIMATE Precipitation is the only significant source of water supply. All runoff and ground water sources derive their waters ultimately from meteorological sources. Planning for more intense development of our available water resources and operation of existing and planned facilities bring to sharp focus the continued need for collection and analysis of basic data pertaining to precipitation, temperatures, wind movement, and evaporation. For many years it has been apparent that the official network of the U. S. Weather Bureau was not adequate to supply the Department's needs for climatological data required for water resources investigations. One of the primary objectives of this data program is to supplement the observation network of the U. S. Weather Bureau. There are 16 cooperating agencies and 185 individual observers contributing data for the 407 stations reported. #### Scope The area covered by this report is shown on Plate A-1. The Department of Water Resources gathers basic data relating to climatic phenomena in the San Joaquin Valley. This involves field measurements and office computations to determine the instantaneous, daily, monthly, seasonal, and annual temperatures, precipitation, and evaporation. The field activities include the installation and maintenance of weather stations. The installed equipment obtains measurements of: (1) daily maximum and minimum temperatures; (2) precipitation—annual amounts from storage gages in remote areas, daily amounts from standard rain gages, and instantaneous amounts from recording rain gages; (3) evaporation in inches per day; and (4) wind movement in miles per day. In addition, similar data are obtained from many public and private agencies, and individuals. The Department contributes to the cooperative program with the U. S. Weather Bureau by providing services for the installation, maintenance, and operation of approximately 100 stations in the State, eight of which are located in the San Joaquin Valley. The U. S. Weather Bureau reports these data in its publication, "Climatological Data". The office activities consist of computation and compilation of approximately 150 monthly climatological station observations to provide a continuous and current record. This includes the computation of intensities from recording rain gages and preparation of hourly precipitation records for future use in development of rainfall intensity-duration-frequency relationships. #### Precipitation The San Joaquin Valley area may be divided into three general parts: the west side, the valley floor, and the east side or Sierra Nevada. Table 1, "Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley", shows the distribution of rainfall west to east across the valley. Averages of precipitation normals show for the west side stations 6.3 inches, for the valley floor 9.7 inches, and for the east side 16.6 inches. Precipitation during the 1963-64 season for the San Joaquin Valley area was below normal. The seasonal precipitation, expressed in percent of normal, for the three general areas is 68 percent on the west side, 72 percent on the valley floor, and 76 percent on the east side. TABLE 1 SEASONAL AND MEAN PRECIPITATION AT SELECTED STATIONS IN THE SAN JOAQUIN VALLEY | Alpha
Order
Number | Station | County | 50-Year Mean
1910-1960
In inches | 1963-64
In
inches | Season
Percent
of Mean | |--------------------------|----------------------------|-------------|--|-------------------------|------------------------------| | в8 6675 | Panoche | San Benito | 7.51 | 4.72 | 63 | | CO 1867 | Coalinga 1 SE | Fresno | 6.80 | 4.79 | 70 | | CO 4536 | Kettleman Sta. | Kings | 6.21 | 4.51 | 73 | | CO 1244 | Buttonwillow | Kern | 5.38 | 2.90 | 54 | | C7 5338 | Maricopa | Kern | 5.54 | 4.41 | 80 | | BO 5297-01 | Manteca No. 2 | San Joaquin | 11.65 | 8.22 | 71 | | во 5738 | Modesto | Stanislaus | 11.56 | 7.74 | 67 | | во 9073 | Turlock | Stanislaus | 11.71 | 8.20 | 70 | | во 5532 | Merced Fire Sta. 2 | Merced | 11.89 | 8.76 | 74 | | во 5233 | Madera | Madera | 10.11 | 7.81 | 7 7 | | CO 3257 | Fresno WB A. P. | Fresno | 9.65 | 6.76 | 70 | | CO 9367 | Visalia | Tulare | 9.39 | 7.58 | 81 | | CO 3747 | Hanford | Kings | 8.10 | 5.01 | 62 | | CO 9452 | Wasco | Kern | 6.32 | 4.66 | 74 | | CO 0442 | Bakersfield A. P. | Kern | 6.19 | 4.60 | 74 | | во 4590 | Knights Ferry 2 SE | Stanislaus | 17.42 | 14.14 | 81 | | в6 1588 | Catheys Vly. Bull Run Rch. | Mariposa | 19.72 | 14.51 | 74 | | B5 5346 | Mariposa | Mariposa | 28.94 | 20.95 | 72 | | B7 3261 | Friant Gov't. Camp | Fresno | 13.38 | 8.71 | 65 | | C2 6476 | Orange Cove | Fresno | 12.90 | 8.73 | 68 | | C2 4890 | Lemon Cove | Tulare | 13.68 | 11.89 | 87 | | C0 7077 | Porterville | Tulare | 10.39 | 9.73 | 94 | The subnormal precipitation for the season was the result of a very dry period covering the months of December and February through June. January received about 70 percent of normal. Only three months out of the season's 12, September, October, and November, were on the wet side. Table 2, "Cumulative Monthly Precipitation at Key Stations in the San Joaquin Valley", shows the occurrences described above. The San Joaquin Valley area normally receives 80 percent of the total seasonal precipitation by April 1. Also, by this date, maximum snowpack has been attained in the Sierras. On April 1, 1964, the valley floor had received rainfall in accumulated totals ranging from 70 percent of normal at Modesto on the north to 75 percent at Bakersfield on the south. Snowpack accumulation in the adjacent Sierras was only 70 percent of normal; however, the precipitation patterns of April, May, and June were far below normal, varying from 60 percent for the Kaweah River watershed to 77 percent for the Stanislaus River watershed. TABLE 2 ATTVE MONTHLY PRECIE CUMULATIVE MONTHLY PRECIPITATION AT KEY STATIONS IN THE SAN JOAQUIN VALLEY 1963-64 | | | | | | | | | | | | | |
 | | | | |------------------------|---------|-------|---------|---|------|--------|-----------|---------|----------|----------|---------|----------|-------|-------|-------|-------| | IRPORT | Season | In | percent | of mean | 0 | 0 | 692 | 371 | 266 | 138 | 96 | 81 | 75 | 9/ | 75 | 74 | | ELD WB A | 1963-64 | | In | inches | 00. | 00. | .83 | 1.56 | 2.50 | 2.58 | 2.85 | 3.26 | 3.83 | 4.39 | 4.59 | 4.60 | | BAKERSFIELD WB AIRPORT | 50-Year | Mean | 1910-60 | In inches inches of mean In inches inches of mean | .02 | .03 | .12 | .42 | . 94 | 1.87 | 2.98 | 4.01 | 5.10 | 5.79 | 6.11 | 6.19 | | | Season | In | percent | of mean | 0 | 200 | 412 | 459 | 278 | 129 | 91 | 69 | 70 | 80 | 81 | 81 | | VISALIA | 1963-64 | | In | inches | 00. | .02 | .33 | 2.25 | 3.45 | 3.63 | 4.36 | 4.53 | 5.69 | 7.21 | 7.58 | 7.58 | | Λ | 50-Year | Mean | 1910-60 | In inches | 00. | .01 | .08 | .49 | 1.24 | 2.81 | 4.78 | 6.57 | 8.18 | 9.00 | 9.33 | 9.39 | | PORT | Season | In | percent | of mean | 0 | 50 | 160 | 179 | 255 | 127 | 91 | 69 | 70 | 69 | 70 | 70 | | FRESNO WB AIRPORT | 1963-64 | | In | inches | 00. | .01 | .16 | 1.11 | 3,65 | 3.92 | 4.58 | 4.58 | 5.85 | 6.35 | 6.70 | 6.76 | | FRESN | 50-Year | Mean |
1910-60 | In inches | .01 | .02 | .10 | .62 | 1.43 | 3.08 | 5.01 | 6.64 | 8.34 | 9.22 | 9.54 | 9.65 | | | Season | In | percent | of mean | 0 | 0 | 230 | 305 | 280 | 135 | 96 | 70 | 73 | 73 | 75 | 77 | | MADERA | 1963-64 | | In | inches | 00. | 00. | . 23 | 1.68 | 4.06 | 4.30 | 4.91 | 4.92 | 6.42 | 7.12 | 7.54 | 7.81 | | ų. | 50-Year | Mean | 1910-60 | In inches inches of mean In inches inches of mean | .01 | .02 | .10 | .55 | 1.45 | 3.18 | 5.18 | 7.04 | 8.80 | 9.70 | 10.04 | 10.11 | | #2 | Season | In | percent | теап | 0 | 0 | 317 | 308 | 266 | 128 | 92 | 71 | 74 | 71 | 71 | 74 | | MERCED FS # | 1963-64 | | In | inches | 00. | 00. | .38 | 1.88 | 4.69 | 4.86 | 5.77 | 5.93 | 7.68 | 8.08 | 8.35 | 8.76. | | MER | 50-Year | Mean | 1910-60 | In inches | .01 | .02 | .12 | .61 | 1.76 | 3.79 | 6.24 | 8.35 | 10.34 | 11.37 | 11.81 | 11.89 | | | Season | In | percent | of mean | 0 | 0 | 63 | 268 | 238 | 104 | 95 | 73 | 70 | 99 | 65 | 67 | | MODESTO | 1963-64 | | ų | inches | 00. | 00. | .12 | 1.82 | 4.00 | 4.09 | 2.90 | 5.95 | 7.03 | 7.29 | 7.40 | 7.74 | | - | 50-Year | Mean | 1910-60 | In inches inches of mean In inches inches of | .01 | .03 | .19 | .68 | 1.68 | 3,95 | 6.21 | 8.17 | 10.11 | 11.02 | 11.46 | 11.56 | | | | Month | | | July | August | September | October | November | December | January | February | March | April | May | June | #### Temperatures, Evaporation, and Wind Movement The distribution of temperatures, evaporation, and wind movement is presented in Table 3, "Average Temperatures, Total Evaporation, and Average Wind Movement at Selected Stations in the San Joaquin Valley". TABLE 3 AVERAGE TEMPERATURES, TOTAL EVAPORATION, AND AVERAGE WIND MOVEMENT AT SELECTED STATIONS IN THE SAN JOAQUIN VALLEY | Alpha
Order
Number | Station Name | _ | Seasonal
e. Temp.
Min. | °F
Mean | Seasonal
Evaporation
Total Inches | Wind
Movement
Av.Mi./Mo. | |--------------------------|------------------------|-------|------------------------------|------------|---|--------------------------------| | CO 0332-02 | Arvin-Frick | 71.8 | 43.4 | 57.6 | 62.5 | 1879 | | CO 2013 | Corcoran El Rico 1 | 74.2 | 45.8 | 60.0 | 79.5 | 1952 | | C6 2222-80 | Cummings Valley | 67.0 | 34.9 | 51.0 | 79.7 | 2627 | | B4 2473 | Don Pedro Res. | 72.6 | 43.8 | 58.2 | 73.9 | М | | C5 4303 | Isabella Dam | 72.8 | 44.8 | 58.8 | 80.5 | 1940 | | во 5117 | Los Banos Field Sta. | 73.3 | 45.1 | 59.2 | 92.4 | 2953 | | C1 6895 | Pine Flat Dam | 75.2 | 45.4 | 60.3 | 65.8 | 785 | | в6 7273 | Raymond 9N | 81.0M | 45.4M | 63.2M | М | 493M | | C3 8620 | Success Dam | 74.4 | 49.3 | 61.9 | 82.5 | 1532 | | C7 8755 | Taft KTKR | 73.0 | 49.3 | 61.2 | 90.9 | 1084 | | C2 8868 | Terminus Dam | 73.2 | 49.8 | 61.5 | 81.2 | 1522 | | CO 9145 | U.S. Cotton Field Sta. | 74.3 | 48.4 | 61.4 | 79.5 | 1431 | | во 9565 | Westley | 75.4M | 44.6M | 60.0M | М | М | M - All or part of record missing. #### CHAPTER III. SURFACE WATER FLOW The variable flows of the streams entering the San Joaquin Valley on the east side result from the rainfall runoff occurring each winter and spring season, principally from December through April. The snowmelt runoff occurs during the spring and summer months from March through June. A combination of runoff from perennial tributaries and released stored water occurs during the summer and fall seasons. Flood flows in the valley floor channels are caused by runoff from rainfall and melting snow in the mountain areas in excess of mountain reservoir capacities, and by rainstorm runoff from the vast area of minor foothill watersheds and valley floor lands. In more recent years, flooding has become a lesser threat in the San Joaquin Valley as a result of additional reservoirs constructed on many of the tributary watersheds, including the Kern, Tule, Kaweah, Kings, San Joaquin, Merced, Tuolumne, and Stanislaus Rivers. With the completion of the Lower San Joaquin River Flood Control Project and eventual construction of additional dams and reservoirs, such as Buchanan on the Chowchilla River, Hidden on the Fresno River, and New Melones on the Stanislaus River, flooding will cease to be a problem in the San Joaquin Valley except in years of excessive precipitation. #### Scope The area covered by this report is shown on Plate B-1. Records of mean daily flows and/or stage at 65 stream-gaging stations located on streams on the San Joaquin Valley floor and on streams entering the valley are presented in Appendix B of this report. Measurements of flows at points of diversion from major streams on the valley floor, diversions and acreage irrigated by east side irrigation districts, and deliveries from canals of the Central Valley Project are also included in Appendix B. #### Hydrography The Department of Water Resources' hydrographic activities in the San Joaquin Valley area are divided into two major categories -- field and office. The field activities include: - 1. Operation and maintenance of 35 stream-gaging stations. - Measurement of streamflows passing the gaging stations at stages varied enough to establish a stage-discharge relationship. - Measurement of the quantities of water diverted by major diverters from the San Joaquin, Merced, Tuolumne, Stanislaus, and Tule Rivers, and from Dry Creek near Modesto. - 4. Construction of new installations as needed to augment the base network of gaging stations operated by the U. S. Geological Survey. - 5. Cooperation with public and private agencies and with other branches within the department in the gathering of hydrographic data. The office activities include: - 1. Preparation of hydrographic data for computation by machine computation methods. - Manual computation and compilation of the discharge of stations not adaptable to machine computation. - 3. Computation and compilation of quantities of water diverted for use in quantities per month for pumped diversions and quantities per day for gravity diversions. - 4. Preparation of rating curves based on a series of discharge measurements on each stream. - Computation of rating formulas for the curves written in machine language for machine computation purposes. #### Hydrographic Activities of Other Agencies The U. S. Geological Survey maintains and operates about 180 streamflow gaging stations in addit to the stations operated by the Department in the San Joaquin Valley area. Of these, 57 are operated under the Federal-State Cooperative Surface Water Measurement Program. The records are published annually in a report by the U. S. Department of the Interior, Geological Survey, entitled "Surface Water Records of California, Volume 2, Northern Great Basin and Central Valley". The U. S. Bureau of Reclamation maintains and operates seven streamflow gaging stations which monitor natural inflow to the southern San Joaquin Valley. These stations are in addition to the Bureau's operation stations on project canals. Data from both types of stations appear in an annual report publish by the Bureau of Reclamation entitled "Fresno Field Division Water Supply". The U. S. Corps of Engineers, the City and County of San Francisco, and other local agencies maintain and operate streamflow gaging stations within the San Joaquin Valley area. These data are publis in this report. The specific degree of cooperation by these agencies with the Department of Water Resource is detailed in footnotes to tables contained in this report. #### Runoff and Water Supply The streams entering the Valley on the east side produce the major runoff to the Valley. Rainfarunoff occurs principally during the period December to April, while snowmelt is the source during the spring and summer seasons from March through June. During the summer and fall seasons, runoff is a combination of flows from perennial tributaries and releases from reservoir storage. #### Runoff Comparisons Runoff conditions from year to year for a particular stream are compared to the mean runoff for that stream over a long period of time. The mean runoff is a base or normal used to compare runoff with a other year. Flow conditions on all major streams entering the Valley are affected by man-made impairments such as reservoirs and diversions; therefore, the runoff comparisons are made with computed natural runoff which allows for effects of impairments. These computed natural or unimpaired runoffs are considered to the flows that would occur if no impairments were above the points of measurement. Runoff normals are computed for the 50-year period October 1910 through September 1960. The water supply available during the 1964 season was below normal on all major tributaries, varying from 48 percent on the Tule River to 64 percent on the Tuolumne River. The annual unimpaired runoff in percent of average for the 50-year normal for the period 1924 through 1964 on the major streams tributary to the San Joaquin Valley is shown in Table 4. The monthly unimpaired runoff for 1964 in percent of average based on the same 50-year period is shown for the same streams in Table 5. TABLE 4 ANNUAL UNIMPAIRED RUNOFF In percent of average (a) | Water
Year | Stanislaus
River
below
Melones
P. H. | Tuolumne
River
near
La Grange | Merced
River
at
Exchequer | San
Joaquin
River
below
Friant | San
Joaquin
River near
Vernalis
(b) | Kings
River
Inflow
to
Pine Flat | Kaweah
River
near
Three
Rivers | Tule
Raver
Inflow
to
Success | Kern
River
Inflow
to
Isabella | |---------------------------------|--|--|------------------------------------|--|---|---|--|--|---| |
Average
Annual
Runoff (a) | 1090 | 1776 | 927 | 1670 | 5463 | 1570 | 385 | 127 | 617 | | 1923-24 | 24 | 31 | 27 | 27 | 27 | 25 | 26 | | | | 1924-25 | 112 | 109 | 98 | 86 | 101 | 82 | 85 | | | | 1925-26 | 56 | 63 | 66 | 70 | 64 | 66 | 57 | | | | 1926-27 | 125 | 115 | 117 | 120 | 119 | 126 | 126 | | | | 1927-28 | 87 | 86 | 79 | 69 | 80 | 62 | 53 | | | | 1928-29 | 47 | 55 | 52 | 5 2 | 52 | 54 | 58 | | | | 1929-30 | 67 | 65 | 55 | 51 | 60 | 55 | 57 | | 54 | | 1930-31 | 29 | 34 | 28 | 29 | 30 | 30 | 30 | 19 | 30 | | 1931-32 | 124 | 119 | 120 | 123 | 121 | 133 | 135 | 109 | 113 | | 1932-33 | 56 | 63 | 56 | 67 | 60 | 75 | 74 | 63 | 69 | | 1933-34 | 39 | 46 | 39 | 41 | 41 | 42 | 34 | 16 | 37 | | 1934-35 | 111 | 119 | 126 | 115 | 118 | 103 | 93 | 70 | 74 | | 1935-36 | 121 | 122 | 124 | 111 | 120 | 120 | 126 | 134 | 121 | | 1936-37 | 102 | 113 | 131 | 132 | 120 | 149 | 176 | 241 | 180 | | 1937-38 | 188 | 193 | 224 | 221 | 206 | 209 | 226 | 279 | 209 | | 1938-39 | 48 | 55 | 51 | 55 | 52 | 62 | 64 | 65 | 73 | | 1939-40 | 128 | 125 | 118 | 113 | 121 | 114 | 133 | 166 | 113 | | 1940-41 | 123 | 141 | 157 | 159 | 145 | 162 | 167 | 186 | 202 | | 1941-42 | 136 | 134 | 139 | 135 | 136 | 128 | 127 | 107 | 122 | | 1942-43 | 144 | 134 | 139 | 123 | 135 | 129 | 174 | 287 | 163 | | 1943-44 | 62 | 74 | 74 | 76 | 72 | 74 | 82 | 80 | 94 | | 1944-45 | 117 | 118 | 118 | 128 | 120 | 131 | 143 | 160 | 131 | | 1945-46 | 108 | 106 | 102 | 104 | 105 | 103 | 93 | 74 | 105 | | 1946-47 | 58 | 62 | 61 | 67 | 62 | 71 | 69 | 41 | 69 | | 1947-48 | 82 | 80 | 74 | 73 | 77 | 63 | 68 | 50 | 54 | | 1948-49 | 68 | 70 | 69 | 70 | 69 | 61 | 57 | 38 | 48 | | 1949-50 | 99 | 87 | 78 | 78 | 86 | 82 | 78 | 49 | 70 | | 1950-51 | 155 | 140 | 132 | 111 | 134 | 102 | 109 | 122 | 86 | | 1951-52 | 176 | 168 | 169 | 170 | 171 | 182 | 214 | 252 | 226 | | 1952-53 | 89 | 86 | 68 | 73 | 79 | 74 | 80 | 78 | 88 | | 1953-54 | 82 | 81 | 72 | 79 | 78 | 83 | 79 | 70 | 81 | | 1954-55 | 62 | 64 | 58 | 70 | 64 | 71 | 72 | 51 | 58 | | 1955-56 | 173 | 178 | 181 | 177 | 177 | 162 | 188 | 165 | 141 | | 1956~57 | 82 | 80 | 70 | 79 | 78 | 79 | 77 | 51 | 71 | | 1957-58 | 154 | 149 | 152 | 158 | 153 | 157 | 166 | 176 | 171 | | 1958-59 | 54 | 56 | 49 | 57 | 54 | 51 | 40 | 25 | 44 | | 1959-60 | 54 | 59 | 52 | 50 | 54 | 45 | 47 | 38 | 45 | | 1960-61 | 37 | 41 | 34 | 39 | 38 | 36 | 30 | 15 | 28 | | 1961-62 | 91 | 100 | 100 | 115 | 102 | 117 | 103 | 68 | 106 | | 1962-63 | 116 | 116 | 106 | 117 | 114 | 119 | 130 | 94 | 120 | | 1963-64 | 60 | 64 | 49 | 55 | 58 | 54 | 60 | 47 | 51 | ⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1910 through September 1960. Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from valley floor. (b) TABLE 5 MONTHLY UNIMPAIRED RUNOFF In percent of average(a) | | | | | | , | | | | | | |-----------------------|---|--|--|------------------------------------|--|---|---|--|--|---| | Month | | Stanislaus
River
below
Melones
P. H. | Tuolumne
River
near
La Grange | Merced
River
at
Exchequer | San
Joaquin
River
below
Friant | San
Joaquin
River near
Vernalis
(b) | Kings
River
Inflow
to
Pine Flat | Kaweah
River
near
Three
Rivers | Tule
River
Inflow
to
Success | Kern
River
Inflow
to
Isabella | | October | Percent ^C | 74 | 130 | 88 | 135 | 116 | 136 | 144 | 275 | 172 | | | Average | 8 | 15 | 7 | 19 | 49 | 19 | 4 | 1 | 14 | | November | Percent | 228 | 292 | 22 5 | 237 | 253 | 222 | 191 | 130 | 134 | | | Average | 22 | 37 | 17 | 27 | 102 | 25 | 8 | 4 | 18 | | December | Percent | 66 | 70 | 55 | 68 | 66 | 75 | 67 | 48 | 89 | | | Average | 44 | 73 | 38 | 53 | 209 | 45 | 16 | 8 | 23 | | T | P | 64 | 62 | 41 | 48 | 55 | 45 | 41 | 33 | 70 | | January | Percent | 59 | 98 | 54 | 65 | 276 | 56 | 19 | 12 | 25 | | | *************************************** | 3, | | 3. | | | 30 | ** | | | | February | Percent | 36 | 40 | 24 | 33 | 34 | 32 | 32 | 18 | 50 | | | Average | 82 | 135 | 78 | 91 | 386 | 77 | 27 | 18 | 30 | | March | Percent | 39 | 40 | 30 | 38 | 38 | 30 | 40 | 28 | 46 | | | Average | 120 | 179 | 99 | 135 | 533 | 112 | 39 | 26 | 47 | | April | Percent | 64 | 60 | 51 | 52 | 57 | 59 | 62 | 60 | 44 | | | Average | 202 | 284 | 148 | 241 | 875 | 215 | 63 | 24 | 89 | | May | Percent | 61 | 72 | 57 | 60 | 64 | 61 | 67 | 62 | 39 | | | Average | 296 | 447 | 244 | 428 | 1415 | 428 | 102 | 21 | 149 | | June | Percent | 49 | 61 | 46 | 52 | 54 | 47 | 60 | 57 | 40 | | | Average | 188 | 368 | 179 | 386 | 1121 | 384 | 75 | 9 | 125 | | July | Percent | 56 | 35 | 26 | 38 | 36 | 32 | 45 | 38 | 36 | | • | Average | 52 | 113 | 50 | 160 | 375 | 148 | 23 | 2 | 59 | | | | 107 | 6.0 | | - 4 | | 4.0 | | | | | August | Percent | 107 | 52 | 50 | 64 | 65 | 48 | 57 | 60 | 52 | | | Average | 12 | 19 | 10 | 45 | 85 | 42 | 6 | 0 | 24 | | September | Percent | 108 | 53 | 14 | 55 | 58 | 47 | 84 | 157 | 59 | | | Average | 5 | 8 | 4 | 19 | 37 | 18 | 3 | 0 | 14 | | 1963-64
Water Year | Percent | 60 | 64 | 49 | 55 | 58 | 54 | 60 | 47 | 51 | | water rear | | 1090 | | | 1670 | | 1570 | 365 | 127 | 617 | | | Average | 1090 | 1776 | 927 | 1670 | 5463 | 15/0 | 365 | 127 | 617 | ⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1910 through September 1960. (b) Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from the valley floor. (c) Percent figures are preliminary values and subject to revisions. #### Lakes and Reservoirs There are 59 principal reservoirs in the State, of which 25 are located in the San Joaquin Valley area. These 25 have a total storage capacity of 4,727,530 acre-feet. The storage capacity, water in storage on October 1, 1963, and storage on October 1, 1964, in the major reservoirs in the San Joaquin Valley area are shown in Table 6. The quantity of water in storage in these 25 reservoirs at the end of the 1963-64 season was about 27 percent of the total storage capacity as Compared to 49 percent at the end of the 1962-63 season. TABLE 6 SUMMARY OF PRINCIPAL RESERVOIR STORAGE IN THE SAN JOAQUIN VALLEY (In acre-feet) | Watershed | Reservoir | Total
Capacity | In Storage
Oct. 1, 1963 | In Storage
Oct. 1, 1964 | |---|-----------------------|-------------------|----------------------------|----------------------------| | Stanislaus | | | | | | | Relief | 15,560 | 4,400 | 11,530 | | | Strawberry | 18,270 | 10,480 | 9,190 | | | Melones | 112,600 | 11,060 | 10,450 | | | Donnels | 64,500 | 49,576 | 21,800 | | | Beardsley | 97,500 | 83,296 | 77,313 | | | Tulloch | 68,400 | 33,948 | 23,670 | | Tuolumne | | | | | | | Lake Eleanor | 26,100 | 18,520 | 4,650 | | | Lake Lloyd | 268,000 | 182,450 | 25,700 | | | Hetch Hetchy | 360,400 | 289,461 | 230,490 | | | Don Pedro | 290,000 | 174,920 | 111,040 | | | Turlock Lake | 49,000 | 11,440 | 17,830 | | Merced | | | | | | | Lake McClure | 289,000 | 63,750 | 0 | | San Joaquin | | | | | | | Crane Valley | 45,400 | 24,800 | 24,200 | | | Lake Thomas A. Edison | 125,000 | 101,360 | 50,100 | | | Florence Lake | 64,600 | 31,020 | 237 | | | Mammoth Pool | 122,700 | 17,490 | 27,010 | | | Huntington Lake | 89,800 | 87,900 | 49,720 | | | Redinger Lake | 35,000 | 8,600 | 9,840 | | | Shaver Lake | 135,400 | 103,830 | 15,550 | | | Millerton Lake | 520,500 | 205,000 | 172,400 | | Kings | | | | | | ****** | Wishon | 128,300 | 90,060 | 58,980 | | | Pine Flat | 1,001,500 | 467,200 | 191,860 | | Kaweah | | | | | | 110111111111111111111111111111111111111 | Terminus | 150,000 | 8,460 | 7,500 | | Tule | | | | | | 1410 | Success | 80,000 | 12,350 | 9,260 | | Kern | | | | | | | Isabella | 570,000 | 217,030 | 96,970 | | TOTAL | | 4,727,530 | 2,308,401 | 1,257,290 | #### Streamflow Measurements Many of the stream-gaging stations, records of which are reported in Appendix B, are maintained and operated by agencies cooperating with the Department of Water Resources. The methods used by all cooperating parties are standardized and the results obtained are equally good. During the 1964 season 35 of the total of 65 gaging stations on streams for which records are reported in Tables B-4 and B-5 were maintained, operated, and records compiled by the Department of Water Resources. #### Recorders An automatic water stage recorder is in operation at each gaging station in the San Joaquin Valley area. The continuous record of water surface elevation at each station serves two major purposes in the preparation of the data in this report, and assists in the planning of flood control projects. First, the water surface elevation (gage height) is a factor in determining the quantity of flow of the stream in cubic feet per second passing a given station. Second, the actual surface elevation at two adjacent stations on a stream on the valley floor afford the means of obtaining the water surface elevation at pumping plants along the stream between the stations. This information assists in the determination of the pumping head in order that the rate of diversion by the pumping plants can be obtained. #### Ratings A streamflow rating is made for each stream gaging station. This rating gives the flow in cubic feet per second for each gage height at the station. Normally, the gage height-to-flow relation or streamflow rating is more or less permanent where there is a fixed channel and a
fixed flow regimen at the station. The rating varies, however, where the bed of the channel consists of loose, shifting sand; where heavy weed growth accumulates as the season progresses; or where there may be backwater effects due to ice or other downstream conditions. In the last two cases, more frequent measurements of flow are made to obtain accurate records of flows passing the station. #### Use of Water for Irrigation The prevailing warm temperatures and a prolonged frost-free period during the summer season in the San Joaquin Valley favors the profitable production of a wide variety of marketable crops. The major irrigated crops in the San Joaquin Valley include rice, alfalfa, orchard fruits, nuts, grapes, cotton, corn, grain, flax, pasture grasses, and a large variety of truck crops. #### Criteria The number of diversion points measured on the major streams in the San Joaquin Valley may vary from year to year. The criteria for selecting points to be measured were established in 1960. At that time it was determined that by measuring only those diversion points which had an average of two hundred acre-feet per season based on the previous three years of diversion record, 50 percent of the field work could be eliminated and still 95 percent of the total water diverted could be measured. Changes in crop pattern and the available water supply are major factors that influence the amounts of water diverted for irrigation purposes. #### Irrigation Diversions Measurements and records of diversions in 1964 included all the major points of diversion on the valley floor along the San Joaquin River and tributaries; along the Stanislaus, Tuolumne, and Merced Rivers, and Dry Creek tributary to Tuolumne River; and along the Tule River. This report contains records for a total of 171 points of diversion. Table 7 shows, by streams, the number of points of diversion and the acre-feet diverted. TABLE 7 SUMMARY OF DIVERSION POINTS AND TOTAL ACRE-FEET DIVERTED Oct. 1, 1963-Sept. 30, 1964 | Stream | Number
Of Points
Measured | Total
Acre-feet
Diverted | |---|---------------------------------|--------------------------------| | San Joaquin River
Vernalis to Fremont Ford Bridge
Fremont Ford Bridge to Gravelly Ford (a)
Gravelly Ford to Friant Dam | 40
18
24 | 208,700
969,846
11,230 | | Tuolumne River | 22 | 22,640 | | Stanislaus River | 23 | 58,220 | | Merced River | 34 | 62,210 | | Dry Creek (Tributary to the Tuolumne River) | 3 | 1,259 | | Tule River | 7 | 31,070 | | TOTAL | 171 | 1,365,175 | ⁽a) Records furnished by U. S. Bureau of Reclamation. Waters diverted by Central Valley Project canals and east side irrigation districts are shown on Table B-7. The monthly amount of water diverted at the individual points of diversion along all the streams covered in the San Joaquin Valley area together with the total acre-feet diverted for the season is shown in Appendix B, Table B-6 of this report. The monthly use in percentage of seasonal total is also shown. The location of each diversion point on a given stream is measured from the mouth of that stream progressing upward by river-mile. References to left or right bank assume an orientation facing downstream. All of the diversions are accomplished by pumping except for 18 by gravity. The records of diversion by gravity are obtained by means of canal ratings established by flow measurements. The records of pumping diversions are obtained in a few instances by means of canal rating but generally are obtained by actual measurement of the pump discharge. Most of the pumps are electrically operated, making it possible to establish a relationship between water pumped and power input. Sufficient measurements are made to establish a rate of discharge for each pump, and the electric meters are read monthly to determine the power used. The monthly amount of diversions in acre-feet by the large east side irrigation districts from the Stanislaus, Tuolumne, and Merced Rivers during the 1964 season is shown in Appendix B, Table B-7. The monthly amount of diversions in acre-feet by Central Valley Project canals is shown in Appendix B, Table B-9. Fresno Slough and James Bypass normally convey excess flood flows from the Kings River into the San Joaquin River at a point above Mendota Dam, but during the irrigation season, San Joaquin River water is backed up through those channels by the Mendota Dam to afford irrigation supplies to the James and Tranquillity Irrigation Districts and to certain other diverters. The diversion data for these streams shown in Table B-6 were furnished by the U. S. Bureau of Reclamation. #### Imported and Exported Water Water is imported to the San Joaquin Valley from the Sacramento-San Joaquin Delta via the Delta-Mendota Canal. The amount of water diverted and its distribution for use are shown in Table B-9. Water is exported from the San Joaquin Valley via the Hetch Hetchy Aqueduct from the Tuolumne River to the City and County of San Francisco. Table B-8 shows the amount of that export. #### CHAPTER IV. GROUND WATER MEASUREMENTS The ground water resources of California have long been recognized as one of the major natural resources of the State. The ever-increasing rate of draft on the ground water basins makes the problems associated with the use and conservation of this resource numerous and complex, and the solution more urgent. More than one-quarter of all the ground water pumped for irrigation in the United States is used in the San Joaquin Valley. Widespread pumping began about 1900 and, especially since 1940, has increased at an accelerated rate. In response to this heavy withdrawal, ground water levels in extensive areas of the Valley have declined rapidly. The water level decline will continue as long as ground-water pumpage exceeds the natural and artificial recharge of the ground water basin. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the Valley, three distinct ground water reservoirs are present. In downward succession there are (1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age overlying the Corcoran Clay Member of the Tulare Formation; (2) a body of fresh water confined beneath the Corcoran Clay Member which occurs in alluvial and lacustrine deposits of late Pliocene age or older; and (3) a body of saline connate water contained in marine sediments of middle Pliocene or older age which underlies the fresh-water body throughout the area. (U. S. Geological Survey Water-Supply Paper 1618 Abstract.) In much of the eastern part of the Valley, especially in the area of the major streams, the Corcoran Clay Member is not present and ground water occurs as one fresh-water body to considerable depth. Ground water is replenished by infiltration of rainfall, by infiltration from streams, canals, and ditches, by underflow entering the Valley from tributary streams and from canyons, and by infiltration of excess irrigation waters. The ground-water storage capacity of the San Joaquin Valley to a depth of 200 feet has been estimated to be approximately 93 million acre-feet, equal to roughly 9 times the capacity of the present and proposed surface-water reservoirs in the Valley. All studies of ground-water problems and plans for solution of these problems have two factors in common: they must be founded upon records of water level measurements and quality analysis of water samples obtained over a period of years. On the east side of the San Joaquin Valley from Chowchilla River to the southern end of the valley good records of ground water levels extending as far back as 1921 have been obtained through the combined efforts of the State, U. S. Bureau of Reclamation, and many local agencies. In 1930 the Department began collection of ground water level data in connection with special investigations of water resources of specific areas. From this beginning a program of annual, semiannual, and monthly measurements of ground water levels has developed in cooperation with federal and local agencies. #### Scope The area covered by this report is shown on Plates A-1 and B-1. The areal scope of Appendix C of this volume is depicted on Plates C-1 through C-4. During the period July 1, 1963, to June 30, 1964, the San Joaquin District of the Department of Water Resources obtained approximately 13,000 water level measurements on some 7,500 wells. The period of record of these wells ranges from one to over 40 years. #### Basic Data Because significant trends in water level fluctuations can be indicated by a representative sample, a selection was made of approximately 600 wells for which the records are presented in Appendix C of this volume. These wells, designated as selected wells, were chosen on the basis of a number of factors such as areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuation in the ground water area; and availability of a log, mineral analysis, and/or production record. Table C-1 presents the water level measurements made from July 1, 1963, through June 30, 1964. This volume continues the records for those wells published in Bulletin 77-62 which fall within the boundary of the San Joaquin Valley area. #### Processed Data Hydrographs depicting average water level fluctuations in 19 selected ground water areas are presented on Plate C-5. Individual well hydrographs depicting graphically the fluctuation of water levels are shown on Plate C-6. These wells distributed among significant areas were selected insofar as possible to be representative of their respective areas. Ground water maps showing lines of equal elevation of water in wells for spring of 1964
appear on Plates C-7 and C-8. Where sufficient data are available, lines of equal elevation of water are shown for the unconfined or semiconfined aquifer, and the confined aquifer or pressure surface. Maps showing the areas where the ground water level changed five feet or more in the unconfined, semiconfined, and confined aquifers are presented on Plates C-1 and C-2. #### Related Information For some basins or areas, maps showing depth to ground water are also prepared. At appropriate times, commonly every five years, maps are prepared showing lines of equal change occurring in the water level in wells during the time intervals. These maps are available in the office of the San Joaquin District of the Department of Water Resources and will be presented in future reports. #### Cooperative Programs Within the San Joaquin Valley area the Department of Water Resources has cooperative ground water programs with the U. S. Geological Survey, U. S. Bureau of Reclamation, Kern County, Kings County Water District, Poso Soil Conservation District, and the Los Banos Soil Conservation District. #### Monthly Program Approximately 350 selected wells are measured monthly and the resulting figures are published in a monthly summary report. These wells were selected as being representative of their respective areas. Most of the field work is done by cooperating agencies, while the Department measures 25 of the 350 selected wells. The Department compiles and publishes the collected field data in a monthly report. The water level measurements on the selected monthly wells are included in Appendix C of this volume. #### Annual and Semiannual Programs In Kern County approximately 1,000 wells are measured semiannually under a cooperative agreement between the U. S. Bureau of Reclamation, the County of Kern, and the Department of Water Resources. Approximately 500 additional water level measurements being made by the Kern County Land Company are made available to the Department. Maps of Kern County showing lines of equal depth to water and lines of equal elevation of water in wells are prepared for both spring and fall of each year. In the Kings County Water District approximately 325 selected wells are measured semiannually by that agency and submitted to the Department for use in preparation of ground water maps under a cooperative agreement. Ground water maps are prepared for both spring and fall showing lines of equal elevation of water in wells in the district. In the Poso Soil Conservation District approximately 40 wells are measured by that agency and the results submitted to the Department. Ground water maps are prepared for the district showing depth to water in wells in January and July. #### Ground Water Conditions Data are presented in this report for two zones or aquifers in 13 of the 50 areas reported in Appendix C. During the period July 1963 to June 1964, 34 areas in the San Joaquin Valley showed a rise in the unconfined and semiconfined aquifers. There was no change in one area, but in 9 other areas there was a decline. Five of the 15 areas for which the pressure surface is reported show a decline and 10 show a rise in the water level. In the shallow zone the maximum declines occurred in the Tracy area and the Fresno Slough area, where changes of 6.2 feet and 4.8 feet respectively are noted. The greatest rise in the shallow zone was 17.3 feet in the Vandalia Irrigation District. The maximum decline of 2.4 feet occurred in the deep zone of the Kern River Delta area. The greatest rise in the deep zone was 16.4 feet in the Delano-Earlimart Irrigation District. In those areas for which water levels are based on a composite of shallow and deep zones, the main change was a rise of 4.6 feet in the Buena Vista Water Storage District. Table 8 presents the average change in ground water levels, spring 1963 to spring 1964. The average change in water level for each district or area was determined where possible by planimetering ground water contour maps. In areas where insufficient data were available to define reliable contours, a numerical average was made from the actual well measurements. TABLE 8 AVERAGE CHANGE IN GROUND WATER LEVELS IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1963 - Spring 1964 | Ground Water Districts or Areas | Number of
Wells
Considered | Change
in | | |--|----------------------------------|----------------|-------| | Name | Number | in
Analysis | Feet | | San Joaquin Valley | 5-22.00 | | | | Tracy Area | 5-22.04 | 19 | - 6.2 | | Oakdale Irrigation District | 5-22.06 | <u>a</u> / | + 0.2 | | Modesto Irrigation District | 5-22.07 | <u>a</u> / | 0.0 | | Turlock Irrigation District | 5-22.08 | <u>a</u> / | - 3.6 | | Merced Irrigation District | 5-22.09 | <u>a</u> / | + 0.7 | | El Nido Irrigation District | 5-22.10 | a/ | + 4.7 | | Delta-Mendota Area | 5-22.11 | 555 | - 1.1 | | Chowchilla Water District | 5-22.12 | <u>a</u> / | + 0.3 | | Madera Irrigation District | 5-22.13 | <u>a</u> / | + 0.8 | | West Chowchilla-Madera Area | 5-22.14 | <u>a</u> / | - 2.9 | | Fresno Irrigation District | 5-22.15 | <u>a</u> / | + 0.3 | | City of Fresno | 5-22.16 | <u>a</u> / | - 0.3 | | Fresno Slough Area | 5-22.17 | <u>a</u> / | - 4.8 | | Consolidated Irrigation District | 5-22.18 | <u>a</u> / | + 2.9 | | Alta Irrigation District | 5-22.19 | <u>a</u> / | + 3.4 | | Lower Kings River Area | 5-22.20 | | | | Shallow Zone | | <u>a</u> / | + 2.6 | | Deep Zone | | <u>a</u> / | - 0.9 | | Orange Cove Irrigation District | 5-22.21 | <u>a</u> / | + 1.5 | | Stone Corral Irrigation District | 5-22.22 | <u>a</u> / | + 5.1 | | Ivanhoe Irrigation District | 5-22.23 | <u>a</u> / | + 4.9 | | Kaweah-Delta Water Conservation District | 5-22.24 | <u>a</u> / | + 6.2 | #### AVERAGE CHANGE IN GROUND WATER LEVELS IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1963 - Spring 1964 | Ground Water Districts or Areas | | Number of
Wells | Change | |---|---------|------------------------------|------------| | Name | Number | Considered
in
Analysis | in
Feet | | San Joaquin Valley (Continued) | | | | | Tulare Irrigation District | 5-22.25 | <u>a</u> / | + 5.5 | | Exeter Irrigation District | 5-22.26 | <u>a</u> / | +11.9 | | Lindsay-Strathmore Irrigation District | 5-22.27 | 21 | +10.6 | | Lindmore Irrigation District | 5-22.28 | <u>a</u> / | +15.2 | | Porterville Irrigation District | 5-22.29 | <u>a</u> / | + 8.9 | | Lower Tule River Irrigation District | 5-22.30 | | | | Shallow Zone | | <u>a</u> / | +10.3 | | Deep Zone | | <u>a</u> / | +14.6 | | Vandalia Irrigation District | 5-22.31 | 6 | +17.3 | | Saucelito Irrigation District | 5-22.32 | | | | Shallow Zone | | <u>a</u> / | + 3.7 | | Deep Zone | | <u>a</u> / | + 8.2 | | Pixley Irrigation District | 5-22.33 | | | | Shallow Zone | | <u>a</u> / | + 9.3 | | Deep Zone | | <u>a</u> / | +10.5 | | Alpaugh-Allensworth Area | 5-22.34 | | | | Shallow Zone | | <u>a</u> / | + 7.3 | | Deep Zone | | <u>a</u> / | - 0.8 | | Delano-Earlimart Irrigation District | 5-22.35 | | | | Shallow Zone | | <u>a</u> / | + 6.4 | | Deep Zone | | <u>a</u> / | +16.4 | | Southern San Joaquin Municipal Utility District | 5-22.36 | | | | Shallow Zone | | <u>a</u> / | + 7.1 | | Deep Zone | | <u>a</u> / | +11.9 | | North Kern Water Storage District | 5-22.37 | | | | Shallow Zone | | <u>a</u> / | +11.6 | | Deep Zone | | <u>a</u> / | +14.9 | | Shafter-Wasco Irrigation District | 5-22.38 | | | | Shallow Zone | | 3 | - 1.7 | | Deep Zone | | <u>a</u> / | + 5.4 | | City of Bakersfield | 5-22.39 | 26 | - 5.2 | | Kern River Delta Area | 5-22.40 | | | | Shallow Zone | | <u>a</u> / | + 0.2 | | Deep Zone | | <u>a</u> / | - 2.4 | | Edison-Maricopa Area | 5-22.41 | | | | Deep Zone | | <u>a</u> / | - 1.6 | | Buena Vista Water Storage District | 5-22.42 | <u>a</u> / | + 4.6 | | Semitropic Water Storage District | 5-22.43 | | | | Shallow Zone | | <u>a</u> / | +10.5 | | Deep Zone | | <u>a</u> / | + 2.1 | #### TABLE 8 (Cont.) ### AVERAGE CHANGE IN GROUND WATER LEVELS IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1963 - Spring 1964 | Ground Water Districts or Areas | | Number of
Wells
Considered | Change
in | | | |---------------------------------|-------------|----------------------------------|------------------|--|--| | Name | Name Number | | | | | | San Joaquin Valley (Continued) | | | | | | | Avenal-McKittrick Area | 5-22.44 | 33 | + 0.7 | | | | Tulare Lake-Lost Hills Area | 5-22.45 | 12 | + 4.4 | | | | Corcoran Irrigation District | 5-22.46 | | | | | | Shallow Zone | | <u>a</u> / | + 7.7 | | | | Deep Zone | | <u>a</u> / | +15.4 | | | | Mendota-Huron Area | 5-22.47 | | | | | | Deep Zone | | <u>a</u> / | + 6.0 <u>b</u> / | | | | Poso Soil Conservation District | 5-22.48 | <u>a</u> / | - 2.6 | | | | San Luis Canal Company | 5-22.49 | <u>a</u> / | - 3.0 | | | | Terra Bella Irrigation District | 5-22.50 | 4 | + 4.9 | | | | Centerville Bottoms Area | 5-22.64 | <u>a</u> / | + 1.3 | | | | Garfield Water District | 5-22.65 | 21 | +12.8 | | | | Kings County Water District | 5-22.66 | | | | | | Shallow Zone | | <u>a</u> / | + 3.1 | | | | Deep Zone | | <u>a</u> / | - 1.8 | | | | Pleasant Valley Area | 5-22.69 | 23 | - 4.2 | | | a/ Average changes were determined by planimetering ground water contour maps. b/ Average change determined from water level measurements made during December 1962 and December 1963. Table 9 presents the change in average ground water levels from 1921 to 1951 and 1951 to 1964 in 19 ground water areas in the San Joaquin Valley. TABLE 9 CHANGE IN AVERAGE GROUND WATER LEVEL FROM 1921 TO 1951 AND 1951 TO 1964 IN 19 GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY | _ | | | | | |-----------------------------------|-------------------------------|---|---
--| | Name of Ground Water Area | Area
in
square
miles | Irrigation and Other
Water Districts Included in
The Ground Water Area | Net
change
in water
level
1921-51ª
in feet | Net
change
in water
level
1951-64b/
in feet | | Madera | 342.6 | Madera Irrigation District and
Chowchilla Water District | - 24.1º/ | - 13.5 | | Fresno | 404.0 | Fresno Irrigation District and
City of Fresno | - 22.4 | - 16.0 | | Consolidated | 243.0 | Consolidated Irrigation District | - 19.0 | - 6.6 | | Fresno, Consolidated, and Outside | 700.1 | Fresno Irrigation District, City of Fresno, and Consolidated Irrigation District | - 23.2 | - 13.4 | | Outside Only | 53.1 | | - 25.6 | - 29.7 | | Centerville Bottoms | 18.1 | | + 1.0 | + 4.2 | | Alta | 190.9 | Alta Irrigation District | - 17.2 ^c / | + 0.8 | | Ivanhoe | 17.4 | Ivanhoe Irrigation District | - 55.9 | + 13.3 | | Outside Ivanhoe | 76.6 | Stone Corral Irrigation District and a portion of Alta Irrigation District | - 28.5 | - 0.5 | | Mill Creek | 128.2 | Portions of Kings County Water District
and Kaweah Delta Water Conservation District | - 31.1 | - 13.5 | #### TABLE 9 (Cont.) ## CHANGE IN AVERAGE GROUND WATER LEVEL FROM 1921 TO 1951 AND 1951 TO 1964 IN 19 GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY | Name of Ground Water Area | Area
in
square
miles | Irrigation and Other
Water Districts Included in
The Ground Water Area | Net
change
in water
level
1921-51ª/
in feet | Net
change
in wate:
level
1951-64
in fee | |---------------------------|-------------------------------|--|--|---| | Tulare | 121.1 | Tulare Irrigation District | - 59.1 | - 1.8 | | Elk Bayou | 67.6 | Portion of Kaweah Delta Water Conservation
District | - 47.8 | - 7.2 | | Lindsay-Exeter | 136.4 | Exeter Irrigation District, Lindsay-
Strathmore Irrigation District, and
Lindmore Irrigation District | - 77.7 | + 59.4 | | Tule River | 156.6 | Porterville Irrigation District, portions of Lower Tule River Irrigation District, and Saucelito Irrigation District | - 62.5 | + 22.7 | | Lower Deer Creek | 162.2 | Portions of Lower Tule River Irrigation
District, Saucelito Irrigation District,
and Delano-Earlimart Irrigation District | -106.7 | - 1.1 <u>e</u>
+ 1.5 <u>f</u> | | Middle Deer Creek | 54.6 | Terra Bella Irrigation District | - 61.8 | - 8.9 <u>e</u>
- 36.7 <u>£</u> | | Delano-Earlimart | 140.0 | Portions of Delano-Earlimart Irrigation
District and Southern San Joaquin Municipal
Utility District | -133.8 | + 8.4 <u>e</u>
+ 5.4 <u>f</u> | | McFarland-Shafter | 306.0 | North Kern Water Storage District, Shafter-
Wasco Irrigation District, and a portion of
Southern San Joaquin Municipal Utility
District | - 99.0 | + 16.2 <u>e</u>
- 13.6 <u>f</u> | | Rosedale | 78.9 | | - 36.3 | - 58.4
- 3.59 | | Arvin-Edison | 205.2 | Arvin-Edison Water Storage District | - 69.9 <u>d</u> / | - 20.7 <u>£</u> | ¹⁹⁵¹ was the first year of substantial deliveries from the Friant-Kern Canal. b/ Fall 1951 to spring 1964. c/ Fall 1929 to fall 1951. d/ Fall 1941 to fall 1951. e/ Unconfined aquifer, spring 1961 to spring 1964, only one aquifer reported prior f/ Pressure surface, spring 1961 to spring 1964, only one aquifer reported prior g/ Pressure surface, spring 1963 to spring 1964, only one aquifer reported prior Unconfined aquifer, spring 1961 to spring 1964, only one aquifer reported prior to 1961. Pressure surface, spring 1961 to spring 1964, only one aquifer reported prior to 1961. Pressure surface, spring 1963 to spring 1964, only one aquifer reported prior to 1963. #### CHAPTER V. SURFACE WATER QUALITY The Department of Water Resources maintains a program of surveillance of the quality of water to detect any degradation of the surface waters of California due to contributions of wastes by agricultural, industrial, and municipal water users and to notify the proper control agencies of any such occurrences. The Surface Water Quality Monitoring Program was initiated to meet this surveillance need in April 1951 with the following objectives: (1) to determine the quality of the State's surface waters through a network of strategically located sampling stations representative of the major surface streams and lakes; (2) to detect changes in the quality of surface waters and notify control agencies of adverse changes; (3) to determine trends in surface water quality; and (4) to compile data into readily available form for distribution to cooperators and interested agencies. #### Scope The areal extent of activities discussed in this chapter and in Appendix D is shown on Plate D-1. Data on the quality of surface waters are presented in graphs and tables in Appendix D for the 1964 water year (October 1, 1963, to September 30, 1964). These data represent the observed physical, chemical, bacteriological, and radiological characteristics of water samples collected at the surface water quality stations shown on Plate D-1. The stations are listed alphabetically in Table D-1. #### Sampling Program The Department of Water Resources has 31 surface water quality monitoring stations in the San Joaquin Valley area. In November of 1963, two new stations were added to the area of the program monitoring the Tulare Lake Basin. Of the 31 stations, 21 are sampled monthly, 8 quarterly, and 2 semiannually. The variation in the sampling frequency is dependent upon past records, need, and the type of data required. The Kern County Parks and Recreation Department, City and County of San Francisco (Oakdale office), and the U. S. Corps of Engineers collect samples at one, five, and nine stations, respectively. The U. S. Geological Survey, California Department of Public Health, Fresno County, Kern County, and Tulare County Health Laboratories perform the various analyses on the samples from the entire 31 sampling stations. #### Station Sampling Sampling at each station consists of obtaining water samples for partial mineral and bacteriological analyses and field measurement of pH, temperature, gage height, and dissolved oxygen. Samples collected in May and September were subject to: (1) complete mineral analysis, (2) bacteriological analysis, (3) radiological analysis, and (4) determination of concentrations of phosphate, arsenic, and detergents (alkyl benzene sulfonate-ABS). A sample is collected twice each year at ten selected stations for the determination of heavy metals by spectrographic analysis. The results of the spectrographic analyses are contained in Table D-3. ### Conductivity Recorders Conductivity recorders are maintained at selected surface water stations to obtain continuous records of the specific electrical conductance of the waters. The recorder charts are removed, edited, and processed at the end of each month. The data are converted and tabulated into mean hourly, daily, and weekly electrical conductivity values with the daily values being published monthly in an office report. A plot of the mean weekly values versus time for each of these stations is shown on Plate D-2. Information from these recorders is used to approximate concentrations of several water quality parameters, including but not limited to concentrations of total dissolved solids (TDS), chlorides, and total hardness. These approximations are possible because of the relationship between specific conductance and each of the dissolved mineral constituents in the water. #### Surface Water Quality Conditions Surface water samples taken from the lower reaches of the San Joaquin River indicate an appreciable increase in mineral concentration as compared with results from the same stations for the 1963 water year. The contribution of mineral constituents from major tributaries was also appreciably higher than it was the previous year. The increase in mineral concentration was most noticeable during the irrigation season when the streamflow regimen was at its lowest stage for the entire year. The incremental change in mineral constituents over the previous year's concentrations increased significantly from Fremont Ford to Vernalis. This accumulation of minerals is attributed to the lack of available streamflow sufficient in quantity to dilute accretions affluent to the lower reaches of the San Joaquin River. The U. S. Bureau of Reclamation supplemented the flow in the San Joaquin River to aid the migration of fish from the Sacramento-San Joaquin Delta to the lower reaches of the San Joaquin River. Approximately 45,000 acre-feet were diverted from the Delta-Mendota Canal through the Newman and Westley Wasteways from September 23 to November 1, 1964, to provide adequate streamflow and dissolved oxygen content necessary for fish migration up the San Joaquin River. #### CHAPTER VI. GROUND WATER QUALITY Water development to meet the needs of California's phenomenal growth is one of the major problems facing the State. Although the use of ground water has been, and is, one of the major factors contributing to the economy of the State, insufficient data are available regarding the mineral quality of such ground water supplies. The present widespread dependence upon ground water requires constant vigilance, coupled with remedial action where necessary, to assure that the quality of ground water remains suitable for all intended uses. In view of this need for vigilance, a statewide program of observation and study of ground water quality was initiated by the Department of Water Resources in 1953. #### Scope Approximately 415 wells were sampled throughout the San Joaquin Valley, Panoche Valley, Tehachapi Valley, and Cummings Valley during this
reporting period. The locations of monitored wells for 1963 are shown on Plate E-1, "Location of Selected Observation Wells, Ground Water Quality". A special program was conducted in the Fresno-Madera area during 1963 and 1964 by the Department in conjunction with the U. S. Geological Survey. The location of the wells used for this program are shown on Plate E-2. #### Ground Water Quality Conditions Adequate surveillance of the quality of a ground water basin requires the establishment of norms from which deviations can be determined. Considerable information has been gathered during the early years of this program and through other programs where ground water quality data were collected to assist in establishing the norms. Individual wells for the monitoring program were selected by an evaluation of well drillers' logs, water analyses, and water level data to best represent the quality of the ground water in the surrounding area. The number of wells needed for this purpose was mainly determined by the complexity of the ground water basin in a given area. The analyses of samples collected from selected wells in the San Joaquin Valley for the 1964 water year are contained in this bulletin. Included are tables of complete and partial mineral analyses and trace element determinations. The type of analysis made on a sample from a well is based mainly on the history of the data on that well. With the increased use of fertilizers for agriculture and with the increase in the quantity of domestic waste water discharges, the possibility of an increase in nitrates in ground water is becoming more likely. Irrigation waters containing nitrate yielding fertilizers may percolate into the ground water bodies as evidenced by the study of well 18S/28E-10Ml (see Plate E-4). The discharge of domestic waste waters into the ground through leach fields or by disposal to ponds where percolation can occur is also another source of nitrates. Specific problems of this type have occurred in the Fresno-Clovis area (see Bulletin 143-3, Fresno-Clovis Metropolitan Area Water Quality Investigation). In light of this concern over the possibility of increases in nitrate concentrations in the Valley a special map was prepared. There were insufficient data in any one year to prepare such a map so it was necessary to use data collected during the period from 1961 through 1964 for Plate E-4, "Nitrate Concentrations in the San Joaquin Valley". It is intended that this plate will provide a base for identifying areas of high nitrates and for determining increases in future years. Lithium, a relatively rare constituent of ground water, usually appears in very small quantities. In concentrations greater than 0.1 part per million, however, lithium has been found to be detrimental to citrus and other fruit trees in much the same manner as boron. Arsenic, although generally rare, also is found in some ground waters of the Valley and is significant even at 0.01 part per million. Detergents (ABS: alkyl benzene sulfonate) do not occur in ground water naturally and therefore are an indicator of pollution. Selected nutrient determinations were also made in a few special cases in conjunction with the ABS determinations in the vicinity of sewage or industrial waste discharges. ## Fresno-Madera Area Study During 1963-64 a concentrated sampling program was carried out in the greater part of the valley floor of both Fresno and Madera Counties. This sampling was done in conjunction with the U. S. Geological Survey's investigations in eastern Fresno County and in Madera County. This coordination eliminated duplication of effort and resulted in more and better coverage of the area. By utilizing the data collected during this period which was supplemented with older data, particularly in western Fresno County, a picture of the ground water quality for the Fresno-Madera area was developed. The ground water quality data for these areas are listed in Appendix E on Table E-2. The data were evaluated and illustrated on Plate E-3. This plate shows the mineral type of the ground water and contours of the electrical conductivity for each aquifer defined It should be noted that there is a difference between the water quality map on Plate E-3 and a similar plate published in Bulletin 130-63. First, the data are broken down by aquifer in this bulletin, whereas in 1963 sufficient data were not available to make this differentiation. Second, the difference indicated does not mean that the water quality picture was changed since 1963 but that with the greater quantity and quality of data now available more accurate maps could be prepared. It is possible that with more data and a better understanding of the geology and water quality the picture may be further refined. It is believed, however, that the present maps are very close to representing the actual ground water quality in the area. Areas were left blank when sufficient data were not available to make an evaluation. These areas will be studied in more detail in the future. ### Kern County Piezometer Sampling Program An ideal sampling network for an area would contain wells that are representative of single aquifers from which maps of the water quality for each aquifer could be made. It was believed that the U. S. Bureau of Reclamation's piezometer pipes best reflected this ideal network in Kern County. During 1964 a special sampling program was conducted in Kern County in order to sample the piezometers. Table E-5 lists some of the results of this study. The pumping times shown vary considerably and are based on the time required for the electrical conductivity (EC), which was measured continually, to settle down to a steady value. It was assumed that the erratic EC values first noted were indicative of the waters trapped in the pipe and gravel packing and that the water in the aquifer was indicated by the leveled off EC values. The pumping rates shown vary considerably and are thought to be generally indicative of the formation permeability. In a few cases the depth at which the piezometer was pumped would also reflect different rates. #### Regular Sampling Program Samples from the monitored areas are collected from early spring, when pumping begins, through the fall, when pumping generally slows down. Some of the samples collected are obtained by cooperating agencies, the remainder by the Department. Normally the cooperating agencies collect the majority of the samples, but for the 1964 water year most sampling was performed by department personnel due to a concentrated reevaluation in certain areas. At the conclusion of the reevaluation, it is intended that the cooperating agencies again continue with most of the sampling. APPENDIX A CLIMATE ## TABLE OF CONTENTS | | | Page | |----------------|--|------| | INTRO | ODUCTION | 29 | | Expla | anation of Tables | 29 | | | Precipitation Station Index | 29 | | | Monthly Precipitation | 29 | | | Monthly Temperatures | 29 | | | Monthly Summary of Evaporation Station Data | 29 | | | Reference Notes | 30 | | | LIST OF TABLES | | | Table | | | | A-1 | Index of Climatological Stations for 1963-64, San Joaquin District | 31 | | A-2 | Precipitation Data for 1963-64, San Joaquin District | 38 | | A-3 | Temperature Data for 1963-64, San Joaquin District | 43 | | A-4 | Monthly Summary of Evaporation Station Data | 47 | | | LIST OF PLATES | | | | (Bound at end of volume) | | | Plate
Numbe | | | | A-1 | Location of Climatological Stations | | | A-2 | Seasonal Precipitation Distribution for 1963-64 in Descent of 50-year Mean | | #### INTRODUCTION This appendix presents the climatological data for the period July 1, 1963 to June 30, 1964. The data consist of precipitation station descriptions, monthly precipitation quantities, monthly temperature summaries and monthly evaporation totals. #### Explanation of Tables #### Precipitation Station Index Table A-1 shows the precipitation station index. The climatological station designations used are based on the drainage basin and alpha number. Stations are also named, and latitude and longitude are shown to the nearest minute. The county, elevation above sea level, the year the record began, and the name of the current observer of record are also shown. Each main drainage basin is assigned a letter and each subbasin a number as shown on Plate A-1 of this report. The alpha order number is assigned each station to denote its order in alphabetical sequence for machine processing. The subnumbers are used to avoid duplication of the original four-digit system for machine processing. Only 21 columns are available for the station name making some abbreviations necessary. Each station is generally named after and referenced to the nearest post office (Livingston 5W--a point 5 miles west of the post office in the town of Livingston), or named for a geographic location (Chiquito Creek). Occasionally the observer's name is incorporated in the station name (Hornitos Giles Ranch). #### Monthly Precipitation Table A-2 shows the monthly and seasonal total rainfall for some 395 weather stations within and near the San Joaquin Valley area. This table summarizes all of the available precipitation observations from July 1963 through June 1964. Daily records are available in department office files. #### Monthly Temperatures Table A-3 shows a temperature summary for a monthly period at 60 weather stations throughout the San Joaquin Valley area. The individual observations were obtained using the observations, techniques, types of thermometers, and exposure conditions recommended by the U. S. Weather Bureau. The Fahrenheit scale is used in all references to temperature. Terms used in connection with the temperature data are explained in the following: | Term | <u>Definition</u> | Abbreviation | |---------------------
--|--------------| | Maximum | The highest temperature of record for the month. | Max. | | Minimum | The lowest temperature of record for the month. | Min. | | Average maximum | The arithmetic average of daily maximum temperatures for indicated period. | Avg. max. | | Average minimum | The arithmetic average of daily minimum temperatures for indicated period. | Avg. min. | | Average temperature | The average of the daily maximum and minimum for each day; the daily averages are averaged to make the monthly averages. | Avg. | #### Monthly Summary of Evaporation Station Data Table A-4 shows the monthly net evaporation at 12 stations throughout the San Joaquin Valley area. Observations of the amount of water evaporating from an open pan are made in the manner recommended by the U. S. Weather Bureau. The standard Weather Bureau pan is 47.5 inches in diameter and 10 inches deep. It contains clean water to a depth of seven to eight inches. The pan is placed on a lumber frame to insulate it from significant conductive heat exchange with the ground. The evaporation is measured by the actual difference in the pan water surface elevation over a 24-hour period with the appropriate adjustments for rainfall. Terms used in connection with evaporation data are explained below: | Term | <u>Definition</u> | Abbreviation | |-----------------|--|--------------| | Evaporation | The net amount of water evaporated from the pan for the period given. | Evap. | | Precipitation | The total amount of rainfall in inches which occurred during the period. | Precip. | | Wind | The total movement of air over the pan, in miles, for the period. | Wind | | Average maximum | See explanation in temperature data table. | | | Average minimum | See explanation in temperature data table. | | #### Reference Notes - A list of the reference notes used in the climatological portion of this report follows: - CD Record published in "Climatological Data" by U. S. Weather Bureau. - WB All or part of record published by U. S. Weather Bureau. - HPD Record published in "Hourly Precipitation Data" by U. S. Weather Bureau. - HPD CD Published in both "CD" and "HPD" from separate gages. Record from "CD" reproduced in this report. - CD(P) Precipitation data published in "CD". Other data published by DWR. - R CD Published in both "CD" and "HPD" from recording rain gage. Record from "CD" reproduced in this report. - R Recording rain gage. Hourly precipitation distribution not necessarily available at DWR. - (R) Hourly precipitation record also available for this station. - S Storage gage. Data published in "Storage Gage Precipitation Data" by U. S. Weather Bureau. - Ss Storage gage using standard rain gage. Data published by DWR. - T Trace. - AS After storm only. Small amounts may not be recorded. - b Preliminary data--subject to revision. - E Wholly or partially estimated. - No record. - M One or more days of record missing. If average value is entered, less than 10 days' record is missing. - RB Beginning of record. - RE End of record. - * Amount included in following measurement; time distribution unknown. - V Includes total for previous month. - D Water equivalent of snowfall wholly or partly estimated using a ratio of 1 inch water equivalent to every 10 inches of new snowfall. - SCE Data obtained from Southern California Edison Company. #### Additional criteria are: Dimensional units used in this report are: Temperature in degrees Fahrenheit, precipitation and evaporation in inches, and wind movement in miles (per month). - Evaporation, wind movement and temperature data in this report are not published by the U. S. Weather Bureau. - All temperature data represent air temperatures. | 96 - | Alpha | | | | | L | ot. | La | ng. | Record | | | |----------------------------|--|--|--------------------|--|--|----------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--|--| | Droinage
Bosin | Order
Number | Station Name | | Caunty | Elev. | Oeg. | Mın, | Deg | Min. | Began | Observer | | | CO
B6
CO
C7
D6 | 0009
0049
0204
0215
0239 | Academy
Ahwahnee 2 NNW
Angiola
Annette
Apache Camp | WB
WB | Fresno
Madera
Tulare
Kern
Ventura | 545
2790
205
2140
4965 | 36
37
35
35
35
34 | 53
24
59
39
52 | 119
119
119
120
119 | 32
44
29
10
20 | 1958
1959
1899
1951
1940 | Edwin W. Simpson
Mrs. Eleanor P. Crooks
Angiola Elev. & Whse.
Ernest Still
Kern Co. Road Camp | | | CO
CO
C2
BO
C2 | 0332
0332-02
0343
0373-80
0374 | Arvin
Arvin Frick
Ash Mountain
Atwater Craig
Atwell | WB
S | Kern
Kern
Tulare
Merced
Tulare | 445
437
1708
150
6400 | 35
35
36
37
36 | 12
14
29
21
28 | 118
118
118
120
118 | 49
52
50
37
40 | 1936
1959
1925
1961
1949 | Kern Co. Fstry. & F.D.
Dept. Water Resources
U.S. Natl. Park Serv.
H. J. Craig
Corps of Engineers | | | B7
C0
C7
C7 | 0379
0396-02
0399
0399-01
0399-02 | Auberry
Avenal Walden
Avenal Orchard Ranch
Avenal 8 SW
Avenal 6 SSW | WB | Fresno
Kings
Kings
Kings
Kings | 2005
810
712
1424
1565 | 37
36
35
35
35 | 05
00
48
58
56 | 119
120
120
120
120 | 29
08
05
13
10 | 1915
1957
1919
1957
1953 | Pete E. Dubose
L. F. Walden
E. R. Orchard
J. A. Sagaser
Leslie Sagaser | | | C2
B5
B5
C0
C0 | 0422
0425
0430
0440
0442 | Badger
Badger Pass
Bagby
Bakersfield 1 W
Bakersfield WB Airport | WB
S | Tulare
Mariposa
Mariposa
Kern
Kern | 3030
7300
820
400
495 | 36
37
37
35
35 | 38
40
37
23
25 | 119
119
120
119
119 | 01
40
08
02
03 | 1940
1941
1958
1913
1933 | Lucille E. Weddle
U.S. Natl. Park Serv.
Mr. Peron
Kern County Land Co.
U.S. Weather Bureau | | | C1
C6
C1
B5
B5 | 0449
0466
0534
0570
0570-80 | Balch Power House
Ballinger
Barton Flat
Bear Valley Trabucco
Bear Valley | WB
Ss
S | Fresno
Kern
Fresno
Mariposa
Mariposa | 1720
4240
3760
2000
2060 | 36
34
36
37
37 | 55
53
49
34
34 | 119
119
118
120
120 | 05
22
53
07
07 | 1921
1961
1961
1952
1960 | P. G. & E. Company
B. J. Snedden
Corps of Engineers
Harold Trabucco
Corps of Engineers | | | B3
C2
B4
C0
V2 | 0573
0596
0617
0631
0684 | Beardsley Dam
Beartrap Meadow
Beehive Meadow
Bellevue
Benton Insp. Sta. | s
s | Tuolumne
Tulare
Tuolumne
Kern
Mono | 3165
6800
6500
369
5460 | 38
36
38
35
37 | 12
41
00
20
50 | 120
118
119
119
118 | 05
52
47
07
29 | 1958
1959
1947
1961
1959 | Oakdale Irrig. Dist.
Corps of Engineers
Hetch Hetchy Wtr. Sup.
Kern County Land Co.
John M. Patterson | | | BO
B7
B7
B7
B7 | 0688-02
0755
0755-01
0755-02
0755-05 | Berenda 2 N
Big Creek PH No. 1
Big Creek PH No. 2
Big Creek PH No. 3
Big Creek PH No. 8 | | Madera
Fresno
Fresno
Fresno
Fresno | 270
4928
3000
1400
2260 | 37
37
37
37
37 | 04
12
12
09
12 | 120
119
119
119
119 | 08
14
18
23
20 | 1959
1913
1913
1922
1921 | Closed Jan. 1, 1963.
So. Calif. Edison Co.
So. Calif. Edison Co.
So. Calif. Edison Co.
So. Calif. Edison Co. | | | V2
V2
V2
C1
V2 | 0767
0776
0819
0821
0824 | Big Pine Creek Big Pine PH No. 3 Bishop Creek Intake 2 Bishop Pass Snow Course Bishop Union Carbide | S
WB
S
WB | Inyo
Inyo
Inyo
Fresno
Inyo | 10060
4680
8154
11040
9390 | 37
37
37
37
37 | 08
08
15
06
22 | 118
118
118
118
118 | 29
19
35
34
43 | 1947
1925

1950
1957 | Dept. Water Resources
LA Dept Water & Power
Calif. Elec. Power Co.
Corps of Engineers
Union Carbide Co. | | | C6
C0
C1
C1
D1 | 0825-01
0875
0880-80
1069-01
1170 | Bitter Creek
Blackwells Corner
Blasingame
Bretz Mill
Buena Vista | Ss
WB | Kern
Kern
Fresno
Fresno
San Benito | 1250
644
1050
3250
1640 | 35
35
36
37
36 | 00
37
58
02
46 | 119
119
119
119
121 | 20
52
27
14
11 | 1961
1944
1961
1960
1932 | B. J. Snedden Dean Sams Calif. Div. Forestry U.S. Forest Service Mrs. Ora Lee Martin | | | C0
C0
C6
C0 | 1174
1175
1180-80
1199-01
1244 | Buena Vista Rch. Buena Vista Rch. M & L Buena Vista Rch. M & L 2 Burgess Corrals Buttonwillow | Ss
WB | Kern
Kern
Kern
Kern
Kern | 310
286
290
1600
268 | 35
35
35
34
35 | 20
12
14
58
24 | 119
119
119
119
119 | 17
18
18
19
28 | 1914
1955
1962
1960
1940 | Kern County Land Co.
Miller & Lux, Inc.
J. G. Boswell Co.
B. J. Snedden
Buena Vista W. S. Dist. | | | B2
B3
C3
C3
C0 | 1277
1280
1300
1425
1479 | Calaveras Big
Trees
Calaveras Ranger Sta.
Calif. Hot Springs RS
Camp Nelson
Canfield Ranch | WB
WB
WB | Calaveras
Calaveras
Tulare
Tulare
Kern | 4696
3343
2950
4825
334 | 38
38
35
36
35 | 17
12
53
08
17 | 120
120
118
118
119 | 19
22
41
37
10 | 1929
1944
1907
1959
1952 | Calif Div. Beaches &Pks
U.S. Forest Service
U.S. Forest Service
John F. Lewis
Kern County Land Co. | | | V7
C0
C0
B0
B8 | 1488
1490
1557
1580
1583 | Cantil Cantua Ranch Caruthers 4 E Castle AFB Castle Rock Rad. Lab. | WB | Kern
Fresno
Fresno
Merced
San Joaquin | 2010
295
265
170
625 | 35
36
36
37
37 | 18
30
33
22
38 | 117
120
119
120
121 | 58
19
46
34
32 | 1955
1955
1960
1951
1956 | Postmaster Giffen Ranch R. L. Kincade U. S. Air Force Lawrence Rad. Lab. | | | B6
B5
B5
B6
B6 | 1588
1588-01
1588-03
1590
1591 | Catheys Vly. Bull Run Rch.
Catheys Vly. Meyer Rch.
Catheys Vly. 3 NNW
Catheys Vly. Sawyer Rch.
Catheys Vly. Stonehouse | , WB | Mariposa
Mariposa
Mariposa
Mariposa
Mariposa | 1425
2250
1250
1275
1210 | 37
37
37
37
37 | 24
29
29
26
25 | 120
120
120
120
120 | 03
04
07
06
05 | 1940
1957
1957
1957
1951 | | | | e e | | | | | | | ot. | Lo | 0.0 | | | |----------------------------|--|--|---------------------|---|--|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Drainage
Basin | Alpha
Order | Station Name | | County | Elev. | | | | ī | Record
Began | Observer | | ŏ | Number | | | | L | Deg | Min. | Deg | Min. | | | | B4
B7
D3
C7
Z2 | 1697
1737
1743
1743-02
1754 | Cherry Valley Dam
Chiquito Creek
Cholame Hatch Ranch
Cholame Twisselman
Chuchupate Ranger Sta. | WB
S
WB
WB | Tuolumne
Madera
San Luis Obpo.
San Luis Obpo.
Ventura | | 37
37
35
35
34 | 58
30
41
34
48 | 119
119
120
120
119 | 55
23
12
07
01 | 1955
1961
1925
1951
1941 | Hetch Hetchy Wtr. Sup.
Dept. Water Resources
Everett C. Hatch
H. A. Twisselman
U.S. Forest Service | | C0
B7
C0
C7
C0 | 1770-80
1844
1864
1864-02
1867 | Citrus
Clover Meadows GS
Coalinga
Coalinga Roberts Rch.
Coalinga 1 SE | S
WB
WB | Kern
Madera
Fresno
Fresno
Fresno | 660
7002
671
1350
663 | 35
37
36
36
36 | 02
32
09
02
08 | 118
119
120
120
120 | 58
17
21
27
21 | 1963
1945
1942
1953
1911 | Kern County Land Co.
Dept. Water Resources
Coalinga Fire Dept.
R. J. Roberts
Union Oil Company | | C7
C0
C0
B6
C0 | 1869
1870-80
1871-80
1878
1885 | Coalinga 14 WNW
Coalinga CDF
Coalinga Feed Yards Inc.
Coarsegold
Coit Ranch Hdq. | WB | Fresno
Fresno
Fresno
Madera
Fresno | 1640
690
1000
2363
278 | 36
36
36
37
36 | 14
08
13
16
42 | 120
120
120
119
120 | 34
22
21
42
28 | 1949
1961
1964
1952
1954 | Mrs. Charles Howell
Calif. Div. Forestry
Dept. Water Resources
Dorothy McAllister
Coit Ranch | | B4
B3
C0
C0 | 1904
2003
2012
2013
2013-05 | Cold Springs Copperopolis Corcoran Irrig. Dist. Corcoran El Rico 1 Corcoran El Rico 33 | WB | Tuolumne
Calaveras
Kings
Kings
Kings | 5680
1000
200
198
190 | 38
37
36
36
35 | 10
59
06
03
58 | 120
120
119
119
119 | 03
38
34
39
42 | 1961
1954
1912
1958
1951 | John D. Morrison Corps of Engineers S. S. Whitehead J. G. Boswell Co. J. G. Boswell Co. | | V2
V2
B5
B5
C5 | 2069
2071
2072
2072-05
2114 | Cottonwood Creek
Cottonwood Gates
Coulterville FFS
Coulterville 5 E
Crabtree Meadow | s | Inyo
Mariposa
Mariposa | 10600
3710
1870
3010
10720 | 36
36
37
37
36 | 29
25
43
43
34 | 118
118
120
120
118 | 11
02
12
06
20 | 1947
1959
1959
1950 | Dept. Water Resources
LA Dept. Water & Power
Calif. Div. Forestry
Norman Jaenecke
Corps of Engineers | | B7
V2
C6
D6
D6 | 2122
2181
2222-80
2236
2248 | Crane Valley PH
Crowley Lake
Cummings Valley
Cuyama
Cuyama Ranch | WB
WB | Madera
Mono
Kern
Santa Barbara
San Luis Obpo. | 3440
6870
3825
2240
2170 | 37
37
35
34
34 | 17
35
07
56
59 | 119
118
118
119
119 | 32
42
35
37
40 | 1903
1920
1961
1944
1948 | P. G. & E. Company
LA Dept. Water & Power
Dept. Water Resources
John S. Rowell
Corps of Engineers | | B6
C0
B8
B0
B0 | 2288
2346
2369
2375
2389 | Daulton
Delano
Del Puerto Road Camp
Delta Ranch
Denair | WB
WB | Madera
Kern
Stanislaus
Merced
Stanislaus | 410
323
1125
90
124 | 37
35
37
37
37 | 07
47
25
07
32 | 119
119
121
120
120 | 59
15
23
45
48 | 1946
1876
1958
1948
1917 | M. M. Greenman
Delano Fire Dept.
Stanislaus County
Pasquale Bisignani
Closed Feb. 29, 1964. | | BO
CO
CO
CO | 2389
2408
2436
2440-01
2464 | Denair 3 NNE Devils Den SLF DiGiorgio Dinuba Alta I.D. Domengine Ranch | WB | Stanislaus
Kern
Kern
Tulare
Fresno | 137
500
483
334
1000 | 37
35
35
36
36 | 34
46
15
33
20 | 120
119
118
119
120 | 47
58
51
23
22 | 1964
1959
1937
1944
1959 | Ken C. Bratten
South Lake Farms
DiGiorgio Fruit Corp.
Alta Irrig. Dist.
V. Ciesielski | | C7
B4
C5
B5
B4 | 2464-01
2473
2492
2539
2609 | Domengine Spring
Don Pedro Reservoir
Doublebunk Meadow
Dudleys
Early Intake PH | S
WB | Fresno
Tuolumne
Tulare
Mariposa
Tuolumne | 1700
700
6200
3000
2356 | 36
37
35
37
37 | 20
43
57
45
53 | 120
120
118
120
119 | 24
24
36
06
57 | 1958
1940
1955
1909
1925 | V. Ciesielski
Hetch Hetchy Wtr. Sup.
Corps of Engineers
W. D. McLean
Hetch Hetchy Wtr. Sup. | | C1
C0
V0
C7
B0 | 2653
2752-80
2756
2785
2820 | East Vidette Meadow
Eighth Standard Ranch
Ellery Lake
El Rancho Cantua
El Solyo Rch. | S
WB | Tulare
Kern
Mono
Fresno
Stanislaus | 10400
338
9600
1020
50 | 36
35
37
36
37 | 44
06
56
25
37 | 118
119
119
120
121 | 23
02
14
29
14 | 1955
1963
1924
1938
1953 | Corps of Engineers
Kern County Land Co.
Calif. Elec. Power Co.
Sta. discontinued 7/63.
John K. Ohm | | BO
BO
B5
CO
BO | 2860
2909
2920
2922
2968 | Escalon Swanson Eugene Exchequer Reservoir Exeter Fauver Ranch Fancher Ranch Camp 3 | WB
WB | San Joaquin
Stanislaus
Mariposa
Tulare
Merced | 125
173
484
439
225 | 37
37
37
36
37 | 47
55
35
21
19 | 121
120
120
119
120 | 00
51
16
04
20 | 1944
1923
1935
1938
1959 | Clark Swanson
Corps of Engineers
Merced Irrig. Dist.
Charles O. Coulter
Calif. Packing Corp. | | C7
80
C0
C0
B7 | 3005
3063
3083
3084
3093 | Fellows Firebaugh 9 W Five Points 5 SSW Five Points Diener Florence Lake | WB
WB | Kern
Fresno
Fresno
Fresno
Fresno | 1340
187
285
263
7344 | 35
36
36
36
37 | 11
51
21
22
16 | 119
120
120
120
118 | 33
37
09
06
58 | 1956
1934
1942
1933
1940 | Kern Co. Fire Dept.
Thomas & Thomas Ranch
Raymond Thomas Ranch
Frank C. Diener
So. Calif. Edison Co. | | CO
CO
B7
VO
E5 | 3257
3258-80
3261
3369
3387 | Fresno WB Airport
Fresno Co. Westside FD
Friant Government Camp
Gem Lake
Gerber Ranch | WB
WB
WB | Fresno
Fresno
Fresno
Mono
Santa Clara | 326
600
410
8970
2140 | 36
36
36
37
37 | 46
08
59
45
22 | 119
120
119
119
121 | 43
16
43
08
29 | 1899
1963
1896
1924
1912 | U.S. Weather Bureau
Dept. Water Resources
U.S. Bur. Reclamation
Calif. Elec. Power Co.
Mrs. Hilda Draghi | | Drainage
Basin | Alpha
Order | Station Name | | Caunty | Elev. | Lo | ıt. | Lo | ng. | Record | Observer | |----------------------------|--|---|----------------------|--|--------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Drail
Bo | Number | J.O.TOT. NOTICE | | | Lick. | Deg. | Mın. | Deg | Min | Began | | | Dl | 3397
3422
3428-01
3463
3465 | Giant Forest Gilroy 14 ENE Gin Yard Glennville Glennville Fulton RS | WB
WB
WB |
Tulare
Santa Clara
Kern
Kern
Kern | 6412
1350
295
3140
3500 | 36
37
35
35
35 | 34
06
09
43
44 | 118
121
119
118
118 | 46
20
14
42
40 | 1921
1940
1960
1951
1940 | U.S. Natl. Park Serv.
Seth E. Auser
Miller & Lux, Inc.
Kern Co. Fstry. & F.D.
U.S. Forest Service | | CO
B4
C1
C1
B5 | 3512
3529
3548
3551
3612-03 | Gosford Feed Mill
Grace Meadow
Granite Basin
Grant Grove
Green Valley Ranch | S
S
WB | | 360
8900
10000
6580
3170 | 36 | 19
09
52
44
46 | 119
119
118
118
120 | 05
36
36
58
09 | 1953
1947
1949
1924
1957 | Kern County Land Co.
Hetch Hetchy Wtr. Sup.
Corps of Engineers
U.S. Natl. Park Serv.
Mrs. D. Davidson | | B4
B4
B0
B0
B0 | 3669
3672
3690-02
3690-04
3694 | Groveland 2
Groveland Ranger Sta.
Gustine 5 SW
Gustine Snyder
Gustine Avoset | WB
WB | Tuolumne
Tuolumne
Merced
Merced
Merced | 2825
3135
145
150
98 | 37
37 | 13 | 120
120
121
121
121 | 14
06
03
03
00 | 1940
1940
1927
1954
1928 | Duane J. Cox
U.S. Forest Service
W. P. Jorgensen
Harry M. Snyder
Foremost Co. | | BO
V7
CO
C1
D1 | 3698-80
3710
3747
3811-11
3925 | Gustine 7 SSW
Haiwee
Hanford
Haslett Basin
Hernandez 2 NW | WB
WB | Merced
Inyo
Kings
Fresno
San Benito | 156
3810
242
2400
2160 | 37
36
36
36
36 | 10
08
20
58
25 | 121
117
119
119
120 | 02
57
40
13
55 | 1959
1923
1899
1960
1940 | Mrs. George E. Butts
LA Dept. Wtr. & Power
Calif. Div. Forestry
U.S. Forest Service
Max D. Ley | | D1
B4
B6
B2
B0 | 3928
3939
3948
3952
3981 | Hernandez 7 SE
Hetch Hetchy
Hidden Valley
Highland Lakes
Hilmar | WB
WB | San Benito
Tuolumne
Mariposa
Alpine
Merced | 2765
3870
1880
8650
90 | 37 | 18
57
26
30
25 | 120
119
119
119
120 | 42
47
56
48
51 | 1940
1910
1949
1960
1948 | Mrs. Clorene Akers
Hetch Hetchy Wtr. Sup.
Howard Brady
Dept. Water Resources
Hilmar Fire Dept. | | | 4012
4061-01
4061-02
4061-03
4101-80 | Hockett Meadow
Homeland Dist. Sec. 9
Homeland Dist. Sec. 17
Homeland Dist. Sec. 34
Hornitos Bridge Cafe | 5 | Tulare
Kings
Kings
Kings
Mariposa | 8500
190
206
195
825 | 36
35
35
35
37 | 22
57
50
53
30 | 118
119
119
119
120 | 39
36
37
34
14 | 1959
1952
1952
1951
1962 | J. G. Boswell Co. | | B5
B5
B5
C3
B4 | 4102-01
4103
4104-80
4120
4148 | Hornitos Erickson Ranch
Hornitos Giles Ranch
Hornitos
Hossack (Radio)
Huckleberry Lake | s
s | Mariposa
Mariposa
Mariposa
Tulare
Tuolumne | 1150
1050
850
7100
7800 | 37
37
37
36
38 | 30
28
30
11
06 | 120
120
120
118
119 | 09
14
14
37
45 | 1955
1939
1960
1959
1959 | Corps of Engineers | | B3
B7
B8
V2
V2 | 4170
4176
4204
4232
4235 | Hunters Dam
Huntington Lake
Idria
Independence
Independence Onion Vly. | WB
WB
WB
WB | Calaveras
Fresno
San Benito
Inyo
Inyo | 3220
7020
2650
3950
9175 | 36 | 12
14
25
48
46 | 120
119
120
118
118 | 22
13
40
12
20 | 1950
1915
1918 | P. G. & E. Company
So. Calif. Edison Co.
New Idria Mine & Chem.
LA Dept. Wtr. & Power
LA Dept. Wtr. & Power | | B5
V7
C5
B5
C5 | 4246
4278
4303
4369
4389 | Indian Gulch
Inyokern
Isabella Dam
Jerseydale G5
Johnsondale | WB | Mariposa
Kern
Kern
Mariposa
Tulare | 1000
2440
2660
3605
4680 | 35 | 26
39
39
33
58 | | 12
49
29
50
32 | 1937 | Frank N. Solari
Kern County Fire Dept.
Corps of Engineers
U.S. Forest Service
U.S. Forest Service | | C2
C6
B8 | 4442
4452
4463
4508
4510-02 | Kaiser Meadows
Kaweah PH 3
Keene
Kerlinger
Kerman 2 ESE | | Fresno
Tulare
Kern
San Joaquin
Fresno | 9110
1370
2575
172
225 | 36
3 5
37 | 18
29
13
41
43 | | 06
50
34
26
01 | 1913 | So. Calif. Edison Co.
So. Calif. Edison Co.
Kern County Fire Dept.
Pac. Coast Aggregates
Dept. Water Resources | | C5 | 4513
4518
4519
4520
4523 | Kern Canyon
Kern River Intake No. 3
Kern River Intake 3 SCE
Kern River PH No. 1
Kern River PH No. 3 | WB
WB
WB | Tulare
Tulare
Tulare
Kern
Kern | 700
3650
3642
970
2703 | 35
35 | 26
57
57
28
47 | | 48
29
29
47
26 | | So. Calif. Edison Co. | | CO
CO | 4572-01
4534
4535
4536
4590 | Kernville RS Kettleman City 1 SSW Kettleman Hills Kettleman Station Knights Ferry 2 SE | | Kern
Kings
Kings
Kings
Stanislaus | 2600
310
1255
508
315 | 36
36 | 00
02
04 | 119
120
120 | 25
58
06
05
39 | 1953
1930
1931
1933
1905 | Standard Oil Co. Calif.
Standard Oil Co. Calif.
P. G. & E. Company | | B4
V2
D3 | 4664
4679
4705
4767
4863 | Lake Alpine
Lake Eleanor
Lake Sabrina
La Panza Ranch
Lebec | S
S
WB | • | 7500
4662
9065
1550
3585 | 37
37
35 | 13
23 | 119
118
120 | | | Hetch Hetchy Wtr. Sup. | | | | SAN JOAQUIN DISTRICT | | | | | | | | | | |----------------------------|--|---|---------------------|--|--------------------------------------|----------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Drainage
Basin | Alpho
Order | Station Name | | County | Etev. | L | at. | Lo | ng. | Record | Observer | | Dra | Number | | | , | | Deg | Min. | Oeg | Min. | Begon | | | B6
B0
B0
C2
B0 | 4883
4884
4884-05
4890
4953-02 | Le Grand Preston Rch.
Le Grand
Le Grand 6 N
Lemon Cove
Linden Fire Station | WB
WB | Mariposa
Merced
Merced
Tulare
San Joaquin | 984
255
280
513
90 | 37
37
37
36
38 | 20
14
19
23
01 | 120
120
120
119
121 | 02
15
15
02
05 | 1950
1899
1945
1899
1948 | See White Rock Preston
Merced Co. Fire Dept.
James Massengale (USCE)
Kaweah Lemon Company
E. J. Murphy | | CO
BO
B7
V2
B8 | 4957
4999-03
5040
5067
5074 | Lindsay
Livingston 5 W
Logan Meadow
Lone Pine Cottonwood PH
Lone Tree Canyon | WB
S
WB
WB | Tulare
Merced
Madera
Inyo
San Joaquin | 395
112
3400
3790
420 | 36
37
37
36
37 | 11
22
20
27
37 | 119
120
119
118
121 | 04
48
19
03
23 | 1913
1952
1948
1940
1933 | Frank De Chaine
E & J Gallo Winery Rch.
See Mammoth Pool
LA Dept. Wtr. & Power
Edward C. Gerlach | | B3
C6
V2
B0
B0 | 5078
5098
5111-09
5116
5117 | Long Barn Exp. Station Loraine LA Aqueduct Intake Los Banos 5 S Los Banos Field Sta. | WB
WB | Tuolumne
Kern
Inyo
Merced
Merced | 5200
2720
3841
175
160 | 38
35
36
36
37 | 11
18
58
59
01 | 120
118
118
120
120 | 01
26
12
51
54 | 1960
1941
1919
1948
1956 | Closed February 1964.
Charles W. Poole
LA Dept. Wtr. & Power
H. G. Fawcett
U.S. Bur. Reclamation | | B0
B8
C0
C1
B4 | 5118
5119
5151
5155-51
5160 | Los Banos
Los Banos Arburua Ranch
Lost Hills
Lower Big Creek
Lower Kibbey Ridge | WB
WB
WB | Merced
Merced
Kern
Fresno
Tuolumne | 125
860
285
1078
6500 | 37
36
35
36
38 | 03
53
37
55
01 | 120
120
119
119
119 | 51
56
41
15
53 | 1873
1932
1912
1960
1948 | Roger C. Rice
Arburua Ranch
Kern Co. Fstry & F.D.
U.S. Forest Service
Hetch Hetchy Wtr. Sup. | | B6
B0
B0
C0
V2 | 5 202
5 233
5 233 - 03
5 257
5 284 | Lushmeadows Ranch
Madera
Madera I. D.
Magunden
Mammoth Pass | WB
S | Mariposa
Madera
Madera
Kern
Mono | 3215
268
263
440
9380 | 37
36
36
35
37 | 29
58
55
22
37 | 119
120
120
118
119 | 50
04
02
55
02 | 1959
1899
1964
1927
1947 | F. L. Raby
Calif. Div. Forestry
Madera Irrig. Dist.
So. Calif. Edison Co.
LA Dept. Wtr. & Power | | B7
B0
B0
C7
C7 | 5288
5297-01
5297-02
5338
5338-01 | Mammoth Pool
Manteca No. 2
Manteca SP
Maricopa
Maricopa FS | S
WB | Madera
San Joaquin
San Joaquin
Kern
Kern | 3390
46
42
685
885 | 37
37
37
35
35 | 21
48
48
05
04 | 119
121
121
119
119 | 19
12
13
23
24 | 1948
1930
1935
1911
1958 | So. Calif. Edison Co.
Spreckles Sugar Co.
Southern Pacific Co.
Signal Oil & Gas Co.
Kern County Fire Dept. | | B5
B5
B6
B5
B5 | 5346
5346-01
5346-04
5348
5352 | Mariposa
Mariposa Reynolds
Mariposa 8 ESE
Mariposa Circle 9 Rch.
Mariposa RS | WB | Mariposa
Mariposa
Mariposa
Mariposa
Mariposa | 2011
2000
2780
3536
2100 | 37
37
37
37
37 | 29
29
27
33
30 | 119
119
119
119
119 |
58
58
50
51
59 | 1909
1958
1952
1957
1957 | Mrs. Gabrielle Wilson
E. F. Reynolds
D. A. Boyce
Miss D. D. Sevedge
Calif. Div. Forestry | | C7
B4
B0
B0
B5 | 5372-01
5400
5408-80
5418-80
5460 | Martinez Spring
Mather
Mattos Ranch
Maze Bridge 2 S
McDiermid Sta. | WB | Fresno
Tuolumne
Merced
Stanislaus
Mariposa | 1875
4515
170
35
2990 | 36
37
36
37
37 | 20
53
59
37
43 | 120
119
120
121
120 | 25
51
51
13
06 | 1959
1930
1961
1958
1959 | V. Ciesielski
City of San Francisco
Bobbie Mattos
Dept. Water Resources
Dale Goodner | | C7
B7
B3
B0
C0 | 5480-01
5496
5511
5526
5526-04 | McKittrick FS
Meadow Lake
Melones Dam
Mendota 1 NNW
Mendota Murietta Ranch | WB | Kern
Fresno
Tuolumne
Fresno
Fresno | 1051
4480
900
172
253 | 35
37
37
36
36 | 18
05
57
46
39 | 119
119
120
120
120 | 37
26
31
23
27 | 1956
1948
1955
1941
1958 | Kern County Fire Dept.
Radio Station KRFM
Oakdale Irrig. Dist.
Henry E. Schreiner
Mrs. R. Truelove | | BO
CO
CO
BO
BO | 5528
5529
5530
5532
5532-01 | Mendota Dam Mendota Halfway Pump Mendota VDL Farms Merced Fire Station 2 Merced SP | WB
WB | Fresno
Fresno
Fresno
Merced
Merced | 166
444
230
169
170 | 36
36
36
37
37 | 47
28
45
18
18 | 120
120
120
120
120 | 22
23
28
29
29 | 1873
1956
1948
1872
1872 | Frank F. Moitoza
Tidewater Oil Co.
Vista Del Llano Farms
City of Merced
Southern Pacific Co. | | BO
BO
BO
B8
C3 | 5532-03
5534
5535
5550
5669 | Merced 5 SE
Merced Fancher Ranch
Merced 2
Mercey Hot Springs
Milo 5 NE | WB
WB | Merced
Merced
Merced
Fresno
Tulare | 198
212
168
1165
3400 | 37
37
37
36
36 | 16
18
19
42
17 | 120
120
120
120
120 | 23
21
29
52
46 | 1959
1920
1938
1932
1957 | Dept. Water Resources
Calif. Packing Corp.
Merced Irrig. Dist.
Horace C. Swatzel
Mrs. Ethel Walker | | 87
C2
C2
C1
B4 | 5677-80
5680
5708
5723
5735 | Minarets RS
Mineral King
Miramonte Honor Camp
Mitchell Meadow
Moccasin | s
s | Madera
Tulare
Fresno
Fresno
Tuolumne | 5180
7975
3005
9700
950 | 37
36
36
36
36
37 | 25
26
40
45
49 | 119
118
119
118
120 | 21
35
05
43
18 | 1962
1956
1957
1957
1935 | U.S. Forest Service
Corps of Engineers
Calif. Div. Forestry
Corps of Engineers
Hetch Hetchy Wtr. Sup. | | BO
BO
BO
V8
V8 | 5738
5740
5741
5756
5758 | Modesto
Modesto KTRB
Modesto 2
Mojave
Mojave 2 ESE | WB
WB
WB | Stanislaus
Stanislaus
Stanislaus
Kern
Kern | 91
93
92
2735
2680 | 37
37
37
35
35 | 39
40
38
03
02 | 121
120
121
118
118 | 00
59
00
10
09 | 1926
1959
1942
1947
1963 | Modesto Irrig. Dist.
Clifford Price
City of Modesto
Kern County Fire Dept.
KDOL Radio Station | ## TABLE A-1 (Cont.) | age | Alpha | | | 6 | F | Lo | ıt | Lo | ng. | Record | Observer | |----------------------------|--|---|---------------|--|--|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|--| | Drainage
Basin | Order
Number | Station Name | | County | Elev | Oeg | Min, | Oeg | Mın. | 8egan | Coserver | | C5
C0
C3
C1
V8 | 5777
5822-80
5893
6122 | Monache Meadows
Moody Ranch
Mountain Home 2
Mountain Rest FFS
Neenach | s
s
wb | Tulare
Kern
Tulare
Fresno
Los Angeles | 7900
405
5360
4100
2890 | 36
35
36
37
34 | 13
06
14
03
43 | 118
118
118
119
118 | 10
58
43
22
35 | 1950
1963
1962
1960
1931 | Corps of Engineers
Kern County Land Co.
Corps of Engineers
U.S. Forest Service
LA Dept. Wtr. & Power | | BO
BO
CO
B7
BO | 6168
6168-01
6230-50
6252
6303 | Newman 2 NW
Newman 1 SE
North Belridge
North Fork Ranger Sta.
Oakdale | WB
WB | Stanislaus
Merced
Kern
Madera
Stanislaus | 108
80
630
2630
155 | 37
37
35
37
37 | 21
18
33
14
46 | 121
121
119
119
120 | 03
00
47
30
51 | 1899
1960
1953
1904
1880 | Richard A. Smith Dept. Water Resources Belridge Oil Co. U.S. Forest Service A. L. Gilbert Co. | | BO
B6
CO
C7
C5 | 6305
6321-80
6393
6395
6462 | Oakdale Woodward Dam
Oakhurst
Oilfields FFS
Oilfields Joaquin Ridge
Onyx | | Stanislaus
Madera
Fresno
Fresno
Kern | 215
2250
950
3620
2750 | 37
37
36
36
36 | 52
20
15
18
42 | 120
119
120
120
118 | 52
39
19
24
13 | 1918
1961
1952
1949
1962 | S. San Joaquin I. D. Oakhurst School Gene Martin U.S. Weather Bureau Corps of Engineers | | CO
BO
B5
B8
CO | 6467
6490
6552
6583
6651 | Orange Cove
Orestimba
Ostrander Lake
Pacheco Pass
Paloma Ranch | s | Fresno
Stanislaus
Mariposa
Merced
Kern | 431
110
8600
880
2 90 | 36
37
37
37
35 | 37
22
38
04
11 | 119
121
119
121
119 | 18
04
33
11 | 1931
1896
1947
1949
1957 | Orange Cove Cit. Assn.
Central Calif. I. D.
U.S. Natl. Park Serv.
U.S. Bur. Reclamation
Miller & Lux, Inc. | | B8
B8
B0
B0
B4 | 6675
6676
6677
6679–05
6688 | Panoche
Panoche 2 W
Panoche Creek
Panoche Water Dist.
Paradise Meadow | WB
WB
S | San Benito
San Benito
Fresno
Fresno
Tuolumne | 1265
1320
370
183
7700 | 36
36
36
36
38 | 36
37
41
53
03 | 120
120
120
120
119 | 50
53
35
44
40 | 1922
1957
1963
1949
1948 | | | D3
D3
B0
C6
C2 | 6703
6706
6746-01
6754
6767 | Parkfield
Parkfield 7 NNW
Patterson
Pattiway
Pear Lake | WB
WB | Monterey
Monterey
Stanislaus
Kern
Tulare | 1482
3590
105
3868
9700 | 35
36
37
34
36 | 53
00
28
56
36 | 120
120
121
119
118 | 26
28
07
23
40 | 1938
1948
1912
1915
1956 | Herbert H. Durham
Raulston P. Morrison
Yancey Lumber Co.
Hudson Ranch
Corps of Engineers | | B8
C1
B3
C1
C1 | 6847
6857
6893
6895
6902 | Pfeiffer Ranch
Piedra
Pinecrest Strawberry
Pine Flat Dam
Pinehurst | WB | Merced
Fresno
Tuolumne
Fresno
Fresno | 1615
580
5700
610
4050 | 36
36
38
36
36 | 53
48
12
49
42 | 121
119
119
119
119 | 08
23
59
20
01 | 1954
1917
1922
1949
1954 | P. G. & E. Company | | B7
C0
C0
C0
C5 | 6959-80
7055-80
7077
7079
7093 | Placer G. S. Pond 1 N Porterville Porterville 3 W Portuguese Meadow | WB
S | Madera
Kern
Tulare
Tulare
Tulare | 3670
268
393
413
7000 | 37
35
36
36
35 | 22
44
04
05
48 | 119
119
119
119
118 | 22
19
01
04
34 | 1962
1962
1893
1958
1953 | U.S. Forest Service
Dept. Water Resources
John H. Daybell
Porterville I. D.
Corps of Engineers | | C4
C0
B0
B4
D2 | 7096
7098-11
7099-11
7145
7150 | Posey 3 E
Poso Ranch
Poso Canal Co. Hdq.
Priest
Priest Valley | WB
WB | Tulare
Kern
Fresno
Tuolumne
Monterey | 4920
370
125
2245
2300 | 35
35
36
37
36 | 48
37
59
49 | 118
119
120
120
120 | 38
16
30
16
42 | 1954
1913

1928
1898 | Panorama Height Lodge
Kern County Land Co.
Central Calif. I. D.
Hetch Hetchy Wtr. Sup.
Nelson H. Palmer | | B6
B6 | 7179
7259
7270-01
7272-01
7273 | | s | Tulare
Fresno
Madera
Mariposa
Mariposa | 7200
9900
635
1640
1210 | 36
37
37 | 07
59
11
22
21 | 118 | 43
56
54 | 1940 | Corps of Engineers
Sam Wood
Fred Bunning Jr. | | | 7276
7288
7354-80
7447-80
7460 | Raymond 12 NNE
Rector
Reedley MVFD
Ripon
Riverdale | | Mariposa
Tulare
Fresno
San Joaquin
Fresno | 345
65 | 37
36
36
37
36 | 37
45 | 119
119
121 | 50
15
27
07
52 | 1963 | So. Calif. Edison Co.
Mid-Valley Fire Dist.
Arthur N. Clemens | | | 7510
7528
7555
7560
7579 | Rock Creek
Rocky Village
Rosedale
Rose Marie Meadow
Round Meadow | | Inyo
Mariposa
Kern
Fresno
Tulare | 9700
570
380
10000
9000 | 37
35
37 | 27
22
26
19
58 | 120
119
118 | 08
52 | 1957
1914
1953 | W. R. Down Kern County Land Co. So. Calif. Edison Co. | | B4
D1
Z2
C0
D1 | | Saches Springs
San Benito
Sandberg WB
San Emigdio Ranch
San Felipe Highway Sta. | | San Benito
Los Angeles
Kern | 7900
1355
4517
1450
365 | 36
34
35 | 31
45
00 | 121
118 | 12 | 1936
1933
1901 | John M. Shields
U. S. Weather Bureau | | | | SAN JOAQUIN DISTRICT | | | | | | | | | | |----------------------------|---
--|----------------------|--|---|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---| | nage
sin | Alpha
Order | Station Name | | County | Elev. | Lo | ıt. | Lor | ıg. | Record | Observer | | Orainage
Basin | Number | atonon Nume | | County | Liev. | Oeg. | Min. | Oeg | Min. | Begon | 00361761 | | CO
CO
CO
B7
CO | 7800-02
7800-03
7816
7817
7819-80 | Sanger 1 NE
Sanger RS
San Joaquin
San Joaquin Exp. Range
San Joaquin MVFD | WB | Fresno
Fresno
Fresno
Madera
Fresno | 375
375
174
1100
174 | 36
36
36
37
36 | 44
44
36
06
36 | 119
119
120
119
120 | 33
33
11
44
11 | 1959
1958
1919
1934
1962 | James S. Minter
Calif. Div. Forestry
James Irrig. Dist.
U.S. Forest Service
Mid-Valley Fire Dist. | | BO
B8
BO
CO
D7 | 7836-01
7846
7855
7987-80
8259-02 | San Juan Hdqrs. M & L
San Luis Dam
San Luis Canal Co. Hdq.
Santiago Ranch M & L
Simmler R. W. Cooper | WB | Merced
Merced
Merced
Kern
San Luis Obpo. | 105
277
106
437
2040 | 37
37
37
35
35 | 05
03
03
06
24 | 120
121
120
119
120 | 39
04
40
13
06 | 1947
1963
1944
1963
1936 | Miller & Lux, Inc.
U.S. Bur. Reclamation
San Luis Canal Co.
Mr. Leo Destranpe
R. W. Cooper | | D7
D2
C6
B5
C1 | 8259-04
8276
8304
8318
8323-01 | Simmler Maint. Sta. Slack Canyon Smith Flat Snow Flat Soaproot Saddle | WB
Ss
S | San Luis Obpo.
Monterey
Kern
Mariposa
Fresno | 2030
1730
3800
8700
3830 | 35
36
34
37
37 | 21
05
54
50
02 | 119
120
119
119
119 | 59
40
21
30
15 | 1946
1955
1960
1947
1960 | Div. of Highways
Calif. Div. Forestry
B. J. Snedden
Dept. Water Resources
U.S. Forest Service | | D7
B4
G9
CO
BO | 8326
8353
8355
8375-50
8378 | Soda Lake
Sonora RS
Sonora Junction
South Belridge
South Dos Palos | WB
WB | San Luis Obpo.
Tuolumne
Mono
Kern
Merced | 1960
1749
6886
575
116 | 35
37
38
35
36 | 15
59
21
27
58 | 119
120
119
119
120 | 55
23
27
43
39 | 1925
1887
1959
1938
1938 | Dewey Werling
Calif. Div. Forestry
Div. of Highways
Belridge Oil Co.
Southern Pacific Co. | | B5
V2
C0
B3
C3 | 8380
8406
8407-11
8450
8455 | So. Entrance Yosemite NP
South Lake
South Lake Farms Hdq.
Spring Gap Forebay
Springville 7 ENE | WB
S | Mariposa
Inyo
Kings
Tuolumne
Tulare | 5120
9580
190
4900
2470 | 37
37
35
38
36 | 30
11
56
10
10 | 119
118
119
120
118 | 38
34
39
06
42 | 1941
1948
1959
1921
1953 | U.S. Natl. Park Serv.
Calif. Elec. Power Co.
South Lake Farms
P. G. & E. Company
Elmer A. Sutton | | C3
C3
C2
B3
C1 | 8460
8463
8474-80
8499
8510 | Springville RS
Springville Tule Hdwks.
Squaw Valley Fr.
Stanislaus Power House
State Lakes | WB
WB
WB | Tulare
Tulare
Fresno
Tuolumne
Fresno | 1050
4070
1750
1130
10300 | 36
36
36
38
36 | 08
12
45
08
56 | 118
118
119
120
118 | 48
39
13
22
35 | 1924
1907
1961

1955 | U.S. Forest Service P. G. & E. Company Edgar Young P. G. & E. Company Corps of Engineers | | C0
C3
C1
C7
C7 | 8520
8620
8643
8752
8755 | Stevenson Dist. Sec. 33
Success Dam
Summit Meadow
Taft
Taft KTKR Radio | S
WB | Tulare
Tulare
Fresno
Kern
Kern | 212
590
6240
1025
1030 | 36
36
37
35
35 | 03
03
05
09 | 119
118
119
119
119 | 30
55
13
28
28 | 1951
1959
1960
1940
1954 | J. G. Boswell Co.
Corps of Engineers
Dept. Water Resources
Kern Co. Fstry & F.D.
G. K. Mann | | C6
C6
C0
C2
C7 | 8826
8832
8839
8868
8893-80 | Tehachapi
Tehachapi RS
Tejon Rancho
Terminus Dam
Thirty-Two Corral | WB
WB
WB | Kern
Kern
Kern
Tulare
Fresno | 3975
3975
1425
5 70
1700 | 35
35
35
36
36 | 08
08
02
25
19 | 118
118
118
119
120 | 27
27
45
00
22 | 1876
1940
1895
1959 | Mrs. Anita Cowan
Kern County Fire Dept.
Tejon Ranch Company
Corps of Engineers
V. Ciesielski | | C2
C2
C2
B0
B8 | 8912
8914
8917
8997
8999 | Three Rivers 6 SE Three Rivers Edison PH 2 Three Rivers Edison PH 1 Tracy 2 SSE Tracy Carbona | WB
WB
WB
WB | Tulare
Tulare
Tulare
San Joaquin
San Joaquin | 2200
950
1140
105
140 | 36
36
36
37
37 | 22
28
28
43
42 | 118
118
118
121
121 | 51
53
52
25
25 | 1940
1909
1940
1951
1934 | Glenn Baker
So. Calif. Edison Co.
So. Calif. Edison Co.
Aage R. Tugel
Banta Carbona Irr. Co. | | C0
C1
C0
C0 | 9006
9011-80
9025
9051
9051-04 | Tranquillity Glotz Traver 4 ESE Trimmer RS Tulare Tulare Dist. Sec. 27 | | Fresno
Tulare
Fresno
Tulare
Kings | 165
285
736
293
179 | 36
36
36
36
36 | 38
26
54
13
05 | 120
119
119
119
119 | 14
24
17
20
48 | 1953
1962
1948
1919
1953 | Ted Gromala Dept. Water Resources U.S. Forest Service So. Calif. Edison Co. J. G. Boswell Co. | | CO
C3
C3
C5
B3 | 9052
9059
9060
9061
9062 | Tulefield
Tule River Intake
Tule River PH
Tunnel RS
Tullock Dam | WB
S | Kern
Tulare
Tulare
Tulare
Calaveras | 295
2450
1240
8950
515 | 35
36
36
36
37 | 09
10
08
22
53 | 119
118
118
118
120 | 01
42
47
17
36 | 1948
1910
1910
1945
1958 | | | B4
B0
B0
B0
C0 | 9063
9073
9073-01
9073-02
9145 | Tuolumne Meadows Turlock Turlock 5 SW Turlock 8 WSW U. S. Cotton Field Sta. | S
WB | Tuolumne
Stanislaus
Stanislaus
Stanislaus
Kern | 8600
115
76
60
367 | 37
37
37
37
35 | 53
29
28
27
32 | 119
120
120
120
119 | 20
51
55
58
17 | 1947
1893
1958
1958
1922 | Dept. Water Resources
Carl A. Pearson
Chatom Co. Ltd.
Herbert Ellis
U.S. Dept. Agriculture | | B7
D1
B7
C0
C0 | 9162-80
9189
9301
9304
9367 | Upper Chiquito
Upper Tres Pinos
Vermilion Valley
Vestal
Visalia | WB
S
WB | Madera
San Benito
Fresno
Tulare
Tulare | 6800
2050
7520
500
354 | 37
36
37
35
36 | 30
38
22
50
20 | 119
121
118
119
119 | 24
02
59
05
18 | 1962
1940
1947
1920
1903 | U.S. Forest Service
Eldon Fancher
So. Calif. Edison Co.
So. Calif. Edison Co.
Tulare Co. C. of C. | | sın | Alpha
Order | Station Name | | County | Etev. | Lo | ot. | Lai | ng. | Record | Observer | |----------------------------|--|--|----------------|--|------------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---| | Drainage
Basin | Number | Station Name | | County | Erev. | Oeg. | Min, | Oeg | Min. | Began | Observer | | CO
CO
B5
C5
C0 | 9369
9452
9482
9512
9535 | Visalia 4 E
Wasco
Wawona RS
Weldon 1 WSW
West Camp SLF | WB
WB
WB | Tulare
Kern
Mariposa
Kern
Kings | 357
333
3965
2680
290 | 36
35
37
35
35 | 20
36
32
40
51 | 119
119
119
118
119 | 13
20
40
18
53 | 1959
1899
1934
1940
1959 | J. V. Pimentel
Kern Co. Fstry. & F.D.
U.S. Natl. Park Serv.
Vernon J. Blount
South Lake Farms | | B6
C0
B0
C5
C0 | 9556-80
9560
9565
9602
9614-81 | Westfall RS
Westhaven
Westley
Wet Meadow
Wheeler Ridge LWU A-122 | WB
S | Madera
Fresno
Stanislaus
Tulare
Kern | 4793
285
85
8950
1230 | 37
36
37
36
34 | 27
13
33
21
59 | 119
119
121
118
118 | 39
59
12
34
57 | 1958
1925
1928
1959
1963 | U.S. Forest Service
Boston Ranch Co.
W. Stanislaus I. D.
Corps of Engineers
Dept. Water Resources | | B6
C0
C1
C5
C1 | 9640-80
9670-80
9749
9754
9773 | White Rock Preston
Wilbur Ditch
Wishon Res.
Wofford Heights
Woodchuck Meadow | | | 984
210
6600
2700
9200 | 37
35
37
35
37 | 20
56
01
43
02 | 120
119
118
118
118 | 02
45
58
27
54 | 1950
1962
1958
1894
1955 | Ray Preston South Lake Farms P. G. & E. Co. James H. Jorgensen Corps of Engineers | | C4
B5 | 9805
9855 | Woody
Yosemite National Park | WB | Kern
Mariposa | 1630
3985 | 35
37 | 42
45 | 118
119 | 51
35 | 1956
1904 | Kern Co. Fstry. & F.D. U.S. Natl. Park Serv. | WB - All or part of data published by U. S. Weather Bureau. S - Storage gage
- Data published by U. S. Weather Bureau. Ss - Storage gage using standard rain gage. Note - Data collected from all other stations by Department of Water Resources. | 8. | Alpho | | | | | CAQUIN D | | | In ir | chea | | _ | | | | |----------------------------------|---|--|--|--------------------------|-------------------------------|----------------------------------|--------------------------------------|---|---------------------------------------|--|-------------------------------------|--|--------------------------------------|-------------------------------------|-----------------------------------| | Orolno
Bosir | Order
Number | Station flame | Seasonal
Tatal | July | Aug. | Sept. | Oct. | Nov | Dec. | Jan. | Feb. | Mgr. | Apr. | Moy | June | | CO
86
CO
C7
D6 | 0009
0049
0204
0215
0239 | Academy Ahwahnee 2 NNW Angiola CD Annette Apache Camp HPD | 10.53
19.89
5.94
5.99
9.78 | .00
.00
.00 | .02
.02
.05
.00 | .20
.44
.55
.42 | 1.62
1.47
1.10
1.34
1.39 | 3.43
7.41
1.19
1.08
2.75 | .87
.53
.23
.00 | 1.15
3.03
.66
1.59
1.24 | .00
.00
.06
.00 | 1.98
3.33
1.21
.90
1.31 | .81
1.64
.77
.20 | .45
1.48
.12
.46
.39 | .00
.54
T | | C0
C0
C2
80
C2 | 0332
0332-02
0343
0373-80
0374 | Arvin Prick Ash Mountain CD Atwater Craig Atwell S | 6.34
6.30
17.76
8.76
30.00 | .00
.00
.00 | T .02 .13 .00 | .99
1.20
.62
.21 | .65
.76
1.45
1.57 | 1.65
1.51
5.06
2.59
July 26 | .08
.15
.55
.28
1963 to | .51
.49
1.81
1.31
5 July 2 | .42
.44
.31
.21
7, 1964 | .69
.52
3.61
1.22 | .63
.69
2.49
.56 | .71
.50
1.50
.34 | .01
.02
.23
.47 | | 87
B7
C0
C7 | 0379
0381
0396-02
0399
0399-01 | Auberry CO
Auberry Valley
Avenal Walden
Avenal Orchard Rch.
Avenal 8 SW | 18.10
4.02
5.92
7.55 | .00 | .11
RE
T
.20 | .36
.26
.40
.15 | 1.90
1.01
.80
1.11 | .94
1.42
2.01 | .46
.05
.04
.16 | .92
1.40
2.03 | T
.08
T | 3.45
.33
.92
1.07 | 1.73
.47
.56
39 | .04
.10
.22 | .34
T
.00 | | C7
C2
B5
B5
C0 | 0399-02
0422
0425
0430
0440 | Avenal 6 SSW Badger HPD Badger Paes S Bagby Bakerefield 1 W | 6.71
24.25
16.21M
5.31 | .00 | .25
.DO | .30 | 1.00
-
RB
.75 | 1.58
4.99
April 28
5.24
1.08 | .13
.67
3, 1963
.56 | 1.62
2.44
to April
4.23
.49 | .14
.49
12, 196
.18
.32 | .85
5.32
4
2.84
.45 | 1.40
1.21 | .04
1.73
1.43
.17 | .00
.07 | | C0
C1
C6
C1
B5 | 0442
0449
0466
0534
0570 | Bakersfield WB Airport R CD
Balch Power House HPD CO
Ballinger Ss
8arton Flat S
Bear Valley Trabucco | 4.60
21.40
9.00
16.48
19.27 | .00 | T .02 | .83
.56 | .73
1.59 | .94
6.51
July 22,
5.84 | .08
.69
1963 to | .27
2.61
August
4.40 | .41
.05
10, 196 | .57
3.87
4
2.77 | .56
2,29 | .20
2.80 | .01 | | B5
83
C2
B4
C0 | 0570-80
0573
0596
0617
0631 | Bear Valley (R) Beardsley Dam Beartrap Meadow S Beehive Meadow S Bellevue | 17.86
27.40
33.24
38.68
5.06 | .00 | .00 | .16
.59 | 1.40
2.63
Sept. | 5.49
7.81
July 22
ember 12
1.55 | .36
.81
.1963 t
.1963 t | | .09
.21
5, 1964
ber 15, | 3.18
2.98
1964
.50 | 1.18
2.01 | 1.57
2.44 | .35
1.64 | | V2
B0
B7
B7 | 0684
0688-02
0755
0755-01
0755-02 | Benton Insp. Sta. Berenda 2 N Big Creek PH No. 1 b Big Creek PH No. 2 b Big Creek PH No. 3 b | 4.60
-
24.25
21.14
21.10 | .00 | .66
.00
.09
.02 | .68
.17
.49
.63 | .22
1.40
1.48
1.57
1.89 | .37
3.02
8.17
7.63
7.01 | .07
.49
.46
.42 | .58
RE
2.55
2.23
2.95 | .15
.03
.05 | .07
3.66
3.14
3.49 | .86
2.65
1.66
1.55 | 1.06
3.62
3.15
1.75 | .03
.93
.66 | | B7
V2
V2
V2
V2
C1 | 0755-05
0767
0776
0819
0821 | Big Creek PH No. 8 b
Big Pine Creek S
Big Pine PH No. 3
Bishop Creek Intake 2 (R) CD
Bishop Pass Snow Course S | 19.29
12.10
3.46
7.44
17.42 | .00 | .04
.40
.80 | .83
.47
.78 | 1.33
Oc
.08
.81
ctober 1 | 6.68
tober 23
.30
1.10 | .44
1963 t
.04
.20
August | 2.39
o Octobe
.88
1.00
25, 196 | .02 | 3.24
64
.11
.65
ontinued | 1.36
.40
.70 | .76
1.00 | .49
.00
.10 | | V2
C6
C0
C1
C1 | 0824
0825-01
0875
0880~80
1069-01 | 8ishop Union Carbide CO
8itter Creek Ss
Blackwella Corner CD
8lasingame
8retz Hill | 6.58E
2.11E
3:89
14.18
24.14 | .00 | .22
.12
.03
.00 | 1.34
.32
.38
.68 | .72
.88
1.52
1.57 | 1.28
.81
4.51
10.36 | .05
.03
.59 | .24
.62
1.83
2.30 | .05
.05
T | .69
.13
3.79
3.45 | .52
.54
.48
2.35 | 1.34
.39
.98
2.68 | .13E
.00
.07
.22 | | D1
CD
CD
CO
CO | 1170
1174
1175
1180-80
1199-01 | Buena Vista Rch. Buena Vista Rch. Buena Vista Rch. M & L Buena Vista Rch. H & L 2 Burgese Corrals Ss | 4.36
3.98
4.92 | .00
.00
.00 | .00
T
.00
.00 | -
.56
.76
1.12
1.02 | 1.52
.78
.94
1.10
1.80 | -
1.03
.98
1.03
2.89 | .53
.13
.00
.00 | 2.38
.31
.35
.40
.82 | .31
.07
.04
.05 | 2.74
.82
.61
.79
.46 | .43
.08
.04 | .54
.23
.22
.39
.00E | .49
.00
.00
.00 | | CD
82
83
C3
C3 | 1244
1277
1280
1300
1425 | Buttonwillow CD
Calaveras Big Trees CD
Calaveras Ranger Sta. HPD
Calif, Hot Springs RS HPD
Camp Nelson | 2.90
45.01
36.06
19.64 | .00
.00
.00
.00 | T
.00
.00
.42
.64 | .31
.50
.36
.47
1.29 | .95
3.87
2.99
2.12
1.76 | .52
13.39
11.29
4.30
5.49 | .04
1.15
.73
.92
2.77 | .36
9.12
7.51
1.96 | .04
.63
.48
.79
1.30 | .33
7.10
6.41
* | .25
2.93
1.36
V6.44
1.86 | .10
3.99
3.65
2.02
2.07 | .00
2.33
1.28
.20
.40 | | CO
V7
CO
CO
BD | 1479
1488
1490
1557
1580 | Canfield Ranch Cantil CO Cantua Ranch Caruthers 4 E Castle AFB | 4.56
3.86
6.77
6.80
7.78 | .00 | T
.29
.00
.09 | .68
1.77
.00
.24
.26 | .80
.82
1.99
1.02
1.47 | 1.30
.61
1.70
1.92
2.42 | .04
.10
.00
.16 | .22
.13
1.10
.61
1.00 | .18
.00
.00
T | .66
.10
1.43
1.48
1.57 | .49
.00
.50
.42
.28 | .19
.04
.00
.82
.20 | .00
.00
.05
.04 | | 88
86
85
86
86 | 1583
1588
1588-03
1590
1591 | Castle Rock Rad. Lab. (R)
Catheys Vly. Bull Run Rch CD
Catheys Vly. 3 NNW
Catheys Vly. 5awyer Rch.
Catheys Vly. Stonehouse | 7.68
14.51
14.45
15.16
14.17 | .00
.00
.00 | .00 | .13
.19
.00
.15 | .98
1.50
1.10
1.37
1.50 | 1.86
4.45
5.78
4.70
4.29 | .15
.28
.00
.40
.36 | 2.60
2.34
2.50
3.02
1.82 | .04
.13
.00
.06 | .79
2.81
2.22
2.57
2.91 | .25
1.23
1.30
1.22
1.22 | 1.23
1.55
1.32
1.34 | .56
.35
.00
.35
.46 | | B4
B7
D3
C7
Z2 | 1697
1737
1743
1743-02
1754 | Cherry Vailey Oam CD
Chiquito Creek S
Cholame Hatch Rch. HPD
Cholame Twisselman
Chuchupate RS HPD | 32.51 | .00 | .00
.06
.00 | .80
.66
.41
1.46 | 2.30
1.12
1.34
2.47 | 10.12
July 16
.97
1.11 | .78
.1963 t
.00
.00 | 7.77
a July 1
1.48
1.61
1.26 | .16
3. 1964
.06
.07
.46 | 1.00
1.18 | 2.56
.32
.28
V2.96 | 2.95
.40
.53
.72 | .00
.00
.00 | | C0
B7
C0
C7
CD | 1770-80
1844
1864
1864-02
1867 | Citrus Clover Meadows GS S Coalinga CO Coalinga Roberts Rch. Coalinga 1 SE HPD | 6.16
31.72
5.10
8.96
4.79 | .00 | .01
.00 | 1.09
.17
.00
.11 | .87
.93
1.42
.94 | 1.27
July 16
1.41
3.17
1.63 | .04
, 1963 t
.09
.13
.06 | .52
o July 1
1.46
2.62
1.25 | 3, 1964
.01
.00 | 1.18
.93
.90
.77 | .72
.02
.72
.00 | .37
.07
.00
.03 | .00
T | | C7
C0
C0
B6
C0 | 1869
1870-80
1871-80
1878
1885 | Coalinga 14 WNW CD
Coalinga CDF
Coalinga Feed Yards Inc.
Coarsegold
Coit Ranch Hdq. | 9.50
4.54
-
20.10
5.08 | .00 | .11
T | .17
.12
.43
.11 | 1.39
.71
2.16
.92 | 3.23
1.66
6.76
1.51 | .10
.00 | 2.62
1.34
2.99
.43 | .00
.00 | 1.36
.63
RB
3.46 | .33
.03
.30
2.03
.48 | .19
.03
.00
1.46
.21 | .00
.02
.00
.44 | | 84
B3
C0
C0 | 1904
2003
2012
2013
2013-05 | Cold Springs Copperopolis Corcoran Irrig. Dist. HPD CD Corcoran El Rico 1 Corcoran El Rico 33 | 19.29E
5.29
5.45
5.82 | .00
.00E
.00 | .30
.00E
.00
.06 | .68
.23
.45
.51 | 2.88
2.30
1.04
1.15
1.40 | 6.15
.82
.92
1.33 | .20
.15
.10 | 3.45
.75
.86
.87 | .41
.12
.08
.13 | 2.69
.60
.95 | 1.09
1.22
.53 | 1.77
.14
.29
.05 | 1.00
.00
.00 | | V2
V2
85
B5
C5 |
2069
2071
2072
2072-05
2114 | Cottonwood Creek Cottonwood Gatea Coulterville FFS Coulterville 5 B Crabtree Meadow S | 10.15
2.58
20.36
13.62 | .00
.00
T | .53
.00
T | .56
.24
.25 | 1.70 | .21
6.30
-
ember 21 | .06
.54 | o Octobe
.56
3.64 | .00 | 1964
 .20
 4.19
 -
 1964 | 1.00 | .12
2.25
- | .00 | | B7
V2
C6
D6
D6 | 2122
2181
2222-80
2236
2248 | Crane Valley PH Crowley Lake Cumminge Valley 2 Cuyama CD Cuyama Ranch HPD | 21.71
5.80
13.24
5.96 | .00 | .00
.43
.70
.04 | .45
.65
1.62
.86 | 1.69
.63
.95
1.09 | 9.13
.77
2.44
.87 | .59
.25
.72
.02 | 2.05
1.18
1.06
.86 | .00
.12
.65
.13 | 4.11
.45
2.19
.44
.71 | 1.95
.56
1.39
.28 | 1.05
.74
1.42
.37 | .69
.02
.10
.00 | | B6
C0
B8
B0
B0 | 2288
2346
2369
2375
2389 | Daulton Oclano Del Puerto Road Camp (R) CD Delta Ranch Denair CD | 5.95E | .00
.00
.00 | .00
.03
.00
.00 | .24
.88
.25
.10 | 1.40
1.08
1.07
1.31
1.62 | 4.65
.82
2.27
1.62E
1.46 | .40
.23
T
.10 | 1.32
-53
2.56
.80
.88 | .00
.17
T
.05 | 3.70
.58
.96
1.15
RE | .90
.93
.20
.44
See 1 | .25
.17
T
.10
Denair 3 | .40
.00
.50
.28 | | | | | ļ | | | | L | | | | | | | | | #### PRECIPITATION DATA FOR 1963-64 SAN JOAOUIN DISTRICT | 1 | Alpha | | | | | | | | In in | ches | | | | | | |----------------------------|---|---|---|------------------------|----------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|---|--------------------------------------|------------------------------------|-----------------------------------|-----------------------------------| | Drainog
Basin | Order
Number | Station Name | Secsonsi
Total | July | Aug. | Sept. | Oct. | Nov | Dec. | Jan. | Feb. | Mgr. | Apr. | May | June | | BD
CO
CD
CO
C7 | 2389
2408
2436
2440-01
2464 | Denair 3 NNE CO
Devils Den SLF
DiGiorgio
Dinuba Alta I. D.
Domengine Ranch | 7.08
4.59
6.42
7.79
6.56 | .00 | .08
T
.02 | .27
1.17
.26 | 1.01
.20
1.41
.80 | 1.03
1.45
2.04
2.28 | T
.05
.24 | .89
.50
1.20
1.14 | RB
.10
.54
.10
T | 1.33
.30
.73
1.58
1.56 | .47
.91
1.24
.48
.23 | .63
T
.51
.45 | .45
.00
.03
.01 | | C7
B4
C5
85
B4 | 2464-01
2473
2492
2539
2609 | Domengine Spring Don Pedro Reservoir Doublebunk Meadow S Dudleys CD Early Intake PH | 7.908
16.73
31.03
26.06
26.09 | .00
.00 | .00E
.00 | .00£
.25
.35
.35 | 1.17
1.72
1.98
1.85 | 2.63
4.98
July 10
9.07
7.22 | .15
.63
1963 to
.65
.72 | 1.60
2.80
June 23
5.12
4.71 | .30
.35
1, 1964
.11
.09 | 2.05
3.19
4.50
4.30 | .00E
.78 | .00E
1.53
1.84
2.85 | .00E
.50
.95
1.70 | | C1
CO
VD
80
B0 | 2653
2752-80
2756
2820
2860 | East Vidette Headow S Eighth Standard Ranch Ellery Lake CD El Solyo Rch. Escalon Swanson | 15.16
5.51
18.89
6.18
10.00 | .00 | .00
.60
.00 | .99
1.10
.13
.22 | .80
1.45
1.24
1.82 | 1.24
5.04
1.40
3.27 | . 1963
.03
.70
.05 | .0 August
.39
2,90
1,95
1.86 | .10
.18
.01 | 1.03
2.85
.84
1.41 | .63
1.41
.15
.40 | .30
1.61
.41
.31 | .00
1.05
.00
.56 | | 80
85
C0
80
C7 | 2909
2920
2922
2968
3005 | Rugene (R)
Exchequer Reservoir CD
Exeter Fauver Ranch HPD
Fancher Rch. Camp 3
Fellows | 10.43
14.07
-
9.18
4.61 | .00
.00
.00 | .00
.00
.09
.00 | .10
.14
.29
.26 | 1.84
1.59
1.68
1.58 | 3.51
3.70
1.85
2.66
1.53 | .13
.31
.18
.19 | 1.60
2.76
-
1.09
.81 | .07
.17
.35
.22 | 1.21
2.65
2.30
1.45
.53 | .81
1.18
.92
.93 | .74
1.40
.97
.30 | .42
.17
.05
.50 | | B0
CD
C0
B7
C0 | 3063
3083
3084
3093
3257 | Firebaugh 9 W Five Points 5 SSW Five Points Diener Florence Lake Fresno WBAP (R) CD | 3.76
19.14
6.76 | .00 | .00
T
.84 | -
.07
.05
.79
.15 | -
.84
.53
1.58
.95 | 1.64
1.22
5.52
2.54 | .09
.11
.53 | .53
.84
.68
2.53
.66 | .00
.00
.00
.25 | 1.00
1.22
1.16
3.11
1.27 | .29
T
.01
2.38
.50 | .19
.03
T
1.38
.35 | .15
T
T
.23 | | CD
B7
V0
E5
C2 | 3258-80
3261
3369
3387
3397 | Fresno Co. Westside FD Friant Government Camp CD Gem Lake CD Gerber Ranch CD Giant Forest HPD CD | 11.54 | -
.00
.00
.00 | RB
.00
.34
.01
.32 | .07
.33
1.58
.24
1.26 | .99
1.42
.75
.85
1.31 | 1.77
2.99
3.52
3.68
6.89 | .04
.35
.50
.25 | 1.14
.92
2.58
4.36
4.56 | .08
.08
.30
.12 | 1.00
1.34
1.95
1.18
6.89 | .14
.80
1.89
.25
4.47 | .01
.48
1.63
.24
2.67 | .01
.00
1.00
.36
1.06 | | D1
C0
C4
C4
C0 | 3422
3428-01
3463
3465
3512 | Gilroy 14 ENE CD Gin Yard Glennville CD Glennville Fulton RS Gosford Feed Mill | 12.71
4.17
18.57 | .00
.00
.00 | .00
.00
.44
.31 | .25
.66
1.54 | 1.17
.88
2.26
1.70
RE | 4.57
1.42
3.93
4.04 | .11
.00
.56
.55 | 3.85
.43
1.92
1.51 | .07
.03
.63
.61 | 1.56
.46
3.45
3.85 | .47
.05
1.95
1.61 | .34
.24
1.89
1.97 | .32
.00
T | | B4
C1
C1 | 3529
3548
3551 | Grace Headow 5 Granite Basin S Grant Grove HPD CD | 34.27
28.64
33.16 | .00 | .25 | 1,78 | 2.41 | ember 16,
August 21
8.76 | 1.28 | 4.33 | .28 | 7.19 | 2.73 | 3.40 | .75 | | B5
B4 | 3612-03
3669 | Green Valley Rch. Groveland 2 HPD Groveland Ranger Sts. CD | | .00 | .00 | .45
.39 | 2.38
1.74
1.86 | 10.40
8.58
8.53 | .70
.64 | 5.46
3.71
6.63 | .02 | 6.15
3.86
3.64 | 2.06
1.39
2.06 | 2.55
2.64
1.91 | 1.15 | | B4
B0
B0
B0
B0 | 3672
3690-02
3690-04
3694
3698-80 | Gustine 5 SW Gustine Snyder Gustine Avoset Gustine 7 SSW | 7.18
5.88
6.16 | .0D
.00
.00
T | .00 | .26
.24
.10 | 1.31
1.21
1.07
1.29 | 2.12
2.20
1.72
1.82 | .02
.05
.03
.02 | 1.54
1.65
1.34
1.29 | .04
.00
.00
T | 1.11
.92
1.04
.90 | .51
.36
.02
.13 | .01
.00
.18
.03 | .48
.55
.38 | | V7
C0
C1
D1 | 3710
3747
3811-11
3925
3928 | Haiwee CD
Hanford CD
Haslett Basin
Hernandez 2 NW CD
Hernandez 7 SE HPO | 18.23
10.42 | .00 | 1.42
.00
.00
.02
.10 | 1.37
.33
1.04
.19 | 1.12
.75
1.63
1.26
1.21 | .51
1.23
6.36
3.75
4.67 | .01
.29
.50
.21 | .20
.61
1.72
2.27
2.94 | .02
.00
.06 | .08
.94
2.86
1.81
2.25 | .08
.64
1.80
.24 | .23
.20
2.07
.43
.51 | .00
.00
.25
.18 | | B4
B6
B3
BD
C2 | 3939
3948
3952
3981
4012 | Hetch Hetchy HPD CD
Hidden Valley
Highland Lakes S
Hilmar Hockett Meadow S | 24.23
23.24
28.80
6.42
26.56 | .00 | .11
T | .64 | 2.23
1.98
1.42 | 7.09
8.33
July 23:
1.64
August 2 | .30 | 3.38
4.03
July 1
1.76
O July | .11 | 3.73
3.99
.78 | 2.19
1.47
.27 | 2.65
1.24
.00 | 1.43
.57 | | CO
CD
CD
B5
B5 | 4061-01
4061-02
4061-03
4101-80
4102-01 | Homeland Dist. Sec. 9
Homeland Dist. Sec. 17
Homeland Dist. Sec. 34
Hornitoa Bridge Cafe
Hornitos Erickson Rch. | 6.02
4.67
5.54
-
14.50 | .00 | .00 | .44
.38
.42
- | 1.25
1.52
1.41
1.09
1.48 | 1.34
1.27
1.01
3.76
4.81 | .21
.13
.11
- | .87
.99
.90
1.93
2.75 | .08
.14
.19
- | .93
.24
.76
2.35
2.25 | .81
.00
.69
.85 | .09
.00
.05
1.13
1.21 | .00
.00
.00
RE
.20 | | B5
B5
C3
84
B3 | 4103
4104-80
4120
4148
4170 | Hornitos Giles Rch. Hornitos USCE (R) Hossack (Radio) S Huckleberry Lake S Hunters Dam | 32.88 | .00 | T - | .18 | 1.74
1.61
Sept
3.09 | 4.21
3.65
July 10
ember 20
11.55 | .26
.31
. 1963 tr
. 1963 tr | 1.89
1.72
June 2
Septem
7.92 | .27
.27
4, 1964
ber 20, | 2.35
2.25
1964
6.24 | .39
.57 | 1.13
.86M | 1.36 | | 87
88
V2
V2
B5 | 4176
4204
4232
4235
4246 | Huntington Lake HPE
Idria (R) CE
Independence CE
Independence Onion Vly HPE
Indian Gulch | 10.06 | .00 | .13
.07
1.39
1.60 | 1.15
.28
.76
1.85
.23 | 1.74
1.08
.16
-
1.54 | 8.96
3.86
.03
-
3.91 | 1.05
.08
T
.59 | 4.40
2.60
.14
2.88
2.29 | .39
.07
T
.20 | 5.76
1.59
.02
2.77
1.95 | 2.45
.27
.07
1.13
1.08 | 4.08
.14
.35
1.89 | 1.01
.02
.00
.35 | | V7
C5
B5
C5 | 4278
4303
4369
4389
4442 | Inyokern CD
Isabella Dam
Jerseydale GS
Johnsondale CD
Kaiser Meadows S | 9.94
29.33 | .00 | .30
1.16
.00
.85 | .74
1.16
.39
1.27 | .60
2.02
1.88
1.63 | .30
1.20
10.47
3.73
June 25 |
.01
.46
1.10
.70
1963 to | .34
.97
3.53
-
June 2 | .00
.07
.02
- | .09
1.68
6.27
3.68 | T .50
2.27
1.69 | .00
.69
2.12
.90 | .00
.03
1.28
.22 | | C2
C6
98
CD
C5 | 4452
4463
4508
4510-02
4513 | Kaweah PH 3 Keene Kerlinger Kerman 2 ESE Kern Canyon | 14.58 | .00 | .18
.44
.00
.00 | .63
1.33
.21
.21
1.76 | 1.39
.89
.85
1.22
1.03 | 5.09
2.39
1.15
2.21
2.10 | .55
.97
.18
.31 | 1.80
1.51
1.63
.58 | .36
.66
.03
.04 | 3.69
3.06
.31
1.77 | 1.06
1.95
.11
.21
.73 | 1.40
1.30
.15
.28 | .15
.08
.64
.14 | | C5
C5
C5
C5 | 451B
4519
4520
4523
4527-01 | Kern River Intake No. 3 CC
Kern River Intake 3 SCE 1
Kern River PH No. 1 CI
Kern River PH No. 3 CI
Kernville RS | 12.94
12.6D | .00 | .53
.54
.03
.24 | 1.33
1.12
2.00
1.29
1.36 | 1.69
1.77
1.30
1.90
1.87 | 1.81
2.14
2.60
1.11
1.24 | .79
.42
.19
.43 | 2.14
1.78
1.30
1.48
1.19 | .29
T
1.12
.09 | 3.23
3.46
1.75
2.40
2.25 | .97
.89
1.37
.48 | .73
.71
.94
.77 | .11
.11
.00
.07 | | CO
CD
CD
BD
B3 | 4534
4535
4536
4590
4664 | Kettleman City 1 S5W CI
Kettleman Hills
Kettleman Station CI
Knights Ferry 2 SE CI
Lake Alpine S | 3.92
4.51
14.14 | .00 | .38
.15
.13
.00 | .15
.21
.15
.11 | 1.16
1.01
1.02
1.73 | .65
.81
.85
3.96
July 23 | .12
.08
.18
.20 | .76
.68
.85
3.18
July 1 | .06
.05
.13
.21 | .45
.89
.81
1.94 | .40
.01
.38
1.34 | .00
.03
.01
1.02 | .00
.00
.00
.45 | | 84
V2
03
C6
B0 | 4679
4705
4767
4863
4884-05 | Lake Eleanor Stake Sabrina Stake Sabrina Stake Sabrina Stake Sabrina HPI Lebec CI | 11.40 | .00 | .00 | .64
1.88
.08 | 1.14
2.31
1.62 | June 30
June 30
.74
4.26
2.27 | , 1963 t
, 1963 t
.00
.33 | June 3
June 3
1.40
1.28 | 0, 1964
0, 1964
1, 15
1, 64
1, 17 | 1.49
2.33
1.84 | .09
.23
.78 | . 26
. 54
. 45 | .00 | | 80
B6
C2
B0
C0 | 4884
4883
4890
4953-02
4957 | Le Grand CCI Le Grand Preston Rch. (R: Lemon Cove CI Linden Fire Station Lindsay CI | 11.89 | .00 | .00
.23
.00
.14 | .08
.34
.27
.41 | 1.40
1.56
1.44
1.84 | 2.70
See
2.45
3.64
1.93 | .27
White F
.40
.16
.43 | .83
ock Pres
1.05
2.09 | .08
ton
.39
.15 | 2.30
2.44
1.75
1.78 | .77
1.47
.55
.86 | .30
1.48
.86
.81 | .38
.08
.86
T | | | | | | | | | | | | | | | | | | | 8 s | Alpha | | | Seasonal | | | | | | In : | inchee | | | | | | |----------------------------|---|---|----------------------|---|---------------------------|---------------------------|------------------------------------|---------------------------------------|---|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---------------------------------| | Drain
Basi | Order
Number | Station Name | | Tatal | July | Aug. | Sept. | Oct. | Nov | Dec. | Jan. | Feb. | Mor. | Apr. | May | June | | 80
V2
B8
83
C6 | 4999-03
5067
5074
5078
5098 | Lone Tree Canyon Long Barn Exp. Station | | 9.03
2.86
5.28
Closed | .00 | .00
.60
.00E
.38 | .19
1.15
.15
1.04
1.34 | 1.52
.26
1.05
2.61
1.29 | 2.26
.03
.97
8.53
1.83 | .17
.08
.04
1.06 | 1.89
.39
1.91
7.05
2.09 | .16
.00
.06
RE
.64 | 1:17
.14
.43 | .41
.00
.11 | .50
.21
.17 | .76
.00
.39 | | V2
BD
BO
BO
BO | 5111-09
5116
5117
5118
5119 | LA Aqueduct Intake
Los Banos 5 S
Los Banos Field Sta.
Los Banoe
Los Banos Arburua Ranch | CD
C0 | 2.86
3.63
4.61
4.85
3.36 | .00
.00
.00 | .88
.00
.00
T | .56
.03
.08
.05 | .10
1.08
1.17
1.07 | .02
.60
.87
1.22 | T
.08
.06
.12 | .30
.56
.72
.66 | .00
.03
.04
.02 | .05
.72
.98
.87 | .10
.32
.33
.45 | .85
T
.00
T | .00
.21
.36
.39 | | CO
C1
B4
B6
BD | 5151
5155-51
5160
5202
5233 | Lost Mills
Lower Big Craek
Lower Kibbey Ridge
Lushmeadows Rch.
Madera | 2 | 3.86
-46.69
21.44
7.81 | .00 | .05
.00
T | .17
.35E
.34
.23 | 1.26
1.50
Septe
1.44
1.45 | 1.05
-
mber 21,
10.50
2.38 | .06
-
1963 to
.54
.24 | .31
-
Septemb
1.71
.61 | 13
-
ber 24,
T | .56
1964
3.39
1.50 | 1.40
.70 | .02
-
1.54
.42 | .00
~
.58
.27 | | BD
CO
V2
87
BO | 5233-03
5257
5284
5288
5297-01 | Madera ID
Magunden
Mammoth Pass
Mammoth Pool
Manteca No. 2 | S 2 | 6.03
52.78
20.46
8.22 | .00 | .00 | 1.01 | .80
Oct | 1.53
ober 10,
July 1,
2.54 | | | .59
r 15, 19
4, 1964
.06 | RB
.83
64 | .42 | .00 | .00 | | BD
C7
C7
B5
85 | 5297-02
5338
5338-01
5346
5346-01 | Manteca SP
Maricopa
Maricopa FS
Mariposa
Mariposa Reynolda | CD 2 | 4.41
5.18
20.95
20.47 | .00 | .00
.00
.00 | .75
1.04
.28
.24 | 1.05
1.07
1.66
2.05 | 1.70
1.86
7.80
7.30 | .06
.08
.43
.48 | .58
.63
3.29
3.05 | .OD
.04
.11 | .17
.30
4.12
3.63 | .02
.08
1.32
1.44 | .08
.08
1.51
1.63 | .00
.00
.43 | | B6
B5
B5
C7
B4 | 5346-04
5348
5352
5372-01
5400 | Mariposa 8 ESE
Mariposa Circle 9 Rch.
Mariposa RS
Martinez Spring
Mather | (R) 3 | 23.66
32.43
20.27M
6.45E
23.28E | .00
.00
.00E
T E | .00
.00
.00
.00E | .36
.39
.18
.00E
.15E | 1.85
1.88
1.68
.80
2.14 | 10.01
12.39
7.94
2.35
7.07 | .47
.69
.42
.10 | 3.06
6.33
3.40
1.20
4.07 | .01
T
.16M
.20 | 3.88
5.01
4.13
1.80
3.46 | 1.90
1.86
1.16
.00E
2.73 | 1.53
2.66
.68
.00E
2.27 | .59
1.22
.52
.00E | | 80
80
85
C7
87 | 5408-80
5418-80
5460
5480-01
5496 | Mattos Ranch
Maze Bridge 2 S
McDiermid Sta.
McKittrick FS
Meadow Lake | - 1 | 4.04
7.10
26.31E
4.18
22.46 | .00
.00
.00E
.00 | .00
.00
.04
.00 | .04
.12
.39
.39 | 1.15
1.33
1.86
1.00
2.20 | .63
1.51
8.19
1.07
8.19 | .08
.13
.72
.02
.43 | .60
1.89
6.63
.85
2.51 | .06
.00
.08
.07 | .77
.61
3.64
.43
4.20 | .37
.19
2.06
.14
1.99 | .04
.35
1.91
.21
1.99 | .25
.97
.79
.00 | | B3
B0
C0
B0
C0 | 5511
5526
5526-04
5528
5529 | Melones Dam
Mendota 1 NNW
Mendota Murietta Rch.
Mendota Dam
Mendota Halfway Fump | | 22.55
5.64
6.39E
5.25
4.57 | .00
.00
.00E
.00 | .00
.00
.00E
.00 | .34
.21
.20E
.20 | 2.74
.88
1.00
.76
.89 | 6.57
1.81
2.03
1.44
1.35 | .40
.21
.29
.25 | 4.21
.38
.60
.43
.86 | .50
.05
.07
.06 | 3.65
1.20
1.56
1.37
.67 | 1.33
.49
.23
.34 | 2.29
.19
.35
.17 | .52
.22
.06
.23
.05 | | CO
BO
BO
BD
BD | 5530
5532
5532-01
5532-03
5534 | Mendota VDL Farms
Merced Fire Station 2
Merced SP
Merced 5 SE
Merced Fancher Rch. | СЪ | 8.76
8.22
8.94
9.23 | .00
.00
.00 | .00 | .38
.13
.24
.33 | 1.50
1.41
1.61
1.53 | 2.81
2.74
2.54
2.66 | record (
.17
.18
.31
.25 | .91
.96
.97 | .16
.11
.23
.25 | 1.75
1.56
1.78
1.42 | .40
.45
.48
.94 | .27
.28
.33
.27 | .41
.40
.45 | | 80
B8
C3
B7
C2 | 5535
5550
5669
5677-80
5680 | Mercey Mot Springs | HPD 2 | 7.98
4.09
23.25
22.58 | .0D
.00
.00 | .0D
T
.69 | .28
.04
.94
.61 | 1.34
.86
1.83
1.40 | 2.90
.99
5.50
4.55M
July 26 | .14
.00
.55 | | .11
.00
.84
Closed for | 1.41
.97
6.01
or seaso | .31
.00
2.20 | .27
.07
1.66 | .38
.06
.60 | | C2
C1
B4
B0
BD | 5708
5723
5735
5738
5740 | Miramonte Honor Camp
Mitchell Meadow
Moccasin
Modesto
Modesto KTRB | S 2 | 20.19
24.95
21.63
7.74
7.30 | .00 | .00
.00
.00 | .46
.29
.12
.12 | 1.92
1.97
1.70
1.56 | 5.51
July 23,
7.59
2.18
2.02 | .87
1963 to
.40
.09
.12 | 2.14
August
4.17
1.81
1.72 | .34
17, 1964
.22
.05 | 4.74
3.02
1.08
1.04 | 2.00
1.43
.26
.19 | 2.12
2.15
.11
.14 | .09
.39
.34
.34 | | B0
V8
V8
C5
CD | 5741
5756
5758
5777
5822-80 | Modesto 2 Mojave MPD Mojave 2 ESE Monache Meadows Moody Ranch | MPD
CD
CD
S | 7.91
5.15
4.22
7.62
5.90E | .00 | .00
.29
.13 | .10
1.64
1.38 | 1.80
1.03
.95
Sep | 2.03
.90
.85
tember : | .05
.04
.00
25, 1963
.06 | 1.98
.53
.35
to Augu | .03
.02
.20
st 5, 19 | 1.27
.32
.01
64 | .23
.20
.15 | .11
.18
.20 | .00 | | C3
B7
V8
BD
BO | 5893
6122
6168
6168-01 | Mountain Home 2
Mountain Rest FFS
Neenach
Newman 2
NW
Newman 1 SE | | 28.63
20.61
-
6.39
5.77 | .00
.00
.00 | .07
.43
T | .45
2.24
.13
.16 | 2.05
1.64
1.24
.77 | June 24
7.50
1.10
1.44
1.68 | 1963 to
.55
.07
.05
.12 | July 1
1.90
1.01
1.57
1.44 | 1, 1964
.01
.17
T | 4.18
.97
1.19
1.04 | 1.86
.28
.22
.19 | 1.61
-
.26
.09 | .43
-
.29
.28 | | CO
B7
80
B0
B6 | 6230-50
6252
6303
6305
6321-80 | North Belridge
North Fork Ranger Sta.
Dakdale
Oakdale Woodward Oam
Oakhurst | CD 1 | 3.72
22.82
10.22
9.74
20.34 | .00
.00
.00
.00 | T .04
T .00 | .37
.38
.16
.28
.33 | 1.25
1.65
1.74
1.78
1.61 | .87
8.23
3.18
3.34
7.44 | .05
.57
.17
.15 | .44
3.77
2.14
1.60
3.75 | .05
.00
.05
.02 | .35
3.92
1.15
1.08
3.09 | .12
1.98
.56
.66
1.46 | .22
1.71
.56
.41
1.40 | .00
.57
.51
.42
.71 | | CD
C7
C5
C2
BD | 6393
6395
6462
6476
6490 | Dilfields FFS
Oilfields Joaquin Ridge
Onyx
Orange Cove
Orestimbs | Sa
CD | 6.30
7.11E
8.36
8.73
6.30 | .00
.00E
.00
.00 | .28
.20E
.70
.00 | .05
.12E
1.69
.21
.16 | 1.53
.95E
1.89
1.47
1.04 | 1.65
2.72E
1.10
2.24
1.65 | .10
.00
.28
.61 | 1.02
1.42E
.95
1.02
1.57 | .00
.00
.00
.06 | 1.06
1.70E
1.05
1.34
.95 | .53
.00E
.33
1.20 | .08
.00
.37
.55 | .00
.00
.00
.03 | | B5
B8
C0
B8
B8 | 6552
6583
6651
6675
6676 | Ostrander Lake
Pacheco Pass
Paloma Ranch
Panoche
Panoche 2 W | S 3 | 37.40
-
4.81
4.72
5.21 | .00 | .00
.00
T | .32
.67
.20
.44 | .76
1.25
.87
1.00 | ptember
2.62
1.40
1.28
1.39 | 3, 1963
-
.00
.22
.22 | to July
2.11
.42
1.14
1.36 | 17, 196
.02
.08
T | 1.40
.68
.92
.04 | .11
.31
.02 | .28
.00
.04
.16 | .31
.00
.03
.28 | | BO
BO
B4
O3
C7 | 6677
6679-05
6688
6703
6706 | Panoche Creek
Panoche Water Dist.
Paradise Meadow
Parkfield
Parkfield 7 NNW | CD
S
CO
HPD | -
4.92
38.08
8.80 | .00 | .00
.00 | .14
.11 | 1.47
1.52
Septe
1.00 | 1.41
.70
ember 14,
2.87
3.72 | .19
.38
1963 to
T | .41
.52
Septem
2.21
1.22 | .07
T
ber 15,
.05 | .80
1.27
1964
1.12
.57 | .41
.22
.67 | .56
.49 | -
.20
T | | 80
C6
C2
B8
C1 | 6746~01
6754
6767
6847
6857 | Patterson
Pattiway
Pear Lake
Pfeiffer Ranch
Piedra | 1 | 6.53
8.65
26.80
13.32
12.29 | .00 | .00 | .11
1.14
.20
.28 | 1.15
1.80
1.15
1.49 | 1.57
2.38
August 20
2.77
3.68 | .07
.04
.1963
.53
.62 | 1.59
.97
to July
3.72
1.59 | .00
.21
13, 1964
.20 | 1.05
.89
2.91
2.62 | .58
.95
.42
1.07 | .08
.25
.96
.81 | .33
.02 | | B3
C1
C1
87
C0 | 6893
6895
6902
6959-80
7055-80 | Pinecrest Strawberry
Pins Flat Dam
Pinehurst
Placer GS
Pond 1 N | 1 | 34.55
13.06
29.78
5.41 | .00
.00
.00 | .10
T
.00
.11 | .99
.20
1.86
.66
.57 | 2.77
1.53
1.89
1.16
1.21 | 9.29
3.96
7.10 | 1.00
.65
.83 | 6.35
1.59
2.79
Closed for | .15
.03
.60
or seaso
.16 | 5.04
2.77
4.76 | 2.72
1.13
7.42 | 3.89
1.12
2.25
1.77
.20 | 2.25
.08
.28
.87 | | C0
C0
C5
C4
C0 | 7077
7079
7093
7096
7098-11 | Porterville
Portarville 3 W
Portuguese Meadow
Poaey 3 E
Poso Ranch | | 9.73
8.57
39.92
26.68
6.26 | .00 | .13
.10
.25 | .63
.46
1.16
.93 | 1.99
1.64
2.79
1.01 | 1.95
1.84
July 8
5.33
.93 | .31
.15
1963 to
.97
.08 | 1.24
.99
June 2
2.89
.64 | .15
.10
2, 1964
1.01
.20 | 1.59
1.98
6.16
.49 | 1.01
.55
3.06
1.67 | .73
.76
2.29
.31 | .00
.77 | #### PRECIPITATION DATA FOR 1963-64 SAN JOAQUIN DISTRICT | ا ۽ ا | Alpha | | T | Seasonal | | | | | | In | inches | | | | | | |----------------------------|---|--|-----------------|--|---------------------------|---------------------------|----------------------------------|--------------------------------------|---|--|--|--|---------------------------------------|--------------------------------------|-------------------------------------|---------------------------------| | Drainage
Basin | Order
Number | Station Name | \perp | Total | July | Δυg | Sept | Oct | Nov. | Dec. | Jan. | Feb. | Mar | Δpr | May | June | | BO
B4
02
C5
C1 | 7099-11
7145
7150
7179
7259 | Poso Canal Co. Hdq.
Priest
Priest Valley
Ouaking Aspen
Rattlesnake Creek | CO S | 5.70
22.16
13.14
30.88
31.62 | .00 | .00
.00 | .14
.32
.25 | 1.25
1.97
1.53 | 1.68
7.51
5.11
July 10
August | .06
.49
.20
.1963 to | .55
3.88
2.98
5 June 2
to July | .03
.16
.07
3, 1964
9, 1964 | 1.09
3.01
1.95 | .47
1.86
.53 | .05
2.31
.43 | .38
.65
.09 | | B6
B6
B6
CO | 7270-01
7272-01
7273
7276
7288 | Raymond 3 SSW Raymond 10 N Raymond 9 N Raymond 12 NNE Rector | CD | 12.90
17.18E
18.01E
18.24
7.93 | .00
.00E
.00 | .00
.00E
.00
T | .10
.03
.49
.35
.27 | 1.80
2.00
1.85
1.79
2.08 | 3.95
6.68
6.82E
6.96
1.56 | .20
.40
.42E
.41 | 1.75
1.65
2.12
2.07
.84 | .25
.00E
.01
T | 2.95
4.20
3.46E
4.46
1.17 | 1.30
.70
1.42E
.65 | .35
.90
.90
1.00 | .25
.62
.52
.55 | | CO
BO
CO
V2
B6 | 7354-80
7447-80
7460
7510
7528 | Reedley MVFD
Ripon
Riverdale
Rock Creek
Rocky Village | | 8.67
9.51
5.02
12.95
13.76E | .00
.00
.00 | .00
T | .14
.15
.13 | 1.20
1.67
.89
No | 2.21
2.80
1.39
vember 4
4.48 | .42
.18
.10
, 1963 t | 2.01 | .14 | 3.27 | .51
.02
.09 | .49
.30
.21 | 103
.03 | | CO
B7
C5
B4
D1 | 7555
7560
7579
7623
7719 | Rosedale
Rose Marie Meadow
Round Meadow
Saches Springs
San Benito H | 5 | 4.50
29.08
31.77
45.18
8.53 | .00 | .00 | .71 | | 1.13
July 17
July 9,
ember 20 | , 1963 t | June 22
o Septem
2.09 | , 1964
ber 23,
.29 | .41
1964
2.36 | .02 | .14 | .00 | | 22
C0
01
C0
C0 | 7735
7753
7755
7800-02
7800-03 | | CD
CD
PD | 11.29
6.48
M
8.89
8.28 | .00
.00
.00 | .22
.00
.00
T | 2.52
.96
-
.13
.15 | 2.11
1.93
1.56
1.40
1.29 | 2.48
1.29
3.62
3.06
2.88 | .06
.23
-
.54
.59 | .91
.43
3.34
.77 | .21
.15
.08
.02 | 1.61
.47
-
1.81
1.87 | .51
.36
.03
.75 | .66
.50
.41 | .00 | | CO
CO
B7
80
BB | 7816
7819-80
7817
7836-01
7846 | San Juan Hdgrs. M & L | PD
CD | 4.40
4.76
12.73
6.72
6.50 | .00
.00
.00 | .00 | .13
.29
.28
.14
.20 | .46
.72
1.58
1.25
1.31 | 1.46
1.35
4.76
1.91
1.92 | .08
.00
.32
.10 | .43
.15
1.29
.85
1.26 | .00
.00
.00 | 1.19
1.29
2.46
1.32 | .55
.86
1.15
.51 | .04
.10
.84
.16 | .06
T
.05
.40 | | BO
CO
D7
D7
D7 | 7855
7987-80
8259-02
8259-04
8276 | San Luis Canal Co. Hdq.
Santiago Ranch M & L
Sammler R. W. Cooper
Simmler Maint. Sta.
Slack Canyon H | PD | 6.47
4.53
7.02
5.67E
10.14 | .00
.00
.00
.00 | .00
.00
.00 | .20
.45
.62
.59 | 1.46
.98
1.26
1.17
1.59 | 1.86
1.41
1.01
.74
3.80 | .20
.02
.00
.00E | .78
.39
1.20
1.32
2.15 | .11
.03
.20
.00 | 1.12
.45
1.74
1.69
1.81 | .34
.43
.62
.01 | .08
.37
.37
.15 | .32
.00
.00
.00 | | C6
B5
C1
07
B4 | 8304
8318
8323-01
8326
8353 | Snow Flat
Soaproot Saddle
Soda Lake | Ss
S
CO | 7.76
38.60
18.21
6.43
24.56 | .00 | .00 | .73
.47
.30 | 1.56
1.28
2.28 | July 1,
July 17
5.63
.71
7.31 | 1963 to
. 1963 t
.53
.00
.42 | | | 2.71
2.06
4.05 | 2.51
.00
1.62 | 2.41
.26
2.49 | .22
.00
.82 | | G9
C0
B0
B5
V2 | 8355
8375~50
8378
8380
8406 | South Belridge
South Dos Palos | | 10.67
3.77
5.39
31.18
13.50 | .00 | .10
.13
.00
.40 | 1.41
.29
.04
.63 | 1.12
1.41
1.66 | 2.80
.78
1.29
13.00
June 30 | .43
T
.18
.55 | 1.78
.56
.55
4.33
o June 3 | .17
.09
.00
.03
0, 1964 | .98
.41
1.13
4.15 | .60
.20
.41
1.53 | 1.46
.19
.20
2.61 | .40
.00
.18
2.29 | | CO
B3
C3
C3
C3 | 8407-11
8450
8455
8460
8463 | Springville Ranger Sta. H | CD
PO | 5.93
34.21
22.05
M
25.09 | .00
.00
.00 | .00
.63
.36
.38 | .48
.53
.87
.87 | 1.49
2.97
1.44
-
1.34 | 1.17
10.53
6.10
-
6.38 | 1.07
.68
- | .71
7.58
2.00
-
3.02 | .11
.20
.64
- | .83
5.12
4.72
-
5.91 | .82
1.15
2.63
-
2.56 | 3.70
2.18
-
2.20 |
.00
.73
.43
- | | C2
B3
C1
C0
C3 | 8474-80
8499
8510
8520
8620 | Squaw Valley Fr.
Stanislaus Power House
State Lakes
Stevenson Dist. Sec. 33
Success Dam | CD
S | 15.11
26.28
24.70
6.32
10.41 | .00 | .00
.00 | .27
.17
.54
.45 | 1.50
2.50
A
1.11
1.89 | 5.29
7.88
ugust 22
.80
2.28 | .65
.66
, 1963 t | 1.75
4.35
o August
.91
.89 | .08
.27
12, 196
.11
.34 | 2.49
5.13
4
1.03
1.97 | 1.72
1.47
1.24
1.10 | 1.32
2.90
.16
.86 | .04
.95
.00 | | C1
C7
C7
C6
C6 | 8643
8752
8755
8826
8832 | Taft KTKR Radio
Tehachapi | S
PD
CO | 34.74
4.13
4.45
8.61
11.06 | .00 | .00
T
1.36
2.24 | .61
.56
1.34
1.54 | .81
.86
.37 | July 15
1.50
1.54
1.10
1.86 | , 1963 t
.02
.08
.00
.49 | o July 1
.64
.68
.80
.73 | .1, 1964
.04
.09
.42
.47 | .35
.37
1.84
1.56 | .12
.20
1.00
1.10 | .04
.07
.38
.37 | .00
.00
T | | C0
C2
C7
C2
C2 | 8839
8868
8893-80
8912
8914 | Terminus Dam Thirty-Two Corral Three Rivers 6 SE H | CD
CD | 11.52
11.72
9.15E
17.20
15.62 | .00
.00
.00E
.00 | .35
.11
.00E
.71 | 1.21
.37
.00E
.55 | 1.26
1.52
1.50
1.64
1.56 | 2.85
2.59
3.30
4.74
4.54 | .32
.34
.00E
.64 | .93
.96
1.80
1.40
1.34 | .71
.41
.30
.89 | 1.85
2.41
2.25
3.34
2.86 | 1.35
1.46
.00E
1.48
1.93 | .69
1.50
.00E
1.64
1.59 | .00
.05
.00E
.17 | | C2
B0
88
C0
C0 | 8917
8997
8999
9006
9011-80 | Tracy 2 SSE H | CD
IPO
CD | 15.55
6.06
5.91
5.01
7.26 | .00 | .09
.00
.00
T | .74
.30
.27
.24 | 1.56
1.17
1.07
1.15
1.58 | 4.54
1.51
1.51
1.40
1.51 | .59
.08
.10
.05 | 1.34
1.63
1.63
.24
.84 | .30
.05
.06
.03 | 2.86
.51
.39
.98
1.29 | 1.98
.07
.12
.59
1.27 | 1.48
.14
.13
.18
.23 | .07
.60
.63
.15 | | C1
C0
C0
C0 | 9025
9051
9051-04
9052
9059 | Trimmer RS Tulare Tulare Dist. Sec. 27 Tulefield Tule River Intake | CD
b | 17.89
7.05
4.45
5.11
22.70 | .00
.00
.00
.00 | .01
.08
.02
T | .39
.31
.24
.88
.83 | 1.31
1.10
1.09
.86
1.42 | 6.61
1.23
1.10
1.58
6.11 | .61
.27
.04
T | 2.45
.94
.78
.56
2.18 | .00
.15
.09
.13 | 3.33
1.17
.64
.55
5.18 | 1.59
1.24
.39
.33
2.33 | 1.42
.55
.06
.22
2.38 | .17
.01
.00
.00 | | C3
C5
B3
B4
B0 | 9060
9061
9062
9063
9073 | Tule River PH Tunnel Ranger Station Tulloch Dam Tuolunne Meadows Turlock | b
E
CD | 16.86
9.92
16.75
23.07
8.20 | .00 | .66
.00 | .88 | 1.66
Se
1.97 | 3.91
eptember
4.37
July 17
1.81 | | 1.58
to Augu
3.40
b July
1.91 | .23
29t 4, 19
30
4, 1964
.07 | 3.60
964
2.34
1.13 | 1.54
1.24
.86 | 1.79
1.65 | .19
.56 | | 80
BO
CO
B7
O1 | 9073-01
9073-02
9145
9162-80
9189 | Turlock 5 SW Turlock 8 WSW U. S. Cotton Field Sta. Upper Chiquito Upper Tres Pinos | iPO | 8.43
7.34
4.56
M | .00
.00
.00 | T .05 .03 .16 .00 | .25
.23
.61
1.22
.20 | 1.55
1.26
.99
- | 1.82
1.52
1.10
-
1.59 | .15
.10
.10
- | 2.06
1.78
.40
-
2.45 | .05
.06
.19
- | 2.15
1.17
.34
- | .20
.39
.76 | .20
.58
.04
- | .20
.00 | | B7
C0
C0
C0 | 9301
9304
9367
9369
9452 | Vermilion Valley
Vestal
Visalia
Visalia 4 E
Wasco | в
Б
С | 18.22
6.09
7.58
7.73
4.66 | .00 | .00
.02
.07 | .66
.31
.28
.50 | 1.30
1.92
1.73 | June 25
1.13
1.20
1.47
.83 | .1963 t
.10
.18
.27
.16 | .62
.73
.75
.57 | 3, 1964
.18
.17
.18
.19 | 1.24
1.16
1.32
.25 | .66
1.52
1.10
1.54 | .20
.37
.56
.06 | .00
T
T | | 85
C5
C0
86
C0 | 9482
9512
9535
9556-80
9560 | | PD
PD
CO | 26.85
6.79
4.76
35.00
5.25 | .00
.00
.00 | .00
.38
.14
.09 | .45
1.71
.20
1.04 | 1.68
1.72
1.11
1.75
1.37 | 9.97
.81
.76
14.29
1.16 | .64
.18
.04
6.76
.06 | 5.42
.71
.84
.05 | .03
.00
.11
.00 | 4.23
.88
.30
4.22
.85 | 1.12
.13
1.26
2.35
.78 | 1.95
.27
T
2.71
.08 | 1.36
.00
.00
1.74
T | | BO
C5
C0
B6
C0 | 9565
9602
9614-81
9640-80
9670-80 | Westley
Wet Meadow
Wheeler Ridge LWUA-122
White Rock Preston
Wilbur Ditch | S
(R) | 7.41E
25.11
7.71E
12.73E
4.56 | .00
.00E
.00E | .00
.00E
.00E | .11E
.93
.08E
.24 | 1.64
1.57
1.45
.92 | 1.64
August 2.07
4.21
1.18 | .07
28, 1963
.15
.39 | 1.86
to July
.55
1.87
.78 | .00
21, 196
.33
.08
.11 | 1.06
2.57
.72 | .19
.55
.96
.49 | .32
.50
.79
.01 | .85
.00
.33
.00 | | | | | | | | | | | | | | | | | | | ### TABLE A-2 (Cont.) #### PRECIPITATION DATA FOR 1963-64 SAN JOAQUIN DISTRICT | 960
UI | Alpha | | Seasanal | | | | | | In i | nches | | | | | | |----------------------|------------------------------|--|-----------------------|------|------|------|--------------|-------------------------------|-----------------------|--------------------------------|-----------------------|--------------|-------------|-------------|------| | Drainage
Basin | Order
Number | Station Name | Total | July | Aug | Sept | Oct | Nav. | Dec. | Jan | Feb. | Mar | Apr | Моу | June | | C1
C5
C1
C4 | 9749
9754
9773
9805 | Wishon Res. Wofford Heights Commondehuck Meadow Woodchuck Meadow | 29.85
9.42
9.43 | .00 | .23 | 1.13 | 1.81
1.79 | 9.62
.99
August
2.61 | .71
.38
9, 1963 | 4.46
.87
to July
1,25 | .19
.02
7, 1964 | 5.76
2.01 | 2.26
.53 | 2.79
.78 | .89 | | B5 | 9855 | Yosemite National Pk HPO C | | T | . 20 | .93 | 1.85 | 9,55 | .81 | 4.49 | .06 | 3.50 | 1.49 | 2.46 | .96 | 0 TABLE A-3 TEMPERATURE DATA FOR 1963-64 SAN JOAOUIN DISTRICT | 9 0 | Alpha | | | | | | | In | degrees | Fahrenhe | it | | | | | |----------------|-----------------|--------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|--------------------------------------| | Basin
Basin | Order
Number | Station Name | | July | Aug | Sept | Oct. | Nov. | Dec | Jan. | Feb | Mar. | Apr | May | June | | 86 | 0049 | Ahwahnee 2NNE | Max
Min
Av Max
Av Min
Avg | 94
56
86.9
63.5
75.2 | 95
56
88.2M
64.3M
76.2M | 97
52
85.2
62.5
73.8 | M
M
M
M | 80
38
65.2
47.0
56.1 | 80
34
69.1
43.3
56.2 | 80
32
59.4
38.4
48.9 | 76
34
62.3M
39.6M
51.0M | 78
32
61.0
41.0
51.0 | 78
36
67.1
46.6
56.8 | 84
38
70.1M
51.5M
60.8M | 98
44
79.9
60.3
70.1 | | co | 0332 | Arvin | Max
Min
Av Max
Av Min
Avg | 102
53
95.0M
67.0M
77.8M | 102
53
92.5
58.4
75.5 | 106
56
89.7
61.6
75.6 | 96
44
75.1
54.1
64.6 | 76
31
63.7
44.2
54.0 | 60
25
47.9
33.1
40.5 | 66
25
57.6M
34.0M
45.8M | 77
27
65.9
33.6
49.8 | 92
31
68.4
39.9
54.2 | 97
39
74.0
47.3
60.6 | 95
37
81.8
50.5
66.2 | 110
52
90.4
58.7
74.6 | | со | 0396-02 | Avenal Walden | Max
Min
Av Max
Av Min
Avg | 104
60
97.8
71.9
84.8 | 106
59
97.9M
66.7M
82.3M | M
M
M
M | 96
48
78.2
57.4
67.8 | 76
37
65.5M
47.5M
56.5M | 61
29
52.8M
38.1M
45.4M | 66
32
58.3M
39.0M
48.7M | 73
35
64.7M
40.1M
52.4M | 87
34
69.5M
44.6M
57.6M | 93
41
76.0
50.0
63.0 | 99
41
83.0M
53.5M
68.3M | 109
53
92.7
61.9M
77.3M | | B5 | 0430 | ва9ру | Max
Min
Av Max
Av Min
Avg | | | | | | RB
RB
RB
RB | 66
29
55.7
36.1
45.9 | 73
29
62.9
34.2
48.6 | 79
28
64.9
37.8
51.4 | 91
34
71.9
43.5
57.7 | 92
37
77.6
48.2
62.9 | M
M
83.6M
54.9M
69.3M | | co | 1557 | Caruthers 4E | Max
Min
Av Max
Av Min
Avg | 104
49
96.6
56.6
76.6 | 102
50
95.0
56.6
75.8 | 104
53
91.5
57.5
74.5 | 96
41
78.7
50.1
64.4 | 75
33
63.5
42.3
52.9 | 56
27
48.0
35.6
41.8 | 67
24
56.0
34.2
45.1 | 70
'25
62.9
32.1
47.5 | 90
31
69.6
37.2
53.4 | 94
36
78.2
44.0
61.1 | 94
37
82.8
47.4
65.2 | M
M
M
M | | 80 | 1580 | Castle AF8 | Max
Min
Av Max
Av Min
Avg | 99
50
91.2
60.0
75.6 | 100
54-
91.3
61.7
76.5 | 105
56
87.7
61.5
74.6 | 91
42
74.5
53.2
63.8 | 71
34
57.5
44.1
50.8 | 52
29
42.9
35.8
39.4 | 61
26
51.7
36.6
44.2 | 68
29
59.9
35.2
47.6 | 80
27
63.6
40.2
51.9 | 91
35
71.1
44.5
57.8 |
91
40
75.5
49.3
62.4 | 109
50
84.8
56.9
70.8 | | 88 | 1583 | Castle Rock Rad. Lab. | Max
Min
Av Max
Av Min
Avg | 102
52
90.8
61.0
75.9 | 102
52
93.0
61.4
77.2 | 102
50
89.1
61.6
75.4 | 99
38
78.2
51.4
64.8 | 78
32
63.0
42.3
52.6 | 76
25
49.2
33.2
41.2 | 66
26
57.4
35.3
46.4 | 75
29
64.0
36.6
50.3 | 83
33
66.3
41.4
53.8 | 92
32
77.3
44.3
58.8 | 91
34
76.2
50.2
63.2 | 107
47
84.1
58.4
71.3 | | B 6 | 1590 | Catheye Vly. Sawyer Rch. | Max
Min
Av Max
Av Min
Avg | 100
49
91.5
57.8
74.6 | 101
49
91.9
59.2
75.6 | 105
53
89.0
60.2
74.6 | 93
40
74.5
51.4
63.0 | 74
32
58.6
41.6
50.1 | 68
25
49.2
32.9
41.0 | 63
29
50.5
35.7
43.1 | 67
29
58.1
33.7
45.9 | 77
2 7
59.2
37.6
48.4 | 87
31
66.9
41.9
54.4 | 89
31
73.5
46.5
60.0 | 108
43
84.3
54.5
69.4 | | B6 | 1591 | Catheys Vly. Stonehouse | Max
Min
Av Max
Av Min
Avg | 99
44
90.2
51.1
70.6 | 100
44
90.8
52.7
71.8 | 104
47
88.4
54.7
71.6 | 94
36
76.0
48.4
62.2 | 73
27
60.5
37.1
48.8 | 68
22
49.2
29.3
39.2 | 65
22
51.3
30.9
41.1 | 67
24
59.2
27.9
43.6 | 78
21
61.5
31.9
46.7 | 86
27
68.8
36.0
52.4 | 88
30
74.5
40.9
57.7 | 105
38
82.8
48.7
65.8 | | B7 | 1844 | Clover Meadowa GS | Max
Min
Av Max
Av Min
Avg | 80
28
74.5M
34.1M
54.3M | 88
24
76.0M
32.7M
54.4M | 80
30
M
M
M | M
M
M
M | | | Close | d for Se | ason | | | M
M
M
M | | со | 1871-80 | Coalinga Feed Yards Inc. | Max
Min
Av Max
Av Min
Avg | | : | | | | RB
RB
RB
RB
RB | M
53.3M
33.3M
43.3M | M
M
M
M | 82
32
64.5
39.6M
52.1M | 91
35
74.3M
45.6M
60.0M | 96
34
78.7M
48.6M
63.7M | 108
46
88.8M
58.3M
73.6M | | B4 | 1904 | Cold Springs | Max
Min
Av Max
Av Min
Avg | M
M
M
M | M
M
M
M | 86
42
74.5M
50.6M
62.6M | 83
29
64.5
41.2
52.8 | M
M
M
M | co | 2013 | Corcoran El Rico 1 | Max
Min
Av Max
Av Min
Avg | 106
49
96.9
57.5
77.2 | 103
50
95.0
57.9
76.4 | 106
53
90.2M
59.2M
74.7M | 96
43
78.6
53.5
66.0 | 78
32
62.4
43.9
53.2 | 58
29
44.3M
36.1M
40.2M | 66
25
53.1
34.4
43.8 | 73
24
61.7
31.2
46.4 | 86
26
65.5
35.5
50.5 | 94
34
73.4
41.2
57.3 | 96
33
79.5
45.2
62.4 | 111
48
90.1
54.0
72.0 | | B5 | 2072 | Coulterville FFS | Max
Min
Av Max
Av Min
Avg | 99
50
90.4
58.6
74.5 | 102
49
91.7
60.9
76.3 | 102
50
87.6
60.6
74.1 | 95M
44M
75.0M
52.7M
63.8M | M
M
M
M | 67
28
M
M
M | 69
28
M
M
M | M
M
M
M | M
M
M
M | M
M
M
M | 86
32
M
M
M | 105
41
83.0M
57.0M
70.0M | | В7 | 2122 | Crane Valley PH | Max
Min
Av Max
Av Min
Avg | 97
50
88.2
60.2
74.2 | 96
48
89.0
60.0
74.5 | 96
50
86.5
58.8
72.7 | 92
40
73.6
50.1
61.9 | 74
28
59.3
40.6
50.0 | 70
18
59.4M
34.4M
46.9M | 74
23
55.2M
31.9M
43.6M | 66
26
58.2
32.0
45.1 | 75
28
56.7
34.9
45.8 | 80
30
63.9
40.0
52.0 | 80
32
68.9
45.3
57.1 | 98
40
79.3
54.6
67.0 | | C6 | 2222-80 | Cummings Valley | Max
Min
Av Max
Av Min
Avg | 92
38
84.1
43.9
64.0 | 97
36
85.6
44.9
65.2 | 98
40
83.5
48.7
66.1 | 94
28
73.4
39.2
56.3 | 81
22
58.9
33.0
46.0 | 82
20
59.1
28.5
43.8 | 74
13
53.2
23.3
38.2 | 69
12
56.2
22.1
38.2 | 72
12
54.1
26.6
40.4 | 80
22
58.5
31.2
44.8 | 80
20
63.3
34.2
48.8 | 93
30
74.3
42.6
58.4 | | 88 | 2369 | Del Puerto Road Camp | Max
Min
Av Max
Av Min
Avg | 103
44
95.4
54.7
75.1 | 99
43
91.3
55.6
73.4 | 100
48
86.8
55.5
71.1 | 92
36
73.4
48.4
60.9 | 70
28
59.5
38.3
48.9 | 68
24
52.6M
31.0M
41.8M | 65
24
54.7
33.9
44.3 | 68
27
60.3M
33.1M
46.7M | 78
29
62.1
36.6
49.4 | 86
30
69.8
41.3
55.6 | 92
31
77.2M
44.2M
60.7M | 51.4M | | co | 2436 | OiGiorgio | Max
Min
Av Max
Av Min
Avg | 104
56
96.4
63.5
79.9 | 106
55
98.1
63.6
80.8 | 111
57
91.3
61.5
76.4 | 100
45
77.4
54.8
66.1 | 81
34
66.3
45.2
55.7 | 65
30
50.4
36.6
43.5 | 70
30
58.2
36.5
47.4 | 81
29
67.5
36.4
51.9 | 93
29
68.1
38.8
53.4 | 98
38
75.7
46.2
60.9 | 96
36
80.8
50.3
65.5 | 112
48
91.0
59.3
75.2 | | C7 | 2464 | Domengine Ranch | Max
Min
Av Max
Av Min | 101
52
93.2
64.4
78.8 | 101
53
91.1
67.5
79.3 | 105
54
89.3
65.6
77.4 | 95
49
76.6
57.2
66.9 | 88
34
61.2
45.0
53.1 | 63
24
46.7
33.4
40.0 | 61
32
54.0
39.3
46.6 | 68
37
60.1
43.1
51.6 | 83
35
64.4
45.4
54.9 | 90
38
71.6
48.8
60.2 | 92
39
76.9
50.6
63.8 | 109
48
85.7
60.5
73.1 | | B4 | 2473 | Don Pedro Reservoir | Max
Min
Av Max
Av Min
Avg | 104
47
95.3
58.0
76.7 | 105
48
94.4
58.3
76.6 | 106
51
91.8
57.8
74.8 | 97
41
78.0
49.0
63.5 | 76
28
51.2
39.4
45.3 | 62
25
47.5
30.8
39.2 | 60
25
52.9
31.4
42.2 | 69
25
61.3
30.4
45.9 | 81
26
63.0
35.5
49.3 | 90
30
71.9
39.1
55.5 | 91
32
77.3M
44.0M
60.7M | 107
42
86.3
51.4
68.9 | | | | | | | | | | | | | | | | | | ## TABLE A-3 (Cont.) #### TEMPERATURE DATA FDR 1963-64 SAN JOAQUIN DISTRICT | Basin | Order
Number | Station Name | | | | | | | legrees l | т т | | | | Y | | |------------|-----------------|------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------| | co | | | | July | Aug | Sept. | Oct. | Nov | Osc | Jan | Feb | Mar | Apr | May | June | | | 3084 | Five Points Diener | Max
Min
Av Max
Av Min
Avg | 103
52
94.4
60.6
77.5 | 100
52
93.6
61.1
77.4 | 104
54
89.5
60.9
75.2 | 94
41
77.6
53.2
65.4 | 76
34
61.2
43.0
52.1 | 57
27
45.6
35.6
40.6 | 65
26
54.0
35.6
44.8 | 70
30
61.5
35.6
48.6 | 84
30
65.8
39.2
52.6 | 92
39
74.7
44.2
59.4 | 95
38
79.9
49.4
64.7 | 109
50
86.7
57.3
73.0 | | CD | 3258-80 | Fresno Co. Westside FD | Max
Min
Av Max
Av Min
Avg | | | RB
RB
RB
RB
RB | 96
41
78.9
52.2
65.6 | 84
32
64.4
42.1
53.5 | 60
22
49.3
32.8
41.1 | 64
25
55.3
33.2
44.3 | 72
29
63.0
34.4
48.7 | 85
24
68.8
37.3
53.1 | 93
34
75.7M
43.6M
59.7M | 97
34
61.7
47.6
64.7 | 110
46
90.8
56.0
73.4 | | 86 | 3948 | Hidden Valley | Max
Min
Av Max
Av Min
Avg | 104
51
95.9
59.7
77.8 | 101
52
93.2
61.9
77.6 | 104
54
91.3
62.0
76.6 | 96
43
76.0
52.6
64.3 | M
M
M
M | 73
28
58.0
34.2
46.1 | 67
30
55.4
35.4
45.4 | 74
30
62.3
34.1
48.2 | 79
27
58.8
36.9
47.8 | 86
31
68.4
42.7
55.6 | 91
33
73.7
46.4
60.1 | 110
44
86.1
55.3
70.7 | | 2 5 | 4103 | Hornitos Gilea Ranch | Max
Min
Av Max
Av Min
Avg | 100
50
91.2
60.8
76.0 | 100
50
91.3
61.8
76.6 | 105
52
88.5
62.5
75.5 | 92
44
74.6
53.6
64.1 | 73
32
56.7
42.1
49.4 | 65
26
45.6
33.2
39.4 | 58
31
50.2
36.0
43.1 | 66
30
57.9
35.4
46.7 | 79
30
60.2
39.2
49.7 | 88
32
68.6
43.7
56.2 | 89
36
74.7
47.9
61.3 | 106
44
84.1
56.9
70.5 | | B 3 | 4170 | Munters Dam | Max
Min
Av Max
Av Min
Avg | 92
40
85.2
46.5
65.8 | 96
40
86.7
46.4
66.6 | 98
42
84.8
47.8
66.3 | 92
31
70.8
41.2
56.0 | 74
24
57.2
33.2
45.2 | 69
21
58.6
28.7
43.6 | 63
20
50.8
27.1
39.0 | 70
20
58.0
25.4
41.7 | 73
19 •
54.4
27.8
41.1 | 80
21
61.2
31.9
46.6 | 80
28
65.2
36.2
50.7 | 96
32
74.0
42.1
58.1 | | C 5 | 4303 | Isabella Dam | Max
Min
Av Max
Av Min
Avg | 100
51
92.8
59.5
76.2 | 101
49
93.4
59.6
76.5 | 99
51
89.5
58.7
74.1 | 97
39
76.8
49.7
63.2 | 75
30
63.0
39.7
51.4 | 72
22
60.6
31.7
46.2 | 67
22
52,3
31.4
41.8 | 70
22
60.9
29.5
45.2 | 79
20
59.2
33.8
46.5 | 87
30
66.9
40.5
53.7 | 89
35
73.5
46.7
60.1 |
103
42
84.5
56.5
70.5 | | C6 | 4463 | Keene | Max
Min
Av Max
Av Min
Avg | 95
46
87.2
53.1
70.1 | 95
44
87.6
56.7
72.2 | 98
37
84.3
57.9
71.1 | 87
38
70.4
47.5
59.0 | 78
26
61.3
36.9
49.1 | 72
26
61.1
33.3
47.2 | 77
16
53.1
28.3
40.7 | 73
23
58.6
30.1
44.4 | 79
21
57.4
31.6
44.5 | 87
29
65.7
37.0
51.3 | 84
28
71.8
40.3
56.1 | 103
39
81.8
51.5
66.7 | | C 5 | 4513 | Kern Canyon | Max
Min
Av Max
Av Min
Avg | 99
51
91.6M
66.2M
78.9M | 98
56
M
M | 98
57
M
M
M | 95
47
74.8M
54.9M
64.9M | 76
35
M
M
M | 60
24
45.8M
32.3M
39.0M | 64
26
M
M
M | 74
33
60.3M
38.0
49.2M | 86
32
62.6M
42.7M
52.7M | 91
38
70.5M
49.4M
60.0M | 89
38
M
M | 106
49
84.5M
60.9M
72.7M | | co | 4535 | Kettleman Hills | Max
Min
Av Max
Av Min
Avg | 102
54
94.3
68.0
81.1 | 102
56
93.0
70.6
81.8 | 106
56
68.6
67.2
77.9 | 92
50
73.4
57.9
65.6 | 76
38
60.0
47.3
53.6 | 66
29
47.4
34.4
40.9 | 63
34
52.0
39.5
45.8 | 72
36
59.4
44.0
51.7 | 85
35
62.5
45.6
54.0 | 92
39
71.4
50.1
60.8 | 96
40
77.4
54.8
66.1 | 109
50
86.6
63.2
74.9 | | B0 | 4999-03 | Livingston 5W | Max
Min
Av Max
Av Min | 105
45
97.0M
53.7M
75.4M | 103
46
97.1M
54.4M
75.8M | 109
47
92.5M
55.1M
73.8M | 99
35
80.1M
48.6M
64.4M | 75
31
60.4M
41.1M
50.8M | 55
25
44.1M
34.5M
39.3M | 62
23
53.3M
32.9M
43.1M | 74
27
65.4
31.0
48.2 | 84
27
68.2
36.8
52.5 | 97
33
77.8M
40.7M
59.2M | 101
32
83.2M
43.5M
63.4M | 115
41
90.9M
51.6M
71.3M | | DO | 5117 | Los 8anos Field Sta. | Max
Min
Av Max
Av Min | 104
48
92.5
57.8
75.2 | 101
45
94.3
57.4
75.8 | 103
50
89.4
56.7
73.0 | 96
39
77.4
49.3
63.4 | 73
28
60.5
39.2
49.8 | 54
22
46.1
31.8
39.0 | 63
21
54.0
32.4
43.2 | 71
29
62.9
34.2
48.6 | 78
25
66.0
39.1
52.5 | 92
33
74.0
44.1
59.0 | 93
36
77.0
46.8
61.9 | 107
37
85.9
52.7
69.0 | | 86 | 5202 | Lushmeadows Rch. | Max
Min
Av Max
Av Min
Avg | 100
52
M
M | 102
44
M
M
M | 102
50
M
M | M
M
M
M | 76
31
58.1M
38.6M
48.4M | 72M
29
61.2M
39.9M
50.6M | 72
27
52.3M
33.5M
42.9M | 73
28
61.9
35.5M
48.7M | 77
27
60.7M
37.1M
48.9M | 87
29
65.7M
41.4M
53.6M | 87
30
M
M | 105
39
83.0M
54.9M
69.0M | | со | 5257 | Magunden | Max
Min
Av Max
Av Min
Avg | 106
56
97.7
64.3
81.0 | 105
40
97.4
64.5
81.0 | 106
56
90.9
63.8
77.4 | 96
48
77.8
56.1
67.0 | 78
35
64.3
44.4
54.4 | 60
26
47.9
34.5
41.2 | 68
26
56.7
34.6
45.6 | 75
30
63.9
35.4
49.8 | 91
32
66.6
40.8
53.7 | 95
38
73.5
47.2
60.4 | 96
41
81.4
52.4
66.9 | 113
51
91.8
60.8
76.3 | | B 5 | 5348 | Mariposa Circle 9 Rch. | Max
Min
Av Max
Av Min | 100
44
93.3
51.0
72.1 | 102
44
91.5M
52.0M
71.8M | 97
42
M
M
M | 78
34
67.0M
41.9M
54.4M | 73
28
55.3M
35.3M
45.3M | 70
23
58.1M
31.1M
44.6M | 70
19
48.5
27.1M
37.8M | 66
22
56.7
27.3
42.0 | 70
17
53.0M
28.6M
40.8M | 82
22
63.4M
34.1
48.8M | 98
24
72.0M
38.9M
55.5M | 109
34
85.5M
47.6M
66.6M | | B 5 | 5352 | Mariposa RS | Max
Min
Av Max
Av Min
Avg | 99
47
91.5
54.8
73.1 | 100
47
92.3
57.3
74.8 | 103
48
89.0
57.1
73.0 | 98
40
77.2
48.8
63.0 | 79
30
M
M | 78
24
M
M
M | 75
26
55.5M
30.7M
43.1M | 71
25
M
M | 79
22
60.6M
33.2M
46.9M | 86
29
68.2M
38.9M
53.6M | 88
31
72.8
43.3
58.1 | 104
35
82.9
48.3
65.6 | | 87 | 5496 | Meadow Lake | Max
Min
Av Max
Av Min
Avg | 90
53
82.2
62.5
72.3 | 91
54
83.8
63.1
73.4 | 94
44
79.5
60.1
69.8 | 92
40
69.1
51.5
60.3 | 74
30
55.9
40.1
48.0 | 68
25
58.4
40.4
49.4 | 72
23
50.6
33.7
42.2 | 66
26
53.0
36.5
44.8 | 70
21
50.3
34.6
42.5 | 78
28
57.2M
39.8M
48.5M | 84
29
63.7
44.5
54.1 | 95
35
74.8
55.6
65.2 | | 87 | 5677-80 | Minareta RS | Max
Min
Av Max
Av Min
Avg | 86
42
80.9
49.3
65.1 | 90
40
82.9
50.4
66.6 | 90
40
77.6
50.6
64.1 | 88
30
68.0
41.1
54.6 | ! | | Closed f | or Winte | r Season | | | M
M
M
M | | 80 | 5740 | Modesto KTRB | Max
Min
Av Max
Av Min
Avg | 99
51
91.0
56.8
73.9 | 100
49
91.5
57.1
74.3 | 103
52
88.4
58.2
73.3 | 94
39
76.6
51.1
63.8 | 71
32
59.1
43.3
51.2 | 54
27
46.7
35.7
41.2 | 61
25
54.6
36.3
45.4 | 74
27
64.7
32.9
48.8 | 83
27
67.2
38.5
52.8 | 92
34
75.0
43.1
59.0 | 93
36
78.8
47.6
63.2 | 107
46
85.3
54.1
69.7 | | 87 | 5893 | Mountain Rest FFS | Max
Min
Av Max
Av Min
Avg | 91
51
83.6M
59.6M
71.6M | 92
50
86.0
61.3
73.6 | 99
45
83.0M
59.1M
71.0M | 89
37
70.3M
50.5M
60.4M | M
M
M
M | M
M
M
M | 62
25
51.5M
33.2M
42.3M | 62
26
54.0M
34.4M
44.2M | 70
22
53.8M
34.2M
44.0M | 77
26
62.0M
41.7M
51.8M | 79
26
65.6M
43.4M
54.5M | 95
34
76.5M
52.8M
64.7M | | со | 6230-50 | North Belridge | Max
Min
Av Max
Av Min
Avg | 105
50
96.1
67.8M
81.9M | 106
59
92.8
66.1M
79.4M | 105
62
91.5
66.8
79.2 | 96
48
77.2
57.3
67.2 | 78
37
63.1M
45.2M
54.2M | 62
25
47.7
34.0
40.8 | 65
28
55.1
35.5
45.3 | 75
34
62.6
37.2
49.9 | 87
32
66.7M
41.1M
53.9M | 94
40
74.7
48.1
61.4 | 95
41
79.6
54.2
66.9 | 109
54
89.7
63.4
76.6 | #### TEMPERATURE DATA FDR 1963-64 SAN JOAQUIN DISTRICT | | 41-h- | | | | DAM 00 | AQUIN DI | DIRICI | Tn | degrees | Fahronho | | | | | | |-------------------|--------------------------|-------------------------|---------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | Drainage
Basin | Alpha
Order
Number | Station Name | | July | Aug | Sept. | Oct. | Nav | Oec | Jan. | Feb | Mar. | Apr | May | June | | 86 | 6321-80 | Oakhurst | Max
Min
Av Max
Av Min
Avg | 95
33
88.4
42.5
65.4 | 97
36
89.2
43.6
66.4 | 103
40
86.9
45.8
66.4 | 95
29
74.7
39.3
57.0 | 80
24
61.8
31.8
46.8 | 73
18
61.6
22.1
41.8 | 77
16
55.1
24.5
39.8 | 69
13
59.9
20.1
40.0 | 75
16
56.8
28.5
42.6 | 80
23
62.2
33.6
47.9 | 81
21
67.6
37.0
52.3 | 97
32
78.2
42.4
60.3 | | 83 | 6893 | Pinecrest Strawberry | Max
Min
Av Max
Av Min
Avg | 84
38
79.1
45.8
62.4 | 86
38
77.7
44.8
61.2M | 88
42
75.7
47.3
61.5 | 84
32
67.1
40.6
53.8 | 64
22
51.7
31.2
41.4 | 66
14
54.6
27.0
40.8 | 60
18
47.5
24.6
36.0 | 64
16
54.2
24.1
39.2 | 68
10
49.2
24.2
36.6 | 74
12
56.7
28.7
42.7 | 78
22
60.4
32.8
42.7 | 88
30
68.7
39.9
54.3 | | C1 | 6895 | Pine Flat Dam | Max
Min
Av Max
Av Min
Avg | 105
50
97.6
58.1
77.8 | 105
49
97.8
56.6
77.2 | 110
51
93.2
58.4
75.8 | 100
42
79.4
51.1
65.2 | 78
34
63.0
41.3
52.2 | 67
27
49.4
33.5
41.4 | 63
27
54.4
32.5
43.4 | 71
28
61.8
32.6
47.2 | 84
27
64.1
36.6
50.4 | 92
35
72.4
43.1
57.8 | 94
33
78.8
47.5
63.2 | 109
43
90.1
53.9
72.0 | | Cl | 6902 | Pinehurst | Max
Min
Av Max
Av Min
Avg | 88
51
82.3M
58.3M
70.3M | 89
50
82.9
58.7
70.8 | 92
47
82.0
58.7
70.4 | 92
37
69.8M
48.2M
59.0M | M
M
M
M | M
M
M
M | M
M
M | M
M
M
M | M
M
M
M | M
M
M
M | 78
30
66.7M
43.1M
54.9M | 94
36
74.6
52.1
63.4 | | В7 | 6959-80 | Placer G5 | Max
Min
Av Max
Av Min
Avg | 94
40
M
M | 96
40
87.8M
47.2M
67.5M | 96
44
87.1M
48.7M
67.9M | M
M
M
M | c | losed fo | r Winter | Season | | м
м
м
м | 84
26
69.0M
39.0M
54.0M | 96
36
79.4M
46.2M
62.8M | | 86 | 7273 | Raymond 9 N | Max
Min
Av Max
Av Min
Avg | 102
45
94.5
54.1
74.3 | 106
46
96.7M
57.9M
77.3 | 108
49
94.0
57.1
75.6 | 97
40
M
M
M | - | 1111 | 65
25
53.7
31.0
42.4 |
70
24
63.5
29.4
46.5 | - | - | 89
27
77.0
39.9
58.5 | 108
40
87.6
48.7
68.2 | | CD | 7288 | Rector | Max
Min
Av Max
Av Min
Avg | 102
53
95.3
58.8
77.0 | 102
52
94.3
58.3
76.3 | 104
49
90.5
59.5
75.0 | 96
44
77.1
52.0
64.6 | 79
33
63.1
43.3
53.2 | 58
29
44.6
35.4
40.0 | 70
26
54.0
34.7
44.4 | 72
30
63.1
33.7
48.4 | 85
30
66.4
38.5
52.4 | 93
35
73.5
45.2
59.4 | 95
37
79.6
49.7
64.7 | 110
50
88.5
56.7
72.6 | | со | 7460 | Riverdale | Max
Min
Av Max
Av Min
Avg | 102
42
95.9
58.3
77.1 | 102
51
93.9
58.5
76.2 | 106
53
89.8
58.8
74.3 | 94
40
77.3
49.8
63.6 | 76
31
62.0
41.0
51.5 | 53
26
44.4
33.8
39.1 | 65
27
54.4
33.6
44.0 | 72
24
63.2
31.6
47.4 | 83
32
66.3M
38.7M
52.5M | 92
36
74.2
43.3
58.8 | 94
36
79.1
48.1
63.6 | 113
45
88.2
55.4
71.8 | | co | 7800-02 | Sanger 1 NE | Max
Min
Av Max
Av Min
Avg | 104
53
96.5
58.3
77.4 | 104
52
96.3
58.2
77.2 | 105
54
90.8
59.6
75.2 | 94
42
75.9
52.7
64.3 | 72
37
60.7
45.5
53.1 | 57
29
46.3
38.0
42.2 | 63
29
54.1
37.9
46.0 | 71
30
62.8
35.8
49.3 | 84
29
66.4
40.2
53.3 | 95
37
74.9
46.3
60.6 | 95
37
81.5M
50.1M
65.8M | 108
51
90.3
56.4
73.4 | | co | 8375-50 | South Belridge | Max
Mln
Av Max
Av Min
Avg | 104
54
96.5M
63.8M
80.1M | 103
53
95.9
63.8
79.8 | 105
55
91.3
62.6
76.9 | 97
44
77.6M
52.1M
64.8M | 76
33
64.2M
41.0M
52.6M | 62
22
47.1M
30.7M
38.9M | 63
27
56.0M
33.0M
44.5M | 78
31
64.6
36.2
50.4 | 87
31
67.4
39.4
53.4 | 94
38
74.8
47.0
60.9 | 95
40
80.4
50.8
65.6 | 110
50
90.4M
60.6M
75.5M | | co | 8407-11 | South Lake Parms Hdq. | Max
Min
Av Max
Av Min
Avg | 103
49
96.0
57.5
76.7 | 103
49
95.7
59.2
77.4 | 108
54
91.2
60.1
75.6 | 94
42
77.0
51.6
64.3 | 77
30
63.0
40.6
51.8 | 59
27
44.1
35.1
39.6 | 67
24
54.6
33.8
44.2 | 74
25
62.6
31.2
46.9 | 83
27
66.0
36.6
51.3 | 92
35
73.7
43.5
58.6 | 94
33
79.1
45.9
62.5 | 108
48
88.8
54.2
71.5 | | В3 | 8450 | Spring Gap Forebay | Max
Min
Av Max
Av Min
Avg | M
M
M
M | м
м
м
м | M
M
M
M | 86
30
67.1M
39.8M
53.5M | 68
22
50.5M
30.9M
40.7M | 66
18
55.7M
28.9M
42.3M | 58
18
43.9M
25.4M
34.7M | 62
18
51.3M
25.1M
38.1M | | 68
12
52.3M
28.4M
40.4M | 74
22
61.8M
33.4M
47.6M | M
M
M
M | | В3 | 8499 | Stanislaus Power House | Max
Min
Av Max
Av Min
Avg | 99
45
91.5
53.5
72.5 | 103
46
92.8
55.8
74.3 | 104
48
90.1
57.1
73.6 | 100
36
73.8
43.8
58.8 | 75
27
60.6
37.2
48.9 | 63
25
55.3
30.5
42.9 | 68
22
54.1
29.5
41.8 | 72
23
62.5
28.0
45.3 | 82
23
62.7
32.6
47.7 | 88
30
72.4
41.3
56.9 | 91
31
76.6
46.4
61.5 | 106
42
85.5M
53.7M
69.6M | | C3 | 86 20 | Success Dam | Max
Min
Av Max
Av Min
Avg | 102
54
94.6
62.1
78.4 | 101
53
94.5
62.8
78.6 | 105
58
90.6
63.6
77.1 | 99
47
77.5
55.7
66.6 | 78
36
63.6
45.0
54.3 | 65
26
49.0
34.2
41.6 | 67
29
55.2
34.7
44.9 | 72
31
62.9
36.9
49.9 | 82
31
64.8
40.8
52.8 | 94
37
72.6
47.3
60.0 | 94
37
78.7
50.8
64.8 | 111
47
89.3
58.0
73.7 | | C7 | 8755 | Taft KTKR Radio | Max
Min
Av Max
Av Min
Avg | 103
56
94.0M
65.2M
79.6M | 102
55
94.2
66.0
80.1 | 104
51
88.4
63.3
75.8 | 96
48
75.5
55.5
65.5 | 76
35
62.3
43.4
52.9 | 61
26
47.6
31.9
39.8 | 65
22
54.4M
34.0M
44.2M | 73
31
61.2
35.7
48.5 | 85
32
63.6
40.2
51.9 | 92
36
70.4
46.5
58.4 | 92
38
76.9
50.5
63.7 | 107
44
87.7
59.7
73.7 | | C2 | 8868 | Terminus Dam | Max
Min
Av Max
Av Min
Avg | 101
54
93.9
63.9
78.9 | 101
54
93.6
65.4
79.5 | 105
57
89.7
64.6
77.1 | 97
49
76.9
56.0
66.4 | 76
35
62.1
45.0
53.6 | 63
26
47.0
33.6
40.3 | 66
28
54.2
35.4
44.8 | 70
32
61.5
37.7
49.6 | 85
33
63.2
40.8
52.0 | 90
38
71.5
46.6
59.1 | 93
36
77.4
51.0
64.2 | 109
47
87.8
58.1
73.0 | | со | 9006 | Tranquillity Glotz | Max
Min
Av Max
Av Min
Avg | 100
52
91.4
59.3
75.3 | 98
50
88.5
59.4
74.0 | 98
54
84.6M
59.4M
72.0M | 88
40
75.7M
50.9M
63.3M | 77
28
59.8
41.8
50.8 | 48
24
42.5
33.3
37.9 | M
50.8M
33.0M
41.9M | M
M
M
M | 74
28
60.4
36.4
48.4 | 84
35
68.8
42.2
55.5 | M
72.0M
44.9M
58.5M | M
M
M
M | | CI | 9025 | Trimmer RS | Max
Min
Av Max
Av Min
Avg | 102
45
95.1
57.5
76.3 | 103
49
96.2
61.0
78.6 | 104
49
91.5
61.3
76.4 | - | = | - | - | - | - | - | - | 1 | | co | 9051 | Tulara | Max
Min
Av Max
Av Min
Avg | 106
54
97.9
60.4
79.1 | 104
54
97.1
60.6
78.8 | 107
56
92.1
60.5
76.3 | 98
44
78.4
52.5
65.4 | 78
33
62.5
43.4
53.0 | 55
28
43.2
35.8
39.5 | 68
26
53.6
35.7
44.6 | 76
30
63.1
34.5
48.8 | 86
30
65.9
39.0
52.4 | 96
37
75.0
45.7
60.4 | 97
40
81.8
49.8
65.8 | 113
48
90.8
57.1
74.0 | | со | 9145 | U. S. Cotton Field Sta. | Max
Min
AV Max
AV Min
AVg | 102
55
94.8
62.6
78.7 | 101
50
93.8
61.5
77.6 | 108
57
90.1
62.1
76.1 | 95
46
76.7
53.6
65.2 | 80
34
62.6
43.9
53.2 | 59
27
45.3
34.7
40.0 | 68
26
54.8
34.1
44.4 | 76
27
63.4
33.1
48.2 | 86
30
66.5
39.5
53.0 | 94
39
73.8
46.5
60.2 | 96
39
80.6
50.0
65.3 | 111
48
89.3
58.8
74.1 | | | | | | | | | | | | | | | | | | ## TABLE A-3 (Cont.) #### TEMPERATURE DATA FOR 1963-64 SAN JOAQUIN DISTRICT | 980 | Alpha | | | | | 19 | 63 | In | degrees | Fahrsnh | eit | 196 | 54 | | | |-------------------|-----------------|----------------|---------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | Drainage
Bosin | Order
Number | Station Name | | July | Aug. | Sept. | Oct | Nov | Oec | Jan. | Feb | Mar. | Apr. | May | June | | 87 | 9162-80 | Upper Chiqulto | Max
Min
Av Max
Av Min
Avg | 78
26
74.2M
32.1M
53.1M | 82
22
72.4M
28.3M
50.4M | 84
23
69.9M
30.7M
50.3M | | | | losed fo | r Winter | Season | | | | | CD | 9304 | Vestal | Max
Min
Av Max
Av Min
Avg | 104
57
96.7
65.4
81.0 | 103
61
97.0M
67.6M
82.3M | 107
58
91.7
66.4
79.6 | 97
51
78.1
58.2
68.2 | 79
37
64.1M
47.0M
55.6M | 63
28
49.4
37.2
43.3 | 69
27
57.3
37.1
47.2 | 74
32
65.2M
37.9M
51.6M | 85
32
67.3M
42.3M
54.8M | 98
39
76.8M
49.6M
63.2M | 97
39
82.6M
53.0M
67.8M | 113
53
91.8M
63.3M
77.6M | | во | 9565 | Westley | Max
Mln
Av Max
Av Min
Avg | 98
47
91.2M
53.7M
72.4M | 97
48
91.4M
54.4M
72.9M | M
M
M
M | M
M
M | 70
29
M
M
M | 53
26
M
M
M | 60
27
53.8M
34.5M
44.2M | M
63.4M
35.0M
49.2M | 79
30
66.7M
39.9M
53.3M | 88
33
73.5M
42.7M
58.1M | 90
36
78.0M
45.1M
61.1M | 105
47
85.4M
51.8M
68.6M | | C1 | 9749 | Wishon Res. | Max
Min
Av Max
Av Min
Avg | 80
40
74.5M
46.4M
60.4M | м
м
м
м | 90
37
M
M
M | 81
30
63.1m
38.8m
51.0m | м
м
м
м | м
м
м
м | 55
10
43.4M
22.8M
33.2M | 55
13
47.0M
22.7M
34.9M | 61
7
43.0M
21.3M
32.2M | 68
14
51.7M
27.5M
39.6M | 70
19
M
M
M | 82
29
65.1M
41.0M
53.1M | | C4 | 9805 | Weody | Max
Min
Av Max
Av Min
Avg | 108
49
92.8
58.2
75.5 | M.
37
M
58.6
M | 104
34
89.5
55.7
72.6 | 94
41
74.4
51.4
62.9 | 77
30
62.0
40.2
51.1 | 67
24
52.0
30.0
41.0 | 65
25
52.4M
31.9M
42.2M | 68
28
58.8
33.6
46.2 | 81
27
60.0
35.9
47.9 | 92
33
68.9
41.6
55.2 | 92
32
75.8
45.8
60.8 | 109
41
86.9
56.8
71.9 | TABLE A-4 MONTMLY SUMMARY OF EVAPORATION STATION OATA | rainage
Basin | Alpha | | | | | 19 | 63 | | | | | 19 | 64 | | | |------------------|-----------------|-------------------------|--|---
--|---|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------| | Bas | Order
Number | Station Name | | July | Aug. | Sept. | Oc1 | Nov | Oec. | Jon | Feb | Mar. | Apr. | Мау | June | | со | 0332-02 | Arvin-Frick | Evap
Wind
Precip
Av Max
Av Min | 9.69
1723
.00
92
57 | 7.85
1318
.02
93
56 | 5.50
1046
1.20
87
58 | 3.35
1040
.76
75
48 | 2.05
1720
1.51
61
38 | .77
1280
.15
42
29 | 1.46
1669
.49
52
28 | 3.32
1944
.44
61
29 | 4.46
2477
.52
64
35 | 6.06
2458
.69
70
42 | 8.18
2766
.50
78
47 | 9.78
3107
.02
86
54 | | co | 2013 | Corcoran El Rico l | Evap
Wind
Precip
Av Max
Av Min | 14.03E
2390E
.00
96.9
57.5 | 13.02
2115
.06
95.0
57.9 | 8.25
1940
.51
90.2 E
59.2 E | 4.63
1720
1.15
78.6
53.5 | 1.32
1520
.92
62.4
43.9 | .41
1120
.10
44.3 M
36.1 M | 1.09
1515
.86
53.1
34.4 | 2.94
1425
.08
61.7
31.2 | 4.98
2520
.95
65.5
35.5 | 6.73
2110
.53
73.4
41.2 | 8.77
2216
.29
79.5
45.2 | 13.33
2834
.00
90.1
54.0 | | C6
- | 2222-80 | Cummings Valley | Evap
Wind
Precip
Av Max
Av Min | 11.74
1810
.00
84.1
43.9 | 11.33
1940
.70
85.6
44.9 | 8.17
1720
1.62
83.5
48.7 | 4.55
1520
.95
73.4
39.2 | 3.75
2850
2.44
58.9
33.0 | 6.05
4070
.72
59.1
28.5 | 3.24
3500
1.06
53.2
23.3 | 4.32
3320
.65
56.2
22.1 | 3.93
2920
2.19
54.1
26.6 | 5.38
2720
1.39
58.5
31.2 | 6.99
2680
1.42
63.3
34.2 | 10.27
2470
.10
74.3
42.6 | | В4 | 2473 | Don Pedro Reservoir | Evap
Wind
Precip
Av Max
Av Min | 13.21
-
.00
95.3
58.0 | 12.28
-
.00
95.2
58.3 | 8.80
-
.25
91.8
57.8 | 4.53
-
1.72
78.0
49.0 | 1.89
-
4.98
51.2
39.4 | .75
-
.63
47.5
30.8 | 1.46
-
2.80
52.9
31.4 | 2.63
-
.35
61.3
30.4 | 3.86
-
3.19
63.0
35.5 | 6.24
-
.78
71.9
39.1 | 6.93
-
1.53
77.3 M
44.0 M | .50
86.3
51.4 | | C5 | 4303 | Isabella Dam | Evap
Wind
Precip
Av Max
Av Min | 14.15
2344
.00
92.8
59.5 | 12.21
1947
1.16
93.4
59.6 | 8.00
1501
1.16
89.5
58.7 | 4.73
1544
2.02
76.8
49.7 | 2.48
1595
1.20
63.0
39.7 | 2.05
1202
.46
60.6
31.7 | 2.27
1932
.97
52.3
31.4 | 3.21
1493
.07
60.9
29.5 | 4.34
2291
1.68
59.2
33.8 | 6.30
2181
.50
66.9
40.5 | 8.92
2600
.69
73.5
46.7 | 11.81
2655
.03
84.5
56.5 | | во | 5117 | Los Banos Field Sta. | Evap
Wind
Precip
Av Max
Av Min | 16.02
4056
.00
92.5
57.8 | 13.35
3156
.00
94.3
57.4 | 9.58
2687
.08
89.4
56.7 | 5.08
2082
1.17
77.4
49.3 | 1.19
1542
.87
60.5
39.2 | .46
1167
.06
46.1
31.8 | 1.53
1933
.72
54.0
32.4 | 3.63
2070
.04
62.9
34.2 | 6.06
3588
.98
66.0
39.1 | 9.61
3709
.33
74.0
44.1 | 11.27
4259
.00
77.0
46.8 | 14.64
5187
.36
85.9
52.7 | | Cl | 6895 | Pine Flat Dam | Evap
Wind
Precip
Av Max
Av Min | 12.07
721
.00
97.6
58.1 | 9.97
628
T
97.8
56.6 | 7.47
703
.20
93.2
58.4 | 4.23
681
1.53
79.4
51.1 | 1.40
631
3.96
63.0
41.3 | .88
701
.65
49.4
33.5 | 1.23
790
1.59
54.4
32.5 | 2.37
878
.03
61.8
32.6 | 3.43
991
2.77
64.1
36.6 | 5.34
914
1.13
72.4
43.1 | 7.32
867
1.12
78.8
47.5 | 10.05
916
.08
90.1
53.9 | | ₿6 | 7273 | Raymond 9 N | Evap
Wind
Precip
Av Max
Av Min | 11.99
579
.00
94.5
54.1 | 9.44E
532E
.00
96.7 M
57.9 M | 9.60E
482E
.49
94.0
57.1 | M
346
1.85
M
M | M
M
M
M | M
M
M
M | 1.78
467
2.12
53.7
31.0 | 2.49
435
.01
63.5
29.4 | M
M
M
M | M
M
M
M | 7.45
408
.90
77.0
39.9 | 8.07
696
.52
87.6
48.7 | | С3 | 8620 | Success Dam | Evap
Wind
Precip
Ay Max
Av Min | 14.20
1776
.00
94.6
62.1 | 12.83
1648
.21
94.5
62.8 | 9.12
1575
.45
90.6
63.6 | 5.18
1363
1.89
77.5
55.7 | 2.20
1266
2.28
63.6
45.0 | .79
1084
.30
49.0
34.2 | 1.52
1362
.89
55.2
34.7 | 3.18
1545
.34
62.9
36.9 | 4.34
1530
1.97
64.8
40.8 | 7.21
1674
1.10
72.6
47.3 | 9.90
1837
.86
78.7
50.8 | 12.02
1727
.12
89.3
58.0 | | C7 | 8755 | Taft KTKR Radio | Evap
Wind
Precip
Av Max
Av Min | 14.21
750
.00
94.0 M
65.2 M | 13.56
710
T
94.2
66.0 | 9.06
570
.56
88.4
63.3 | 5.40
570
.86
75.5
55.5 | 2.55
660
1.54
62.3
43.4 | 1.08
510
.08
47.6
31.9 | 1.93
1080
.68
54.7 M
34.0 M | 4.04
1150
.09
61.2
35.7 | 5,81
1710
.37
63.6
40.2 | 9.12
2000
.20
70.4
46.5 | 10.91
1740
.07
76.9
50.5 | 13.21
1560
.00
87.7
59.7 | | C2 | 8868 | Terminus Dam | Evap
Wind
Precip
Av Max
Av Min | 13.64
1268
.00
93.9
63.9 | 12.77
1445
.11
93.6
65.4 | 9.65
1621
.37
89.7
64.6 | 5.27
1474
1.52
76.9
56.0 | 2.11
1476
2.59
62.1
45.0 | .77
1237
.34
47.0
33.6 | 1.52
1634
.96
54.2
35.4 | 3.39
1802
.41
61.5
37.7 | 4.42
1756
2.41
63.2
40.8 | 6.25
1356
1.46
71.5
46.6 | 9.20
1581
1.50
77.4
51.0 | 12.19
1618
.05
87.8
58.1 | | со | 9145 | U. S. Cotton Field Sta. | Evap
Wind
Precip
Av Max
Av Min | 12.29
1156
.00
94.8
62.6 | 10.93
962
.03
93.8
61.5 | 7.31
793
.61
90.1
62.1 | 4.75
762
.99
76.7
53.6 | 1.70
668
1.10
62.6
43.9 | .62
586
.10
45.3
34.7 | 1.19
1028
.40
54.8
34.1 | 3.72
1161
.19
63.4
33.1 | 5.03
2104
.34
66.5
39.5 | 7.89
2443
.76
73.8
46.5 | 10.89
2841
.04
80.6
50.0 | 13.17
2673
.00
89.3
58.8 | | BD | 9565 | Westley | Evap
Wind
Precip
Av Max
Av Min | 9.10E
-
.00
91.2 M
53.7 M | 7.16
-
.00
91.4 M
54.4 M | м
-
м
м | м
-
м
м | M
-
1.64
M
M | .38
-
.07
M
M | 3.40
1.86
53.8 M
34.5 M | 3.62
-
.00
63.4 M
35.0 M | 5.52
-
.73
66.7 M
39.9 M | 7.29
-
.19
73.5 M
42.7 M | 8.21
-
.32
78.0 M
45.1 M | 9.46
-
.85
85.4 M
51.8 M | APPENDIX B SURFACE WATER FLOW ## TABLE OF CONTENTS | | | Page | |-----------------|---|-------| | ALPHABETIC | CAL INDEX TO TABLES | . 52 | | DRAINAGE E | BASIN INDEX TO DAILY MEAN DISCHARGE TABLES | . 53 | | INTRODUCTI | ION | . 55 | | Defin | nition of Terms | . 55 | | Surfa | ace Water Gaging Station Designation | • 55 | | EXPLANATIO | ON OF TABULAR DATA | . 56 | | Lakes | and Reservoirs | • 56 | | Daily | Mean Discharge | • 56 | | Daily | Mean Gage Height | • 56 | | Diver | sions | • 57 | | | LIST OF TABLES | | | Table
Number | | | | B-1 | Gaging Station Additions and Discontinuations | . 59 | | B-2 | Daily Inflow Millerton Lake | . 60 | | B-3 | Daily Content Millerton Lake | . 61 | | B-4 | Daily Mean Discharge | . 62 | | B-5 | Daily Mean Gage Height | . 116 | | B-6 | Diversions | . 143 | | B-7 | Diversions and Acreage IrrigatedEast Side Canals and Irrigation Districts | . 152 | | B-8 | Imports and Exports | . 152 | | B-9 | Deliveries from Central Valley Project Canals | . 153 | | | LIST OF PLATES | | | | (Bound at end of volume) | | | Plate
Number | | | B-1 Location of Surface Water Measurement Stations ## Page | | Daily
Mean
Discharge | Daily Mean
Gage Height
and
Crest Stages | |---|----------------------------|--| | Bear Creek below Bear Reservoir | 79 | | | near Catheys Valley | 78 | | | Big Creek Diversion near Fish Camp | 66
59 | | | Burns Creek below Burns Reservoir | 81 | | | at Hornitos | 80
106 | | | Chowchilla River near Raymond | 106 | 118 | | East Fork near Ahwahnee | 70 | | | Middle Fork near Nipinnawassee | 72
71 | | | Cross Creek below Lakeland Canal #2 | 100 | | | Delta-Mendota Canal near Tracy | 63
64 | | | Dry Creek near Modesto | 92 | 133 | | Elk Bayou near Tulare | 101 | İ | | Fresno River, Lewis Fork near Oakhurst | 67
102 | | | to Tule River | 103 | | | Hubbs-Miner Ditch at Porterville | 112
115 | | | Kings River, South Fork below Empire Weir #2 | 99 | | | Mariposa Bypass near Crane Ranch | 76 | | | Mariposa Creek near Catheys Valley | 74
75 | | | Maxwell Creek at Coulterville | 84 | | | Merced River at Cressey | 86
85 | 123
122 | | near Livingston | 85 | 124 | | North Fork near Coulterville | 83 | | | Miami Creek near Oakhurst | 68
60 | | | Daily Content | 61 | | | Orestimba Creek near Crows Landing | 87
77 | | | Owens Creek below Owens Reservoir | 59 | | | Poplar Ditch near Porterville | 111 | | | Porter Slough at Porterville | 107
109 | | | Porter Slough Ditch at Porterville |
108 | | | Rhodes-Fine Ditch near Porterville | 113 | 106 | | San Joaquin River at Crows Landing Bridge | 69 | 126 | | at Fremont Ford Bridge | | 121 | | below Friant | 62
88 | 117
128 | | at Grayson | 94 | 120 | | at Maze Road Bridge | | 136 | | near Mendota | 65 | 125 | | at Patterson Bridge | | 127 | | above Sand Slough near El Nido | 82 | 119
120 | | near Stevinson | 98 | 142 | | at West Stanislaus Irrigation District Intake | 0.7 | 129 | | Stanislaus River at Koetitz Ranch | 97 | 140
141 | | at Orange Blossom Bridge | 95 | 137 | | at Ripon | 96 | 139
138 | | Striped Rock Creek near Raymond | 73 | 133 | | Tulare Lake | 105 | 116 | | Tule River below Porterville | 103 | | | Tuolumne River at Hickman Bridge | 91 | 132 | | at La Grange Bridge | 89 | 130
134 | | at Roberts Ferry Bridge | 90 | 131 | | at Tuolumne City | 93 | 135 | | Vandalia Ditch near Porterville | 110
114 | | | | | | | | | <u>Page</u> | | DCTANG | | 2440 | | RSIONS Deliveries from Central Valley Project Canals | | 153 | | Dry Creek | | 149 | | | - | | |-------|--|-----| | DIVER | IONS | | | | eliveries from Central Valley Project Canals | 153 | | | ry Creek | 149 | | | ast Side Canals and Irrigation Districts | 152 | | | erced River | 147 | | | an Joaquin River | | | | Vernalis to Fremont Ford Bridge | 143 | | | Fremont Ford Bridge to Gravelly Ford | 145 | | | Gravelly Ford to Friant Dam | 146 | | | tanislaus River | 150 | | | ule River | | | | uolumne River | 148 | | | | | ## ALPHABETICAL INDEX TO TABLES | | <u>Page</u> | | | | | |--|-------------------------|--|--|--|--| | LAKES AND RESERVOIRS Millerton Lake, Daily Inflow Millerton Lake, Daily Content Tulare Lake, Daily Mean Gage Height | 61 | | | | | | GAGING STATION ADDITIONS AND DISCONTINUATIONS | 59 | | | | | | DRAINAGE BASIN INDEX TO DAILY MEAN DISCHARGE TABLES | | | | | | | SAN JOAQUIN RIVER BASIN | | | | | | | San Joaquin River | | | | | | | Daily Inflow Millerton Lake Daily Content Millerton Lake San Joaquin River below Friant Delta-Mendota Canal near Tracy Delta-Mendota Canal to Mendota Pool | 61
62
63 | | | | | | San Joaquin River near Mendota | . 65 | | | | | | Lewis Fork Fresno River near Oakhurst | 67
68 | | | | | | East Fork Chowchilla River near Ahwahnee | . 71
. 72 | | | | | | Striped Rock Creek near Raymond | . 74 | | | | | | Mariposa Creek below Mariposa Reservoir | . 76 | | | | | | Bear Creek Bear Creek near Catheys Valley | | | | | | | Burns Creek Burns Creek at Hornitos | | | | | | | San Joaquin River near Stevinson | . 59 | | | | | | North Fork Merced River near Coulterville Maxwell Creek at Coulterville Merced River below Snelling Merced River at Cressey | . 84
. 85 | | | | | | Orestimba Creek near Crows Landing | . 88 | | | | | | Tuolumne River Tuolumne River at La Grange Bridge Tuolumne River at Roberts Ferry Bridge Tuolumne River at Hickman Bridge Dry Creek near Modesto Tuolumne River at Hickman Bridge | . 90
. 91
. 92 | | | | | | Tuolumne River at Tuolumne City | . 94 | | | | | | Stanislaus River at Orange Blossom Bridge | . 96 | | | | | | TULARE LAKE BASIN | | | | | | | Kings River South Fork Kings River below Empire Weir #2 | . 99 | | | | | | Kaweah River Cross Creek below Lakeland Canal #2 | . 100 | | | | | | Friant-Kern Canal Delivery to Porter Slough | . 102 | | | | | | Tule River North Fork Tule River at Springville | . 104 | | | | | | Tule River Diversions Campbell-Moreland Ditch above Porterville | . 106 | | | | | | Porter Slough Ditch at Porterville Porter Slough near Porterville Vandalia Ditch near Porterville Poplar Ditch near Porterville | . 109
. 110
. 111 | | | | | | Hubbs-Miner Ditch at Porterville | . 113 | | | | | | Kern River near Bakersfield | . 115 | | | | | #### INTRODUCTION This appendix presents surface water data for the Water Year 1964 which is from October 1, 1963, to September 30, 1964. The data presented in this appendix consists of daily mean discharge, station locations, daily mean gage heights, and diversion quantities. Stream gaging station descriptions presented show the historic maximum discharge of record and the naximum discharge for the report year. Locations of the gaging stations and other important data on the Length of record and datum of gage are also presented. Quantities of daily mean discharge for most stations shown are computed by an electronic computer. The gage height data are fed into the computer simultaneously with rating and shift correction data. Daily mean discharge, total monthly acre-feet, and instantaneous maximum and minimum discharge are computed. The gage height data are extracted from the standard recorder chart by a semiautomatic chart-reading machine and out into machine language. The record for those stations affected by backwater conditions is not adaptable computation by machine methods and is computed manually by standard methods. Daily mean stage tables are presented for key stations on the major streams in the San Joaquin Valley. These daily mean stages are computed by the electronic computer, as mentioned above. The gage leights are computed to the nearest one-hundredth of a foot, and the major crests for the year are shown. Quantities of water diverted for use are shown as monthly total acre-feet and total acre-feet liverted for a certain reach of a stream. #### efinition of Terms A list of definition of terms as used herein follows: Second-foot or cubic foot per second is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second. Acre-foot is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons. <u>Drainage area</u> of a stream above a specific location is that area, measured in a horizontal plane, which is enclosed by a drainage divide. Unimpaired runoff is the flow that would occur naturally at a point in a stream if there were: 1) no upstream controls such as dams and reservoirs; (2) no artificial diversions or accretions; and (3) to changes in ground water storage resulting from development. Unimpaired flow is computed from measured tunoff by allowing for man-made changes in natural conditions. Water Year is the 12-month period from October 1 of any year through September 30 of the subsequent year and is designated by the calendar year in which it ends. #### urface Water Gaging Station Designation The index number for each gaging station is composed of a number which begins with an alphabetical letter designating the hydrographic area, followed by the first digit which indicates the main liver basin. The second digit refers to a tributary of the main river basin. The hydrographic area and the liver basin are outlined on Plate B-1. The remaining three digits are used to number stations in an upstream direction with the lowest number at or near the mouth. The digit 9, which is the third from the left, andicates that the station is a surface gravity diversion station. Each station is listed by name as well as machine index number. #### EXPLANATION OF TABULAR DATA The tabular data presented in this appendix are divided into the general categories of daily mean discharge, daily mean stage, and monthly diversions. The area to which these data pertain is shown as AreaIV on page iii and on Plate B-1. Table B-1 presents gaging station additions and discontinuations. #### Lakes and Reservoirs Two types of data are presented for lakes and reservoirs. Table B-2 presents inflow to Millerton Lake. Table B-3 presents the daily content of Millerton Lake in thousands of acre-feet. #### Daily Mean Discharge Presented in Table B-4 are records of daily mean discharge, gaging station location, period of record, maximum flow of record, maximum and minimum flow for the season, as well as the total flow in acre-feet for the 1963-64 water year. The streamflow tables are arranged, for each stream or stream system, in downstream order. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named after the stream and the nearest post office (Merced River at Cressey) or well-known landmark (San Joaquin River at Fremont Ford Bridge). Each stream gaging station has a stage-discharge relationship or rating developed. The rating gives the flow in second-feet for each gage height at the station. When flows at a single station occur in excess of 140 percent of the highest measurement on the rating, the computed daily mean discharges from the electronic computer are shown as estimated. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed at the channel is of loose shifting sand, or where aquatic growth builds up in the channel changing the flow regimen. Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the daily mean discharge. All streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. Since the results are affected by inherent inaccuracies in the procedures and equipment used, it becomes necessary to establish limits of accuracy for which the data are reported. The following is a listing of significant figures used in reporting streamflow data; - 1. Daily flows second-feet - 0.0 9.9 Tenths 10 - 99 2 significant figures 100 - up 3 significant figures - 2. Means second-feet 0.0 - 99.9 Tenths 100 - 999 3 significant figures 1000 - above 4 significant figures The water year totals are reported to a maximum of four significant figures. #### Daily Mean Gage Heights
Presented in Table B-5 are records of daily mean gage heights for key stations on major streams in the San Joaquin Valley for the 1963-64 water year. At the bottom of the stage tables are shown the major river crests occurring for the 1963-64 water year. The table also shows the location of the station, maximum gage height of record, period of record, and datum of gage. The elevation of water surface at the gaging station is obtained by adding the gage height reading to the elevation of the gage datum presented in each table. Gage height for stage tables are computed from recorder charts and are reported to one-hundredth of a foot. Of the 26 stations for which daily mean gage heights are presented in this report, 13 have computed daily mean discharge. These data are included in the streamflow tables. #### Diversions Presented in Table B-6 are the amounts of water diverted for irrigation during the period October 1, 1963, through September 30, 1964. The amounts of water diverted by pumping were determined by rating the capacity of each diversion pumping plant and collecting data on hours of operation. The amounts of water diverted by gravity (indicated by "Gravity" in column headed "Number and Size of Pump") were determined either by calibrating suitable measuring devices or by rating canals in a manner similar to that used to rate streamflow stations. Because of the intermittent operation of most diversion facilities, the monthly diversion values are reported in acre-feet to three significant figures. The totals for individual water users and stream reaches are reported to four significant figures. Table B-7 shows the amounts of water diverted by east side canals and the several east side irrigation districts that divert water from the San Joaquin, Merced, Tuolumne, and Stanislaus Rivers. Presented in Table B-8 are the amounts of water imported to the San Joaquin Valley via the Delta-Mendota Canal and the amount of water exported from the San Joaquin Valley via the Hetch Hetchy Aqueduct to the city and county of San Francisco. Presented in Table B-9 are the deliveries from the Central Valley Project canals. The data presented in Tables B-7, B-8, and B-9 were supplied by other agencies, are published as received, and are not necessarily rounded to the criteria which are used for data computed by the Department of Water Resources. ## TABLE B-1 # GAGING STATION ADDITIONS AND DISCONTINUATIONS #### ADDITIONAL STATIONS Panoche Drain near Dos Palos (Under a cooperative agreement with the Panoche Drainage District this station was reactivated on September 27, 1964.) # DISCONTINUED STATIONS Panoche Drain near Dos Palos (Station discontinued July 2, 1963.) ## PUBLICATION DISCONTINUED Burkhardt Drain near Grayson DAILY INFLOW (IN CUBIC FEET PER SECOND) | (v | WATER YEAR | STATION NO. | STATION NAME | |----|------------|-------------|--------------------------| | | 1964 | 871121 | MILLERTON LAKE AT FRIANT | | DAY | ост. | NOV, | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | D | |---------|-------|--------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|----| | , | 1656 | 1226 | 1456 | 802 | 1077 | 806 | 1717 | 1752 | 2545 | 1744 | 1814 | 1617 | T | | 2 | 838 | 1259 | 2103 | 900 | 959 | 1143 | 1760 | 1676 | 2473 | 1763 | 1714 | 1994 | | | 3 | 787 | 1240 | 1899 | 820 | 1094 | 1115 | 1789 | 1719 | 2324 | 1778 | 1603 | 1979 | | | 4 | 920 | 1214 | 1973 | 711 | 973 | 1056 | 1751 | 1673 | 2393 | 1757 | 1874 | 2053 | | | 5 | 374 | 1447 | 2027 | 770 | 1034 | 995 | 1360 | 1781 | 2423 | 1767 | 1812 | 1982 | | | 6 | 809 | 1855 | 1983 | 963 | 836 | 999 | 1472 | 1726 | 2430 | 1735 | 1861 | 1900 | | | 7 | 949 | 1693 | 1847 | 657 | 1010 | 721 | 1485 | 1738 | 2295 | 1821 | 1815 | 1853 | | | 8 | 781 | 1692 | 1711 | 850 | 943 | 551 | 1247 | 1730 | 2464 | 1721 | 1823 | 1862 | | | 9 | 827 | 1694 | 1765 | 936 | 867 | 1192 | 1308 | 1691 | 2500 | 1629 | 1796 | 1957 | | | 10 | 780 | 1697 | 1703 | 978 | 840 | 1165 | 1411 | 1740 | 2399 | 1737 | 1931 | 1982 | | | 11 | 1138 | 1685 | 1494 | 488 | 950 | 864 | 1741 | 1729 | 2400 | 1662 | 1842 | 1954 | ١, | | 12 | 609 | 1390 | 1689 | 452 | 908 | 1266 | 1735 | 1690 | 2461 | 1852 | 1881 | 1964 | 11 | | 13 | 694 | 1102 | 1667 | 689 | 1069 | 900 | 1742 | 1731 | 2503 | 1759 | 1911 | 1868 | | | 14 | 831 | 1615 | 1484 | 768 | 826 | 695 | 1703 | 1716 | 2417 | 1796 | 1992 | 1793 | | | 15 | 722 | 1754 | 1386 | 710 | 808 | 529 | 1731 | 1763 | 2458 | 1773 | 2114 | 1800 | | | 16 | 741 | 1883 | 1339 | 735 | 538 | 906 | 1661 | 1692 | 2446 | 1799 | 1955 | 1655 | | | 17 | 942 | 1921 | 1526 | 735 | 899 | 839 | 1758 | 1700 | 2349 | 1811 | 1971 | 1620 | | | 18 | 894 | 1750 | 1570 | 931 | 1115 | 1147 | 1705 | 1699 | 2473 | 1747 | 2096 | 1551 | | | 19 | 804 | 2045 | 1543 | 817 | 982 | 1247 | 1766 | 1711 | 2401 | 1769 | 2085 | 1324 | | | 20 | 865 | 2034 | 1629 | 1343 | 947 | 1367 | 1720 | 1673 | 2380 | 1766 | 2045 | 1409 | | | 21 | 1529 | 2108 | 1472 | 1372 | 999 | 1689 | 1700 | 1729 | 2500 | 1677 | 1990 | 1475 | | | 22 | 1194 | 1890 | 1424 | 1063 | 936 | 1719 | 1726 | 1675 | 2466 | 1777 | 1903 | 1439 | | | 23 | 1484 | 1966 | 1528 | 998 | 999 | 1640 | 1721 | 1697 | 2457 | 1765 | 2074 | 1782 | | | 24 | 1316 | 1984 | 1536 | 1085 | 940 | 1797 | 1667 | 1729 | 2538 | 1744 | 1825 | 1612 | | | 25 | 1222 | 1994 | 1097 | 784 | 939 | 1753 | 1666 | 1697 | 2484 | 1739 | 2047 | 1511 | | | 26 | 1344 | 2013 | 1354 | 585 | 845 | 1737 | 1421 b | 1812 | 2416 | 1730 | 2030 | 1367 | | | 27 | 745 a | 2035 | 1473 | 658 | 927 | 1109 | 1723 | 2740 | 2494 | 1802 | 2070 | 1452 | | | 28 | 1302 | 1979 | 1501 | 1051 | 859 | 1423 | 1734 | 2469 | 2464 | 1728 | 1982 | 1410 | | | 29 | 1352 | 1931 | 1393 | 921 | 504 | 1383 | 1704 | 2749 | 2076 | 1781 | 2037 | 1320 | | | 30 | 1352 | 1071 | 1023 | 860 | | 1464 | 1713 | 2451 | 1781 | 1760 | 1863 | 1535 | 17 | | 31 | 1421 | | 740 | 940 | | 1827 | | 2355 | | 1746 | 1899 | | 3 | | MEAN | 1007 | 1706 | 1559 | 851 | 918 | 1195 | 1645 | 1853 | 2407 | 1756 | 1931 | 1707 | M | | MAX. | 1656 | 2108 | 2103 | 1372 | 1115 | 1827 | 1789 | 2749 | 2545 | 1852 | 2114 | 2053 | N | | MIN. | 374 | 1071 | 740 | 452 | 504 | 529 | 1247 | 1673 | 1781 | 1629 | 1714 | 1320 | ٨ | | AC. FT. | 61990 | 101488 | 95871 | 52308 | 52806 | 73476 | 97741 | 113917 | 143226 | 107970 | 116721 | 101593 | A | E - ESTIMATED NR - NO RECORD * - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * a - 25-hour day b - 23-hour day | MEAN | | MAXIMI | J M | | | | MINIM | J M | | $\overline{}$ | |-----------|-----------|----------|-----|-----|------|-----------|----------|-----|-----|---------------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 1545 | | | | | , | | | | |) | TOTAL ACRE FEET 1121107 | | LOCATION | | | MAXIMUM DISCHARGE | | | PERIOD OF RECORD | | | DATUM OF GAGE | | | |----------|-----------|-------------------|-----------------------|-------------------|------|-------------|------------------|--------|----|---------------|-------|--| | | | 1/4 SEC. T. B. R. | SEC. T. B.R. DF RECOR | | | DISCHARGE | GAGE HEIGHT | PERIOD | | 2ERO
ON | REF. | | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | | 37 00 00 | 119 42 10 | SW 5 11S 21E | | | | OCT 41-DATE | | 1941 | | 0.00 | USCGS | | Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Inflow to Friant Reservoir takes into account change in storage, release, spill, precipitation, and evaporation, and is representative of the natural flow which would pass the dam site if the dam had not been constructed. Figures shown under total discharge are computed inflow to the reservoir. Period of record for computed inflow is shown under period of record for discharge. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi. ## TABLE B-3 #### DAILY CONTENT IN THOUSANDS OF ACRE-FEET) WATER YEAR STATION NO. STATION NAME 1964 B71100 MILLERTON LAKE AT FRIANT | AY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|----------|---------|---------|-------|-------|---------|---------|-------|---------|--------|----------------|----------------|-----| | - | | | | | | 216 | | 212 7 | | 240.3 | 220.0 | 127.1 | 1 | | 11 | 203.5 | 157 • 1 | 239 • 7 | 330.7 | 372.2 | 315+3 | 283.9 | 342.7 | 404.7 | 368.1 | 228.0 | 137.1
137.5 | 1 1 | | 2 | 200.6 | 157.8 | 243.7 | 332.4 | 372.2 | 313.1 | 286 • 4 | 344.7 | 406.6 | 364.6 | 222.9
217.9 | 138.1 | 3 | | 3 | 197.6 | 158 • 6 | 247.4 | 333.9 | 372.4 | 310.9 | 289.1 | 346.7 | 408 • 2 | 361.6 | | 139.1 | | | 4 | 194.9 | 159.8 | 251.2 | 335.2 | 372.5 | 308.3 | 291.8 | 348.5 | 409.9 | 359.0 | 213.0 | 140.2 | 4 | | S | 190•2 | 161.7 | 255.1 | 336.6 | 372.5 | 305 • 4 | 293.6 | 350•5 | 411.7 | 355.9 | 207.9 | 140.2 | 5 | | 6 | 186.4 | 164.4 | 258•9 | 338.4 | 372.0 | 302.6 | 295.7 | 352.7 | 413.3 | 352.1 | 202.8 | 140.8 | 6 | | 7 | 182.8 | 166.8 | 262.4 | 339.6 | 371.5 | 299.5 | 297.7 | 355.2 | 414.0 | 348.0 | 197.8 | 141.3 | 7 | | 8 | 179.4 | 169.1 | 265.7 | 341.2 | 370.3 | 295.9 | 299.2 | 357.7 | 414.5 | 343.4 | 193.5 | 141.5 | 8 | | 9 | 176.2 | 171.4 | 269.1 | 342.9 | 368.7 | 293.4 | 300.8 | 360.2 | 415.0 | 338.4 | 188.8 | 142.2 | 9 | | 0 | 173•2 | 173.7 | 272•3 | 344.7 | 367.2 | 290.7 | 302.6 | 362.8 | 414.9 | 333.8 | 184.1 | 143.6 | 10 | | 11 | 171.2 | 176.0 | 275.2 | 345.6 | 366.0 | 287.4 | 305.0 | 365.2 | 414.4 | 329.5 | 179.2 | 145.1 | 11 | | 12 | 168.5 | 177.6 | 278.4 | 346.3 | 364.5 | 285.1 | 307.3 | 367.4 | 414.1 | 325.2 | 174.3 | 147.2 | 12 | | 13 | 166.2 | 178.5 | 281.6 | 347.6 | 363.1 | 282.5 | 309.4 | 369.5 | 414.9 | 320.3 | 169.5 | 149 · I | 13 | | 14 | 164.3 | 180.3 | 284.4 | 349.0 | 361.3 | 279.9 | 311.3 | 371.5 | 415.0 | 315.4 | 165.2
 150.9 | 14 | | 5 | 162.3 | 182.8 | 287.1 | 350.3 | 359.4 | 277.6 | 313.0 | 373.7 | 414.2 | 310.3 | 161.9 | 152.5 | 15 | | | 160.5 | 185.9 | 289.6 | 351.6 | 356.6 | 275 • 7 | 314.4 | 375•7 | 413.0 | 305.4 | 158.9 | 153.9 | 16 | | 16 | 159.7 | 189.4 | 292.5 | 353.0 | 354.3 | 273.7 | 316.0 | 377.5 | 411.1 | 301.1 | 156.0 | 155.3 | 17 | | 7 8 | 158.9 | 192.6 | 295.6 | 354.7 | 352.2 | 272.3 | 317.6 | 379.2 | 408.9 | 297.1 | 153.4 | 156.8 | 18 | | 9 | 157.8 | 196.5 | 298.5 | 356.2 | 349.5 | 271.0 | 319.3 | 380.8 | 406.3 | 292.9 | 150.7 | 157.9 | 19 | | 10 | 156.6 | 200.5 | 301.6 | 358.7 | 346.5 | 270.0 | 321.1 | 382.3 | 403.7 | 288.5 | 149.2 | 159.1 | 20 | | :0 | 190.0 | 200.5 | 301.0 | 330•7 | 340.5 | 210.0 | 36141 | 30243 | 10501 | 2000 | | | 20 | | 21 | 156.7 | 204.5 | 304.4 | 361.3 | 343.7 | 269.7 | 323.0 | 383.9 | 401+0 | 283.9 | 148.0 | 160.3 | 21 | | !2 | 156.1 | 208.1 | 307.1 | 363.3 | 340.7 | 269.4 | 325.0 | 385.5 | 397.9 | 279.4 | 147.0 | 161.4 | 22 | | 133 | 156.2 | 211.9 | 310.1 | 365.1 | 337.7 | 269.3 | 326.9 | 387.0 | 394.4 | 274.6 | 146.1 | 163.2 | 23 | | 14 | 155.8 | 215.8 | 313.0 | 367.2 | 334.4 | 270.1 | 328.9 | 388.4 | 390.8 | 269.9 | 144.4 | 164.6 | 24 | | 5 | 155.9 | 219.6 | 315.0 | 368.6 | 331.1 | 271.6 | 331.1 | 389•4 | 387.0 | 265.4 | 143.1 | 166.1 | 25 | | 6 | 156.2 | 223.5 | 317.6 | 369.7 | 327.8 | 273.3 | 332.6 | 390.5 | 384.3 | 260.3 | 141.7 | 167.3 | 26 | | 7 | 155.3 | 227.4 | 320.4 | 370.9 | 325.1 | 274.3 | 334.7 | 393.2 | 381.9 | 254.9 | 140.4 | 168.7 | 27 | | 8 | 155.6 | 231 • 2 | 323.3 | 371.6 | 322.0 | 276.0 | 336.7 | 395.4 | 379.4 | 249.2 | 139.2 | 169.9 | 28 | | 9 | 155.9 | 234.9 | 326.0 | 370.2 | 318.3 | 277.7 | 338.7 | 398.2 | 375.9 | 243.6 | 138.4 | 170.9 | 29 | | o | 156.2 | 236.9 | 327.9 | 369.4 | 31003 | 279.4 | 340.7 | 400.5 | 371.9 | 238.1 | 137.6 | 172.3 | 30 | | ī | 156.7 | 230 1 | 329.2 | 370.8 | | 281.7 | | 402.5 | 2.00. | 232.8 | 137.3 | | 31 | | | | | | | | | | | | | | | | | | hly | | | | | | | | | | | | | | nan | ge -48.3 | +80.2 | +92.3 | +41.6 | -52.5 | -36.6 | +59.0 | +61.8 | -30.6 | -139.1 | -95.5 | +35.0 | | | (! | | | | | | | | | | | | | | - ESTIMATED - NO RECORD - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW - E AND * | MEAN | | MAXIMU | M | | | | | MINIMU | J M | | | |-----------|-----------|----------|-----|-----|------|-------|-------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MQ. | DAY | TIME | DISCH | IARGE | GAGE HT. | MO. | DAY | TIME | TOTAL ACRE FEET | | LOCATION | | | MAXIMUM DISCHARGE | | | PERIOD O | DATUM OF GAGE | | | | | |----|----------|-----------|------------------|------------------------|----------|-----------|----------------|---------------|------|------|------|-------| | | TITUOE | LONGITUDE | 1/4 SEC. T. & R. | SEC. T. & R. OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | LA | THOOL | LONGITUDE | M.D.8.8M, | C.F.S. | GAGE HT. | DATE | o to or mittee | ONLY | FROM | то | GAGE | DATUM | | 37 | 00 00 | 119 42 10 | SW 5 11S 21E | | | | OCT 41-DATE | | 1941 | | 0.00 | uscgs | Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi. # TABLE B-4 # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | | |------------|-------------|--------------------------------|--| | 1964 | 807885 | SAN JOAQUIN RIVER BELOW FRIANT | | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | D | |---------|------|------|------|------|------|------|------|------|------|-------|--------------|------------|-----| | 1 | 90 | 62 * | 51 | 51 | 49 | 91 | 76 | 113 | 126 | 151 | 166 | 134 | | | 2 | 90 | 62 | 51 | 51 | 49 | 91 | 70 | 118 | 122 | 151 | 166 | 134 | | | 3 | 88 | 62 | 52 | 51 | 49 | 88 | 73 | 120 | 118 | 151 | 166 | 134 | | | 4 | 68 | 61 | 52 | 51 | 49 | 85 | 78 | 118 | 118 | 151 | 161 | 132 | | | 5 | 88 | 62 | 52 | 50 | 48 | 84 | 78 | 118 | 118 | 149 | 176 | 126 | | | 6 | 88 | 62 | 52 | 50 | 52 | 84 | 75 | 115 | 118 | 151 | 176 | 118 | | | 7 | 85 | 62 | 52 | 50 | 57 | 84 | 70 | 111 | 116 | 146 | 176 | 116 | | | 8 | 84 | 62 | 51 | 50 | 56 | 64 | 70 | 111 | 122 | 151 | 174 | 118 | | | 9 | 82 | 62 | 51 | 51 | 57 | 84 | 76 | 113 | 126 | 157 | 174 | 118 | | | 10 | 82 | 61 | 51 | 51 | 56 | 80 | 84 | 113 | 120 | 164 | 176 | 116 | | | 11 | 78 | 61 | 51 | 51 | 56 | 76 | 66 | 113 | 117 | 169 | 176 | 118 | 1 | | 12 | 70 | 61 | 51 | 51 | 56 | 74 | 90 | 113 | 117 | 169 | 178 | 120 | 1 | | 13 | 70 | 61 | 51 | 51 | 55 | 70 | 90 | 113 | 115 | 166 | 174 | 120 | 1 | | 14 | 70 | 62 | 51 | 50 | 58 | 69 | 91 | 115 | 115 | 166 | 169 | 120 | | | 15 | 69 | 63 | 51 | 50 | 63 | 69 | 96 | 117 | 117 | 166 | 169 | 122 | 1 | | 16 | 70 | 62 | 50 | 50 | 64 | 69 | 111 | 120 | 117 | 166 | 169 | 122 | | | 17 | 70 | 62 | 50 | 49 | 67 | 69 | 115 | 120 | 122 | 166 | 169 | 122
122 | | | 16 | 69 | 61 | 50 | 52 | 70 | 69 | 115 | 120 | 126 | 162 | 166
164 * | 122 | | | 19 | 68 | 61 | 50 | 54 | 73 | 69 | 117 | 122 | 126 | 160 | 164 | 122 | | | 20 | 68 | 60 | 51 | 54 | 73 | 70 | 117 | 122 | 124 | 160 | 164 | 122 | | | 21 | 70 | 54 | 51 | 57 | 73 | 70 | 117 | 122 | 124 | 160 | 164 | 122 | | | 22 | 69 | 54 | 50 | 55 | 73 | 73 | 118 | 124 | 132 | 160 | 164 | 115 | | | 23 | 66 | 54 | 50 | 50 | 73 | 67 | 117 | 124 | 138 | 164 | 164 | 108 | | | 24 | 68 * | 53 | 49 | 51 | 75 | 60 | 113 | 124 | 136 | 171 | 164
164 | 108 | | | 25 | 68 | 53 | 49 | 51 | 74 | 56 | 109 | 124 | 140 | 171 | 164 | 106 | | | 26 | 68 | 52 * | 50 | 51 | 73 | 58 | 101 | 124 | 153 | 169 | 164 | 106 | 1 | | 27 | 67 | 51 | 50 | 52 | 87 | 61 | 102 | 124 | 153 | 169 | 164 * | 109 | 1 | | 26 | 68 | 51 | 50 | 52 | 93 * | 65 | 102 | 126 | 153 | 166 | 146 | 109 | 1 | | 29 | 68 | 52 | 51 | 51 | 93 | 67 | 102 | 126 | 153 | 166 | 136 | 109 | 1 | | 30 | 68 | 52 | 51 | 51 | | 68 | 109 | 126 | 153 | 169 * | 136 | 109 | * | | 31 | 64 | 2. | 51 | 50 | | 75 | | 126 | | 166 | 136 | | - | | MEAN | 74.6 | 58.6 | 50.7 | 51.3 | 64.5 | 73.6 | 95.7 | 119 | 128 | 161 | 166 | 119 | M | | MAX. | 90.0 | 63.0 | 52.0 | 57.0 | 93.0 | 91.0 | 120 | 126 | 153 | 171 | 181 | 134 | M | | MIN. | 64.0 | 51.0 | 49.0 | 49.0 | 48.0 | 58.0 | 70.0 | 111 | 115 | 146 | 136 | 108 | ٨ | | AC. FT. | 4590 | 3490 | 3120 | 3150 | 3710 | 4520 | 5700 | 7330 | 7610 | 9920 | 10190 | 7070 |) A | E - ESTIMATED NR -- NO RECORD -- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | м | | | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 97.0 | 183 | 2.62 | 8 | 10 | 0800 | | | <u></u> | | | | | | | MINIM | JM_ | | $\overline{}$ | |-----------|----------|-----|-----|---------------| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 48 | 1.89 | 2 | 5 | | | | | | | | | TOTAL | |-----------| | ACRE FEET | | 70400 | | | LOCATION | 1 | MA | XIMUM DISCH | IARGE | PERIOD O | F RECORD | DATUM OF GAO | | | | |----------|-----------|------------------|--------|-------------|----------|-------------|-------------|--------------|----|--------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECOR | 0 | DISCHARGE | GAGE NEIGHT | PERIOD | | ZERO | REF. | | LATITUDE | LUNGITUDE | M.O.8.&M. | CFS | GAGE HT. | OATE | DISCHARGE | ONLY | FROM | то | GAGE | DATUM | | 36 59 04 | 119 43 24 | SW7 11S 21E | 77,200 | 23.8 | 12/11/37 | OCT 07-DATE | | 1938 | | 294.00 | USGS | Station located 1 mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi. # AILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 895925 DELTA-MENDOTA CANAL NEAR TRACY | PAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |--------|--------|-------|------|-------|-------|--------|--------------|--------|--------|--------|--------|--------|-------| | 1 | 1666 | 644 | 105 | 141 | 1004 | 3291 | 1795 | 3302 | 3071 | 4353 | 4622 | 2285 | 1 | | 2 | 1669 | 645 | 105 | 141 | 1004 | 2675 | 1828 | 3299 | 3069 | 4356 | 4592 | 2288 | 2 | | 3 | 1671 | 646 | 105 | 141 | 934 | 2751 | 1623 | 3301 | 3064 | 4351 | 4585 | 2057 | 3 | | 4 | 1904 | 538 | 106 | 142 | 862 | 2873 | 1822 | 3278 | 3195 | 4280 | 4446 | 2059 | 4 | | 5 | 2278 | 467 | 106 | 142 | 863 | 2907 | 1895 | 2997 | 3348 | 4291 | 4450 | 1926 | 5 | | 6 | 3314 | 287 | 106 | 141 | 865 | 2857 | 1931 | 2994 | 3505 | 4309 | 4341 | 1956 | 6 | | 7 | 2276 | 286 | 105 | 141 | 863 | 2768 | 2181 | 2730 | 3507 | 4174 | 4333 | 1959 | 7 | | 8 | 2280 | 286 | 105 | 142 | 932 | 2635 | 2315 | 2831 | 3501 | 4157 | 4426 | 1957 | 8 | | 9 | 2280 | 321 | 105 | 140 | 1039 | 2306 | 2321 | 2833 | 3514 | 4151 | 4792 | 1955 | 9 | | 10 | 2281 | 321 | 105 | 140 | 1040 | 2214 | 2320 | 3061 | 3414 | 4143 | 4394 | 2020 | 10 | | 11 | 2286 | 322 | 140 | 206 | 1103 | 2217 | 2880 | 3064 | 3313 | 4148 | 4419 | 2086 | 11 | | 12 | 2277 | 322 | 104 | 1218 | 1335 | 2128 | 4025 | 3068 | 3313 | 4152 | 4416 | 1925 | 12 | | 13 | 3313 | 429 | 104 | 631 | 1335 | 1916 | 3098 | 3198 | 3311 | 4216 | 4413 | 1824 | 13 | | 14 | 2279 | 430 | 140 | 618 | 1396 | 1912 | 3102 | 3220 | 3110 | 4300 | 4303 | 1822 | 14 | | 15 | 2281 | 574 | 140 | 635 | 1473 | 1913 | 3365 | 3225 | 3372 | 4338 | 4309 | 1820 | 15 | | 16 | 2280 | 681 | 105 | 420 | 1472 | 1912 | 3537 | 3207 | 3366 | 4435 | 4243 | 2123 | 16 | | 17 | 2277 | 681 | 105 | 421 | 1405 | 1914 | 3700 | 3198 | 3365 | 4443 | 4184 | 2127 | 17 | | 118 | 2279 | 681 | 105 | 422 | 1782 | 1908 | 3700 | 3203 | 3611 | 4532 | 3867 | 2124 | 18 | | 19 | 2277 | 646 | 105 | 423 | 1846 | 1915 | 3765 | 2991 | 3667 | 4655 | 3849 | 2120 | 19 | | 20 | 3320 | 647 | 105 | 425 | 1907 | 1980 | 3754 | 2994 | 3856 | 4640 | 3853 | 2121 | 20 | | 21 | 2276 | 646 | 106 | 497 | 2105 | 2197 | 3822 | 3062 | 4016 |
4653 | 3958 | 2122 | 21 | | 22 | 2251 | 608 | 105 | 497 | 2106 | 2197 | 3363 | 3161 | 3835 | 4633 | 3953 | 2178 | 22 | | 23 | 1898 | 608 | 121 | 562 | 2106 | 1849 | 3317 | 3288 | 3667 | 4628 | 4160 | 2876 | 23 | | 24 | 1557 | 609 | 105 | 639 | 2111 | 1508 | 3343 | 3292 | 3833 | 4641 | 3691 | 3121 | 24 | | 25 | 1560 | 608 | 105 | 1190 | 2313 | 1503 | 32 93 | 3262 | 4221 | 4601 | 3906 | 2991 | 25 | | 26 | 1095 | 572 | 104 | 639 | 2264 | 1464 | 3291 b | 3146 | 4319 | 4605 | 3709 | 3003 | 26 | | 27 | 1053 a | 572 | 104 | 1183 | 2263 | 1464 | 3295 | 2944 | 4364 | 4601 | 3561 | 2996 | 27 | | 28 | 1027 | 212 | 104 | 1167 | 2264 | 1395 | 3172 | 2862 | 4442 | 4686 | 3411 | 2995 | 28 | | 29 | 928 | 104 | 104 | 1185 | 2266 | 1395 | 3173 | 2810 | 4355 | 4696 | 3072 | 2859 | 29 | | 30 | 928 | 105 | 104 | 934 | | 1398 | 3170 | 2910 | 4363 | 4709 | 2981 | 2790 | 30 | | 31 | 789 | | 105 | 934 | | 1723 | | 3075 | | 4577 | 2591 | | 31 | | AN | 1995 | 483 | 109 | 524 | 1526 | 2100 | 2947 | 3091 | 3636 | 4434 | 4060 | 2283 | MEAN | | AX. | 3320 | 681 | 140 | 1218 | 2313 | 3291 | 4025 | 3302 | 4442 | 4709 | 4792 | 3121 | MAX. | | UN. | 789 | 104 | 104 | 140 | 862 | 1395 | 1795 | 2730 | 3064 | 4143 | 2591 | 1820 | MIN. | | :. FT. | 122765 | 28756 | 6690 | 32245 | 87784 | 129134 | 175059 | 190028 | 216371 | 272636 | 249620 | 135842 | AC.FT | - ESTIMATED DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW E AND * 25-hour day 23-hour day MEAN 2266 MAXIMUM GAGE HT. MO. DAY TIME DISCHARGE MINIMUM GAGE HT. MO. DAY TIME DISCHARGE TOTAL ACRE FEET 1646930 | - | | LOCATION | v | MAXIMUM DISCHARGE | | | PERIOD O | F RECORD | DATUM OF GAGE | | | | |---|----------|-----------|-------------------|-------------------|-----------|------|-------------|-------------|---------------|------|------------|---------------| | | LATITUDE | LONGITUDE | 1/4 SEC. T. B. R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | | RIOD | ZERO
ON | REF.
DATUM | | | | | M. D. B. & M. | C.F. S. | GAGE HT. | DATE | | ONLY | FROM | 70 | GAGE | DATOM | | | 37 47 45 | 121 35 05 | SW31 1S 4E | | | | JUN 51-DATE | | 1951 | | 0.00 | USGS | Station located at Tracy Pumping Plant at intake to canal, 6 mi. SE of Byron, 10 mi. NW of Tracy. Discharge computed from records of operation of pumps. Water is diverted from Sacramento-San Joaquin Delta by way of Old River and a dredged channel to the Tracy Pumping Plant where it is lifted about 200 ft. into canal. Records furn. by U.S.B.R. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 800770 DELTA-MENDOTA CANAL TO MENDOTA POOL | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | D/ | |---------|-------|-------|------|-------|-------|-------|--------|--------|--------|--------|--------|-------|-----| | 1 | 1327 | 550 | 0.0 | 0.0 | 632 | 1907 | 1131 | 2212 | 2127 | 2718 | 2821 | 1511 | | | 2 | 1180 | 450 | 0.0 | 0.0 | 632 | 2001 | 1224 | 2299 | 2114 | 2717 | 2823 | 1534 | | | 3 | 1182 | 450 | 0.0 | 0.0 | 626 | 1948 | 1212 | 2214 | 2110 | 2688 | 2817 | 1550 | | | 4 | 1223 | 425 | 0.0 | 0.0 | 517 | 1965 | 1340 | 2277 | 2106 | 2657 | 2798 | 1483 | | | 5 | 1271 | 370 | 0.0 | 0.0 | 507 | 2124 | 1316 | 2174 | 2198 | 2634 | 2776 | 1482 | 13 | | 6 | 1344 | 250 | 0.0 | 0.0 | 472 | 2136 | 1311 | 1936 | 2354 | 2683 | 2737 | 1459 | | | 7 | 1374 | 255 | 0.0 | 0.0 | 471 | 2068 | 1537 | 1820 | 2319 | 2675 | 2696 | 1472 | | | 8 | 1359 | 245 | 0.0 | 0.0 | 471 | 1864 | 1692 | 1890 | 2345 | 2637 | 2739 | 1465 | | | , i | 1490 | 225 | 0.0 | 0.0 | 650 | 1730 | 1739 | 1914 | 2396 | 2593 | 2857 | 1400 | 100 | | 10 | 1489 | 225 | 0.0 | 0.0 | 650 | 1459 | 1728 | 2100 | 2391 | 2615 | 2907 | 1400 | 1 | | ,, | 1346 | 225 | 0.0 | 0.0 | 709 | 1448 | 2011 | 2079 | 2351 | 2587 | 2796 | 1387 | 1 | | 12 | 1152 | 230 | 0.0 | 652 | 912 | 1406 | 2388 | 2119 | 2279 | 2616 | 2811 | 1294 | 1 | | 13 | 1173 | 350 | 0.0 | 508 | 895 | 1168 | 2235 | 2154 | 2272 | 2608 | 2810 | 1197 | 1 | | 14 | 1065 | 364 | 0.0 | 447 | 866 | 1182 | 2209 | 2128 | 2180 | 2716 | 2798 | 1219 | 1 | | 15 | 1039 | 351 | 0.0 | 466 | 1042 | 1210 | 2341 | 2185 | 2230 | 2742 | 2790 | 1246 | 1 | | 16 | 1136 | 466 | 0.0 | 201 | 1042 | 1217 | 2398 | 2230 | 2370 | 2798 | 2780 | 1571 | 1 | | 17 | 1209 | 465 | 0.0 | 193 | 1017 | 1184 | 2627 | 2246 | 2392 | 2750 | 2767 | 1516 | 1 | | 18 | 1154 | 447 | 0.0 | 193 | 1154 | 1115 | 2617 | 2259 | 2427 | 2786 | 2762 | 1488 | 1 | | 19 | 1077 | 453 | 0.0 | 193 | 1257 | 1165 | 2630 | 2189 | 2464 | 2808 | 2563 | 1530 | 1 | | 20 | 1039 | 468 | 0.0 | 177 | 1281 | 1178 | 2627 | 2096 | 2660 | 2831 | 2481 | 1532 | 2 | | 21 | 1073 | 456 | 0.0 | 216 | 1524 | 1473 | 2602 | 2118 | 2638 | 2860 | 2495 | 1530 | 2 | | 22 | 1055 | 451 | 0.0 | 229 | 1519 | 1375 | 2348 | 2148 | 2709 | 2851 | 2544 | 1532 | 2 | | 23 | 937 | 383 | 0.0 | 352 | 1496 | 1275 | 2185 | 2282 | 2648 | 2866 | 2687 | 1685 | 2 | | 24 | 815 | 383 | 0.0 | 400 | 1509 | 918 | 2211 | 2263 | 2628 | 2852 | 2611 | 1820 | 2 | | 25 | 805 | 375 | 0.0 | 575 | 1617 | 972 | 2198 * | 2289 | 2555 | 2845 | 2545 | 1780 | 2 | | 26 | 700 | 387 | 0.0 | 575 | 1635 | 975 | 2189 | 2195 | 2643 | 2844 | 2560 | 1763 | 2 | | 27 | 700 * | 357 | 0.0 | 744 | 1624 | 956 | 2110 | 1999 | 2704 | 2836 | 2481 | 1660 | 2 | | 28 | 680 | 0.0 | 0.0 | 719 | 1624 | 955 | 2079 | 2002 | 2738 | 2846 | 2351 | 1690 | 2 | | 29 | 650 | 0.0 | 0.0 | 732 | 1655 | 963 | 2148 | 1996 | 2798 | 2857 | 2083 | 1711 | 2 | | 30 | 633 | 0.0 | 0.0 | 593 | | 999 | 2135 | 2026 | 2739 | 2837 | 2110 | 1705 | 3 | | 31 | 600 | | 0.0 | 632 | | 1126 | | 2149 | | 2838 | 1781 | | 3 | | MEAN | 1073 | 335 | 0.0 | 284 | 1035 | 1402 | 2017 | 2129 | 2430 | 2748 | 2632 | 1520 | ME | | MAX. | 1490 | 550 | 0.0 | 744 | 1655 | 2136 | 2630 | 2299 | 2798 | 2866 | 2907 | 820 | M | | MIN. | 600 | 0.0 | 0.0 | 0.0 | 471 | 918 | 1131 | 1820 | 2106 | 2587 | 1781 | 1197 | M | | AC. FT. | 66062 | 19946 | | 17449 | 59516 | 86206 | 119854 | 130885 | 144565 | 168974 | 161806 | 90470 | AC | E - ESTIMATED NR - NO RECORO * - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AHD * | MEAN | | MAXIMU | I M | | $\overline{}$ | | MINIM | J M | | $\overline{}$ | |-------------------|-----------|----------|-----|-----|---------------|-----------|----------|-----|-----|---------------| | DISCHARGE
1467 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | TOTAL ACRE FEET 1065733 | | LOCATION | v | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|------|-----------|-------------|---------------|-----|------------|-------| | | | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | HOD | 2ERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.B.M. | C.F.S. | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | TO | GAGE | DATUM | | 36 47 11 | 120 23 05 | NW19 13S 15E | | | | | | | | | | Station-located approximately 2 mi. N of Mendota, where DMC crosses the Outside Canal, which is 0.8 mi. NW of Bass Avenue crossing (check No. 21). Flow measured by 3 Sparling meters located at siphon outlet. Record furnished by U.S.B.R. # AILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 807710 SAN JOAQUIN RIVER NEAR MENDOTA 1964 | YAC | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |--------|------------|----------|------|-----------|----------|------------|------------|------------|-------|-------|-------|-------|------| | | | | | | 93 | 226 | | 274 | 392 | 433 | 470 | 219 | 1 | | 1 | 166 | 44 | 82 | 4.0 | | 338 | 154 | | 376 | 401 | 474 | 238 | 2 | | 2 | 111 | 42 | 84 | 3.0 | 96 | 327 | 138 | 280 | 358 | 374 | 456 | 304 | 3 | | 3 | 112 | 41 | 84 | 2.0 | 90
72 | 296
264 | 166
193 | 288
274 | 356 | 346 | 434 | 304 | 4 | | 4 | 120 | 43 | 82 | 2.0 | 61 | 264 | 196 | 261 | 366 | 346 | 441 | 268 | 5 | | 5 | 123 | 45 | 93 | 1.0 | 61 | 264 | 196 | 201 | ,,,, | 340 | 771 | 200 | ' | | 6 | 138 | 36 | 123 | 0.0 | 56 | 281 | 231 | 256 | 376 | 351 | 423 | 274 | 6 | | 7 | 135 | 36 | 146 | 0.0 | 63 | 286 | 268 | 258 | 381 | 364 | 477 | 288 | 7 | | 8 | 131 | 36 | 171 | 0.0 | 84 | 276 | 328 | 286 | 381 | 386 | 477 | 276 | 8 | | 9 | 100 | 45 | 134 | 0.0 | 92 | 284 | 328 | 298 | 364 | 416 | 474 | 256 | 9 | | 10 | 65 | 51 | 95 | 1.0 | 90 | 298 | 324 | 296 | 341 | 421 | 472 | 248 | 10 | | 11 | 56 | 58 | 63 | 2.0 | 82 | 296 | 336 | 296 | 338 | 431 | 456 | 246 | 11 | | 12 | 88 | 65 | 48 | 2.0 | 74 | 271 | 341 | 301 | 294 | 444 | 451 | 266 | 12 | | 13 | 88 | 63 | 36 | 2.0 | 75 | 258 | 354 | 298 | 288 | 441 | 456 | 271 | 13 | | 14 | 87 | 55 | 27 | 3.0 | 71 | 256 | 361 | 321 | 314 | 421 | 474 | 264 | 14 | | 15 | 87 | 36 | 24 | 5.0 | 71 | 254 | 364 | 361 | 348 | 408 | 459 | 284 | 15 | | | 7.0 | 35 | 24 | 7.0 | 71 | 184 | 361 | 376 | 368 | 416 | 441 | 291 | 16 | | 16 | 72
65 | 25
25 | 23 | 8.0 | 70 | 114 | 361 | 388 | 381 | 434 | 434 | 271 | 17 | | 17 | | | | 10 | 75 | 100 | 361 | 388 | 394 | 448 | 431 | 238 | 18 | | 18 | 71 | 31 | 23 | 10 | 108 | 88 | 361 | 381 | 411 | 446 | 462 | 234 | 19 | | 19 | 88 | 44 | 23 | 10 | 177 | 95 | 361 | 384 | 411 | 454 | 446 | 234 | 20 | | 20 | 90 | 43 | 23 | 10 | 111 | 92 | 361 | 764 | 711 | 7,7 | 770 | | 10 | | 21 | 98 | 43 | 21 | 10 | 264 | 106 | 348 | 376 | 414 | 477 | 416 | 246 | 21 | | 22 | 129 | 43 | 20 | 12 | 326 | 121 | 341 | 378 | 426 | 469 | 404 | 271 | 22 | | 23 | 123 | 43 | 19 | 32 | 341 | 111 | 314 | 401 | 446 | 451 | 404 | 261 | 23 | | 24 | 109 | 43 | 17 | 81 | 341 | 101 | 308 | 418 | 466 | 426 | 384 | 268 | 24 | | 25 | 118 | 43 | 16 | 87 | 324 | 111 | 326 | 421 | 487 | 441 | 354 | 254 | 25 | | 26 | | 43 | 13 | 88 | 306 | 140 | 338 | 404 | 501 | 464 | 306 | 246 | 26 | | 27 | 132
132 | 43 | 10 | 93 | 306 | 140 | 356 | 398 | 501 | 461 | 328 | 236 | 27 | | 27 | 132 | 60 | 9.0 | 101 | 321 | 138 | 351 | 364 | 504 | 426 | 346 | 219 | 28 | | 29 | 125 | 59 | 7.0 | 118 | 338 | 136 | 314 | 391 | 490 | 411 | 334 | 214 | 29 | | 30 | 121 |
70 | 7.0 | 150 | ,,,, | 134 | 266 | 398 | 464 | 406 | 338 | 224 | 30 | | 31 | 84 | 10 | 5.0 | 120 | | 148 | 200 | 396 | , , , | 444 | 281 | | 31 | | 544 | | | 5.0 | 21 | 157 | 201 | 306 | 343 | 398 | 421 | 419 | 258 | MEAN | | IEAN | 106 | 45 | 50 | 31
150 | 341 | 338 | 364 | 421 | 504 | 477 | 477 | 304 | MAX | | AAX. | 168 | 70.0 | 171 | | 58.0 | 88.0 | 138 | 256 | 288 | 346 | 281 | 214 | MIN. | | MIN. | 56.0 | 25.0 | 5.0 | 0.0 | 9010 | 12330 | 18190 | 21080 | 23680 | 25910 | 25790 | 15350 | | | C. FT. | 6530 | 2690 | 3080 | 1910 | 9010 | 12330 | 10170 | 21000 | 2,000 | 23710 | -2170 | | | - ESTIMATED R - NO RECORD * - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW - E AND * | MEAN | | MAXIMU | M | | | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 228 | | i | | | | | MINIMUM | | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | | l | | | | | | | | | | | | TOTAL | |-----------| | ACRE FEET | | 165550 | | | | ٢ | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |---|----------|-----------------------------------|---------------|-----------|-----------|--------|-------------|-------------|---------------|----|------------|-------| | T | | ATITUDE LONGITUDE 1/4 SEC. T.& R. | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIO0 | | 2ERO
ON | REF. | | Į | LATITUDE | LONGITUOE | M. D. B. & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | то | GAGE | OATUM | | | 36 48 37 | 120 22 35 | SW 7 13S 15E | 8840 | | 6-1-52 | OCT 39-DATE | | 1939 | | 142.53 | USBR | Station located 2.5 mi. below Mendota Dam, 4 mi. N. of Mendota. Records furn. by U.S.B.R. Drainage area is 4,310 sq. mi. This station equipped with DWR radio telemeter. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 867920 1964 BIG CREEK DIVERSION NEAR FISH CAMP | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | |---------|---------|--------|-------|------|-----------|---------|------|------|-------|-------|-------|-------| | 1 | 2.1 | 3.6 | 11 | 7.7 | 9.6 | 8.2E | 20 | 27 | 19 | 7.9 | 3.2 | 4.4 | | 2 | 2.3* | 3.6 | 11 | 7.7 | 8.1 | 7.7 E | 18 | 24 | 18 | 7.7 | 3.1 | 2.5 | | 3 | 2 • 2 | 4.5 | 1'2 | 6.8 | 8.5 | 8.2E | 18 | 22 | 17 | 8.4* | 2 • 8 | 2.1 | | 4 | 2.2 | 5.1 | 12 | 6.7 | 8.1 | 8.4E | 19 | 22 | 16 * | 7.7 | 3.0* | 1.9* | | 5 | 2.3 | 17 | 11 | 6.4 | 8.6 | 8 • 2 E | 18 | 20 | 16 | 7.5 | 3.0 | 1.6 | | 6 | 2.2 | 26 * | 4.5* | 7.1* | 8.7 | 8.4* | 17 | 21 | 15 | 7.5 | 2 • 8 | 1.5 | | 7 | 2 • 2 | 11 | 4.6 | 7.2 | 8 • 4 *] | 7.4 | 18 * | 25 | 17 | 7.3 | 2.7 | 1.5 | | 8 | 2.0 | 12 | 12 | 6.5 | 8.5 | 7 • 8 | 20 | 25 | 20 | 6.9 | 2.7 | 1.4 | | 9 | 2 • 2 | 9.7 | 13 | 6+2 | 8.6 | 8 • 4 | 23 | 29 | 23 | 6.2 | 2.5 | 1.4 | | 10 | 2 • 1 | 8.0 | 12 | 6.0 | 8.6 | 7.9 | 26 | 32 | 21 | 6.3 | 2.5 | 1.5 | | 11 | 9.0 | 7.3 | 11 | 6.3 | 8.5 | 8.0 | 29 | 34 | 23 | 6.1 | 2.5 | 1.4 | | 12 | 4.7 | 7.0 | 12 | 6.6 | 7.8 | 17 | 32 | 36 | 22 | 5.7 | 2.2 | 1.3 | | 13 | 3.8 | 6.7 | 12 | 10 | 8 • 1 | 29 | 35 | 36 | 19 | 5.4 | 2.1 | 1.4 | | 14 | 3 • 2 | 11 | 12 | 14 | 8.1 | 9.1 | 37 | 36 | 17 | 5 • 2 | 2+0 | 1.4 | | 15 | 2.9 | 14 | 11 | 18 | 7.9 | 12 | 37 | 35 | 16 | 5.0 | 2.0 | 1.3 | | 16 | 3.3 | 12 | 9.8 | 22 | 7.7 | 12 | 38 | 34 | 15 | 5.1 | 2.0 | 1.2 | | 17 | 3.6 | 12 | 9.4 | 21 | 7.5 | 14 | 37 | 33 | 15 | 4.7 | 1.9 | 1.1 | | 18 | 3.4 | 11 | 8 • 8 | 30 | 7.8 | 16 | 33 | 33 | 14 | 4.5 | 1.9 | 1.3 | | 19 | 3.5 | 11 | 8 • 8 | 23 | 8.2 | 17 | 29 | 32 | 14 | 4.5 | 1.9 | 1.4 | | 20 | 3.5 | 12 | 8.8 | 6.6 | 8.0E | 18 | 27 | 31 | 13 | 4.8 | 1.8 | 1.3 | | 21 | 3.7 | 12 | 8 • 6 | 5.3 | 8.8E | 16 | 28 | 28 | 12 | 4.5 | 1.7 | 1.3 | | 22 | 2 • 4 | 12 | 8.3 | 22 | 8.4E | 13 | 29 * | 26 | 11 | 4.1 | 1.5 | 1.3 | | 23 | 3.9 | 12 | 8.5 | 51 | 8.4E | 12 | 28 | 25 | 11 | 3.9 | 1.7 | 1.3 | | 24 | 4 • 2 * | 12 | 8.0 | 56 | 8 • 4 E | 14 | 24 | 24 | 11 | 3.9 | 1.5 | 1.1 | | 25 | 5.0 | 12 | 7.9 | 54 | 8 • 2 E | 13 | 23 | 24 | 10 | 3.7 | 1.5 | 1.1 | | 26 | 4.7 | 12 | 7.8 | 48 | 7.8E | 15 | 24 | 25 | 9.2 | 3.5 | 1.4 | 1.4 | | 27 | 4 • 2 | 11 | 8.1 | 40 | 7.8E | 16 | 27 | 27 | 9•1 | 3.8 | 1.4 | 1.4 | | 28 | 4 • 2 | 11 | 7.7 | 41 | 8.CE | 17 | 29 | 24 | 9.0 | 4.0 | 1.4 | 1.6 | | 29 | 3.9 | 11 | 7.7 | 41 | 8.0E | 18 | 29 | 23 | 8.5 | 3.5 | 1.4 | 1.6 | | 30 | 5.5 | 11 | 7.7 | 35 | | 20 | 28 | 22 | 8.2 | 3.5 | 1.3 | 1.6 | | 31 | 4.3 | | 7.7 | 24 | | 21 | | 20 | | 3.3 | 3.4 | | | MEAN | 3.5 | 10.7 | 9.5 | 20.7 | 8.2 | 13.2 | 26.7 | 27.6 | 15.0 | 5.4 | 2.2 | 1.6 | | MAX. | 9.0 | 26 • 0 | 13.0 | 56.0 | 9•6 | 29.0 | 38.0 | 36.0 | 23.0 | 8 • 4 | 3.4 | 4.4 | | MIN. | 2.0 | 3.6 | 4.5 | 5.3 | 7.5 | 7.4 | 17.0 | 20.0 | 8 • 2 | 3 • 3 | 1.3 | 1.1 | | AC. FT. | 216 | 636 | 585 | 1276 | 474 | 809 | 1587 | 1696 | 891 | 329 | 132 | 92 | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AHD * | | | | М | IMU | MAX | | MEAN | |----|------|-----|-----|-----|------|-----------|-----------| | ME | AY T | DAY | MO. | нт. | GAGE | DISCHARGE | DISCHARGE | | 20 | 3 20 | 13 | 3 | 85 | 1. | 66.0 | 12.0 | | | 3 20 | 13 | 3 | 85 | 1. | 66.0 | 12.0 | | MINIMUM | | | | | | | | | | | |-----------|----------|-----|-------|------|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | | 0.0 | | 10 | 22 | 0940 | | | | | | | | (| | | النتا | | | | | | | | | | TOTAL | |---|-----------| | Г | ACRE FEET | | | 8722 | | | LOCATION | | LOCATION MAXIMUM DISCHARGE | | | PERIOD C | F RECORD | DATUM OF GAGE | | | | |-------------------------------------|-----------|----------------------------|----------------------------|-----------|-------------|-------------|----------|---------------|------|------|-------| | LATITUDE LONGITUDE 1/4 SEC. T. & R. | | I/4 SEC. T. & R. OF RECORD | | DISCHARGE | GAGE HEIGHT | IGHT PERIOO | | ZERO | REF. | | | | LATITUDE | LUNGITUDE | M.O.B.8 M, | C.F.S. GAGE HT. DA | | OATE | | ONLY | FROM | то | GAGE | OATUM | | 37 28 10 | 119 36 52 | NE25 5S 21E | 150 | 3.58 | 1-30-63 | DEC 58-DATE | | 1958 | | 0.00 | LOCAL | Station located 195 ft. above road culvert pipe, 1.4 mi. SE of Fish Camp. This is regulated diversion from Big Creek to Lewis Fork, Fresno River. Stage-discharge relationship at times affected by ice and extreme high flows affected by culvert pipe below station. Maximum discharge determined from slope area survey and maximum capacity of culvert pipe below station. Altitude of gage is approximately 5,400 ft. (from topographic map.) #### IAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 867325 LEWIS FORK FRESNO RIVER NEAR OAKHURST | AY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-------|------|-------|------|------|------|------|------|-------|------|-----------|--------------|----------------|--------| | 1 | 6.8 | 15 | 35 | 20 | 26 | 26 | 95 | 73 | 52 E | 23 | 9.0 | 9.6 | 1 | | 2 | 5.6* | 14 | 33 | 20 | 26 | 29 | 75 | 65 | 50 E | 21 | 6.3 | 4.4 | 2 | | 3 | 5.2 | 18 | 32 | 18 | 26 | 25 | 62 | 63 | 48 E | 22 * | 4.3 | 3.5 | 3 | | 4 | 5.7 | 18 | 30 | 19 | 25 | 29 | 60 | 63 | 45 # | 22 | 2.3# | 3.4# | 4 | | 5 | 6.0 | 28 | 28 | 18 | 26 | 28 * | 59 | 64 | 44 | 22 | 1.8E | 3.0E | 5 | | 6 | 6.9 | 101 * | 27 * | 21 * | 26 | 26 | 52 * | 65 * | 48 | 22 | 3.0E | 3.0E | | | 7 | 7.1 | 34 | 20 | 20 | 26 | 27 | 49 | 64 | 49 | 21 | 3.0E | 3.1E | | | 8 | 6.5 | 25 | 29 | 18 | 25 | 26 | 50 | 65 | 54 | 19 | 2.5E | 3.1E | 8 | | 9 | 8.8 | 26 | 36 | 19 | 25 | 28 | 57 | 70 | 79 | 19 | 2.5E | 3.0E | 9 | | 10 | 7.2 | 20 | 27 | 18 | 24 * | 27 | 66 | 79 | 66 | 18 | 2.7E | 2.7E | 10 | | hi | 24 | 18 | 26 | 19 | 22 | 26 | 70 | 86 | 67 | 16 | 2 . 7E | 2.6E | | | 12 | 24 | 17 | 26 | 19 | 21 | 36 | 76 | 93 | 68 | 16 | 2.7E | 2.6 | 12 | | 13 | 16 | 18 | 28 | 17 | 21 | 34 | 82 | 88 | 60 | 16 | 2.5E | 2.7 | 13 | | 14 | 14 | 27 | 26 | 18 | 21 | 32 | 86 | 86 | 53 | 17 | 2.5E | 2.5* | 14 | | 15 | 13 | 150 | 26 | 16 | 22 | 36 | 87 | 87 | 49 | 16 | 2•7E | 2.4 | 15 | | 16 | 13 | 52 | 24 | 18 | 21 | 36 | 87 | 86 | 45 | 14 | 2.5E | 3.0 | 16 | | 17 | 14 | 37 | 24 | 19 | 21 | 37 | 84 | 81 | 45 | 12 | 2.0E | 1.8 | 17 | | 18 | 14 | 34 * | 24 | 21 | 22 | 41 | 81 | 79 | 43 | 13
12 | 1.8E
2.3E | 2.0
2.6 | 18 | | 19 | 14 | 45 | 23 | 19 | 22 | 44 | 76 | 83 | 41 | 12 | 2.6# | 3.4 | 19 | | 20 | 14 | 137 * | 24 | 18 | 23 | 45 | 67 | 86 | 39 | 12 | 2.01 | 2.4 | 20 | | 21 | 13 | 65 | 21 | 31 | 23 | 46 | 67 * | 84 | 33 | 13 | 1.6E | 2.9 | 21 | | 122 | 13 | 45 | 20 | 17 | 25 | 41 | 68 | 79 | 3 2 | 10 | 1.3 | 2 • 4
2 • 4 | 22 | | 133 | 12 | 59 | 22 | 24 | 25 | 35 | 70 | 78 | 29 | 11 | 1.6 | 1.9 | 23 | | 24 | 14 | 78 | 18 | 27 | 24 | 4.3 | 60 | 75 | 28 | 10
8.7 | 1.8* | 1.8 | 24 | | 135 | 14 | 50 | 17 | 28 | 26 | 39 | 60 | 67 E | 25 | 8.7 | 1.2 | 1.0 | 25 | | 16 | 14 | 43 | 19 | 29 | 24 | 44 | 58 | 66 E | 24 | 9.6 | 1.0 | 1.6 | 26 | | 27 | 13 | 42 | 19 | 27 | 24 | 48 | 63 | 63 E | 23 | 9.4 | 1.1 | 2.3 | 27 | | 18 | 12 | 39 | 19 | 27 | 24 | 52 | 76 | 61 E | 22 | 11 | 1.1 | 2.7 | 28 | | 19 | 12 | 37 | 19 | 26 | 24 | 53 | 73 | 58 # | 23 | 8.7 | 1.4 | 2.3 | 29 | | 10 | 15 | 36 | 19 | 27 | | 55 | 71 | 55 E | 24 | 10 | 1.4 | 2.0 | 30 | | 11 | 16 | | 19 | 25 | | 56 | | 54 E | | 9•9 | 2.4 | | 31 | | 'AN | 12.1 | 44.3 | 24.5 | 21.4 | 23.8 | 37.1 | 69.6 | 73.1 | 43.6 | 15.0 | 2.5 | 2.9 | MEAN | | AX. | 24.0 | 150 | 36.0 | 31.0 | 26.0 | 56.0 | 95.0 | 93.0 | 79.0 | 23.0 | 9.0 | 9.6 | MAX | | NN. | 5.2 | 14.0 | 17.0 | 16.0 | 21.0 | 25.0 | 49.0 | 54.0E | 22.0 | 8.7 | 1.0 | 1.6 | MIN. | | . FT. | 741 | 2634 | 1507 | 1315 | 1369 | 2281 | 4140 | 4495 | 2594 | 921 | 154 | 173 | AC.FT. | ESTIMATED NO RECORD DISCHARGE MEASUREMENT OR OBSERVATION OF ND FLOW OBSERVA | MEAN | | MAXIMU | M | | | |-----------|-----------|--------|----|-----|------| | DISCHARGE | DISCHARGE | | | DAY | TIME | | 30.B | 383 | 2 • 25 | 11 | 15 | 0620 | | (| (| | | | | MINIMUM GAGE HT. MD. DAY TIME
DISCHARGE 9 24 1830 0.3 0.78 TOTAL ACRE FEET 22320 | | | LOCATION | LOCATION | | | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|-----------------|-----------|---------|-------------|-------------|------|-------|------------|-------| | l | | . CHOITHE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | 2ERO
ON | REF. | | ı | LATITUOE | LONGITUOE | M. O. B. & M. | C.F.S. GAGE HT. | | DATE | | ONLY | FROM | то | GAGE | DATUM | | | 37 20 44 | 119 38 20 | SE 2 7S 21E | 2930E | 493 | 2- 1-63 | SEP 61-DATE | | 1961 | DATE | 0.00 | LOCAL | Station located 1.6 mi. N. of Oakhurst on Highway 41, 500 ft. downstream from White Oaks Motel. Station located on left bank above concrete weir. Altitude of gage is approximately 2,520 ft. (from topographic map.) #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME MIAMI CREEK NEAR OAKHURST 867300 1964 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. D | |---------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|----------------|---------| | 1 | 0.9 | 1.8 | 5.0 | 2.9 | 4.0 | 3.7 | 19 | 5.1 | 2.1 | 0.7 | 0.8 | 0.6 | | 2 | 0.9* | 1.8 | 4.7 | 2.8 | 4.0 | 4.0 | 13 | 5.3 | 2.2 | 1.0 | 0.8 | 0.5 | | 3 | 1.0 | 2.1 | 4.5 | 2.7 | 3.9 | 3.7 | 11 | 5.3 | 2.4 | 1.6* | 0.7 | 0.5 | | 4 | 1.0 | 2.2 | 4.3 | 2.7 | 4.0 | 3.6 | 9.8 | 5.6 | 2.4* | 1.7 | 0.7* | 0.5 | | S | 1.1 | 4.1 | 3.9 | 2.7 | 4.3 | 3.7 | 9.1 | 5.9 | 2.5 | 1.7 | 0.7 | 0.5 | | 6 | 1.1 | 19 * | 4.0* | 2.7* | 4.3 | 3.6* | 8.5* | 6.7* | 2.5 | 1.7 | 0.6 | 0.4 | | 7 | 1.1 | 6.2 | 4.2 | 2.8 | 4.1* | 3.7 | 8.1 | 6 • 6 | 2.7 | 1.5 | 0.7 | 0.4 | | 8 | 1.1 | 4.7 | 4.0 | 2.8 | 4.1 | 4.0 | 8.3 | 7.5 | 3.1 | 1.5 | 0.6 | 0.3 | | 9 | 1.1 | 4 . 4 | 4.8 | 2.8 | 4.1 | 3.5 | 8.6 | 8.1 | 7.2 | 1.4 | 0.5 | 0.3 | | 10 | 1.1 | 4.1 | 4.3 | 2.7 | 4.2 | 3.8 | 8.4 | 8.0 | 5.1 | 1.4 | 0.4 | 0.3 | | 11 | 4.9 | 3.7 | 4.1 | 3.0 | 4.2 | 3.7 | 8.4 | 7.3 | 4.2 | 1.2 | 0.4 | 0.3* | | 12 | 3.4 | 3 • 4 | 4.1 | 2.9 | 4.0 | 4 • 7 | 8.4 | 6.3 | 3.3 | 1.2 | 0.5 | 0.3 | | 13 | 2.4 | 3.2 | 3.9 | 3.0 | 3.9 | 4.4 | 8.3 | 5.7 | 3.0 | 1.1 | 0.5 | 0.3 | | 14 | 2.1 | 5.3 | 4.0 | 3.0 | 4.2 | 4 . 4 | 7.9 | 5.2 | 2.7 | 1.1 | 0.5 | 0.3 | | 15 | 2 • 8 | 32 | 3.9 | 2.9 | 3.7 | 4.9 | 7.8 | 3.9 | 2.7 | 1.1 | 0.5 | 0.3 | | 16 | 2 • 2 | 9.2 | 3.9 | 3.3 | 3.6 | 5.4 | 7.3 | 3.7 | 2.7 | 1.1 | 0.4 | 0.3 | | 17 | 2.0 | 6 • 1 | 3.6 | 2.9 | 3.5 | 5 • 4 | 7.0 | 3.8 | 2.7 | 1.1 | 0.3 | | | 18 | 1.7 | 5.0 | 3.7 | 4.3 | 3.5 | 5 • 8 | 6-4 | 3.9 | 2.5 | 1.0 | 0.4 | 0.3 | | 19 | 1.7 | 8 • 1 | 3 • 6 | 3.8 | 3.6 | 5 • 8 | 6.4 | 4.0 | 2.4 | 1.5 | 0.4 | 0.3 | | 20 | 1 • 8 | 33 * | 3.8 | 3.6 | 3.6 | 5•9 | 6.1 | 3.7 | 2.4 | 1.4 | 0.4 | 0.3 | | 21 | 1.8 | 13 | 3.6 | 5.1 | 3.7 | 5 . 8 | 5.9* | 3.6 | 2.3 | 1.2 | 0.3 | 0.3 | | 22 | 1.7 | 8.5 | 3.3 | 3.1 | 3.8 | 5.5 | 5.7 | 3.6 | 2.3 | 1.1 | 0.3 | 0.3 | | 23 | 1.6 | 9.8 | 3.1 | 4 • 2 | 3 • 8 | 5 • 3 | 5.7 | 3.4 | 2.4 | 1.0 | 0.3 | | | 24 | 1.7 | 15 | 3.0 | 4.5 | 3 . 8 | 5.3 | 5 • 8 | 3.2 | 2.3 | 0.9 | 0 • 3
0 • 3 | 0.3 | | 25 | 1.7 | 8.7 | 2.9 | 4.7 | 3.7 | 6.4 | 5.8 | 3.2 | 2.2 | 0.9 | 0.5 | | | 26 | 1.8 | 7.0 | 2.8 | 4.3 | 3.5 | 6.7 | 5.5 | 3.5 | 2.1 | 0.9 | 0.3 | 0.3 | | 27 | 1.6 | 6.3 | 2.7 | 4.3 | 3.4 | 7.6 | 5.3 | 3.6 | 2.1 | 0.9 | 0.3 | 0.3 | | 28 | 1.7 | 6.0 | 2.7 | 4.0 | 3.6 | 8.8 | 5.1 | 3.8 | 2.1 | 0.8 | 0.2 | 0.3 | | 29 | 1.6 | 5.2 | 2.8 | 4.0 | 3.6 | 9.4 | 5.1 | 3.4 | 2.0 | 0.9 | 0.3 | 0.4 | | 30 | 1.9 | 5.2 | 2.7 | 4.1 | | 9.3 | 5.1 | 3.0 | 1.8 | 0 • 8 | 0.3 | 0.4 | | 31 | 1.8 | ,,, | 2.8 | 4.1 | | 9.7 | | 2.3 | | 0 • 8 | 0.5 | | | MEAN | 1.8 | 8.1 | 3.7 | 3.4 | 3.9 | 5.4 | 7.8 | 4 • 8 | 2.7 | 1.2 | 0.5 | 0.4 N | | MAX. | 4.9 | 33.0 | 5.0 | 5.1 | 4.3 | 9.7 | 19.0 | 8.1 | 7.2 | 1.7 | 0.8 | 0.6 | | MIN. | 0.9 | 1.8 | 2.7 | 2.7 | 3.4 | 3.5 | 5.1 | 2.3 | 1.8 | 0.7 | 0.2 | 0.3 | | AC. FT. | 108 | 484 | 228 | 212 | 222 | 332 | 462 | 294 | 163 | 72 | 28 | 21 | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR DBSERVATION OF NO FLOW # — E AHD * | MEAN | | MAXIMU | М | | $\overline{}$ | |-----------|-----------|----------|-----|-----|---------------| | DISCHARGE | DISCHARGE | DADE HT. | MO. | DAY | TIME | | 3.6 | 68.0 | 4.21 | 11 | 15 | 0610 | | | | | 1 | 1 | | | MINIMUM | | | | | | | | | | | | |-----------|----------|---|----|------|--|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | | | | | | | | | | | | 0.2 | 2.41 | 8 | 17 | 1640 | \subset | TOTAL | |-----------|-----------| | Г | ACRE FEET | | ļ | 2625 | | | LOCATION | 1 | MAXIMUM DISCHARGE | | PERIOD O | PERIOD OF RECORD DATE | | DATUM | OF GAGE | | | |-----------|-----------|------------------|-------------------|-----------|----------|-----------------------|-------------|-------|---------|------------|-------| | 1 ATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.O.B.B.M. | | GAGE HT. | OATE | | ONLY | FROM | то | GAGE | DATUM | | 37 23 38 | 119 39 10 | SE22 6S 21E | 1140E | 9.08 | 2- 1-63 | DEC 59-DATE | | 1959 | Date | 0.00 | | Station located 150 ft. below bridge, 4.5 mi. N. of Oakhurst. Tributary to Fresno River. Stage-discharge relationship at times affected by ice. Drainage area is 10.6 sq. mi. Recorder installed December 15, 1959. Altitude of gage is approximately 3,500 ft. (from topographic map.) | WATER YEAR STATION NO. STATION NAME | | | | | | | | | | | | | | |-------------------------------------|------|------------------------|------|------|------|--------|------------------------------------|-----|------|------|------|-------|---| | | | DISCHAR
PER SECOND) | | | 1964 | 807610 | O SAN JOAQUIN RIVER NEAR OOS PALOS | | | | | | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | D | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|------|------|------|------|------|------|------|------|------|------|-------|--------| | 1 | 0.0 | 0.0 | 0.0 | 11 | 1,0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | , | | 2 | 0.0 | 0.0 | 0.0 | 11 | 1.0 | 0.0 | 0.0 | 0.0 | 9.0 | 12 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 4.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | 4 | | S | 0.0 | 0.0 | 0.0 | 11 | 8.0 | 0.0 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | S | | 6 | 0.0 | 0.0 | 0.0 | 11 | 12 | 0.0 | 0.0 | 8.0 | 12 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 11 | 12 | 0.0 | 0.0 | 12 | 4.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 11 | 12 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 11 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 9.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 10 | | 11 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 11 | | 12 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 5.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 8.0 | 8.0 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | 4.0 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 8.0 | 4.0 | 0.0 | 0.0 | 8.0 | 0.0 | 9.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 0.0 | 21 | 4.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 9.0 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 18 | 8.0 | 3.0 | 0.0 | 0.0 | 10 | 0.0 | 12 | 0.0 | 20 | | 21 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0.0 | 0.0 | 1.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 1.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 9.0 | 0.0 | 5.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 1.0 | | 0.0 | 0.0 | 0.0 | 12 | 4.0 | 0.0 | 4.0 | 30 | | 31 | 0.0 | | 0.0 | 2.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | 31 | | HEAN | 0.0 | 0.0 | 0.0 | 8.8 | 3.4 | 0.1 | 0.5 | 1.6 | 3.6 | 2.5 | 1.6 | 0.8 | MEAN | | MAX. | 0.0 | 0.0 | 0.0 | 21.0 | 12.0 | 3.0 | 5.0 | 12.0 | 12.0 | 12.0 | 12.0 | 8.0 | MAX. | | MIN, | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | | | | 540 | 196 | 6 | 28 | 99 | 214 | 155 | 97 | 50 | AC.FT. | MEAN DISCHARGE 1.9 | ١. | $\overline{}$ | MAXIMU | М | | | |----|---------------|----------|-----|-----|------| | 1 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | П | | | | | | | , | l | | | | | MINIMUM DISCHARGE GAGE HT. MO. DAY TIME TOTAL ACRE FEET 1385 | 1 | | LOCATION MAXIMUM DISCHARGE | | | | PERIOD O | DATUM OF GAGE | | | | | | |---|------------------|----------------------------|------------------|-----------|----------|-----------|---------------|------|------|------------|-------|-------| | Ī | LATITUOE | LONGITURE | 1/4 SEC, T, & R. | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOO | ZERO
ON | REF | | | | LATITUDE | LONGITUDE | M. D. 8. 8 M. | C.F, S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | OATUM | | | 36 59 3 8 | 120 30 02 | | 8200 | | 6-5-52 | OCT 40-DATE | | 1940 | | 116.5 | USED | Station located 800 ft. below the head of Temple Slough, 6.5 mi. E of Dos Palos. Records furn. by U.S.B.R. Drainage area is approx. 5,630 sq. mi. E -- ESTIMATED NR -- NO RECORD DISCHARGE MEASUREMENT OR OBSERVATION OF
NO FLOW B -- E AND ** ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 864400 EAST FORK CHOWCHILLA RIVER NEAR AHWAHNEE | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|----------|------|--------------|--------------|------|-------------|-------|-------|------|-------|-------| | | 0.5 | 3.7 | 20 | 8.2 | 34 | 10 | 74 | 18 | 8.9 | 2.2 | 0.0 | 0.0 | 1 | | 2 | 0.5 | 3.4 | 16 | 7.7 | 31 | 15 | 65 | 20 | 8.3 | 2.1 | 0.0 | 0.0 | 2 | | 3 | 0.5 | 3.7 | 14 | 8.2 | 28 | 13 * | 44 # | 19 | 7.8 | 1.5 | 0.0* | 0.0 | 3 | | 4 | 0.5 | 4.2 | 13 | 8.5 | 25 | 11 | 35 | 21 | 7.6 | 1.5 | 0.0 | 0.0 | 4 | | 5 | 0.6 | 4.9 | 11 * | 8.5 | 25 # | 11 | 32 | 24 | 7.1* | 1.5 | 0.0 | 0.0 | 5 | | | | 40 # | ., | 8.2 | 26 E | 11 | 30 | 38 * | 6.4 | 1.4 | 0.0 | 0.0 | 6 | | 6 | 0.7 | 7, " | 11
10 | 8.5 | 24 E | 12 | 26 | 36 | 6.9 | 1.2 | 0.0 | 0.0 | 7 | | 7 | 1.1 | 23 | | 8.6* | 23 E | 11 | 24 | 32 | 9.1 | 1.1* | 0.0 | 0.0 | 1 (| | 8 | 1.2 | 13 | 11
15 | | 22 E | 10 | 24 | 28 | 19 | 1.1 | 0.0 | 0.0 | 9 | | 9 | 1.3 | 9.5 | | 7.4 | 20 E | 10 | 23 | 26 | 16 | 1.0 | 0.0 | 0.0 | 10 | | 10 | 1.3 | 9.0 | 16 | 8.2 | 20 E | 10 | 23 | 26 | 16 | 1.0 | 0.0 | 0.0 | 10 | | 11 | 6 • 8 | 9.0 | 12 | 8.2 | 19 E | 10 | 21 | 25 | 11 | 0.8 | 0.0 | 0.0 | 11 | | 12 | 10 | 8.7 | 11 | 8.2 | 19 E
18 E | 21 | 21 | 23 | 9.0 | 0.8 | 0.0 | 0.0 | 12 | | 13 | 4.3 | 7.9 | 11 | 8.2 | | 24 | 21 | 20 | 7.9 | 0.6 | 0.0 | 0.0 | 13 | | 14 | 3 • 2 | 9.4 | 11 | 8.2 | 17 E | 17 | 21 | 18 | 7.0 | 0.4 | 0.0 | 0.0 | 14 | | 15 | 2 . 8 | 132 | 10 | 7.7 | 16 E | 16 | 18 | 18 | 5.9 | 0.3 | 0.0 | 0.0 | 15 | | 16 | 3 • 2 | 44 | 9.3 | 7.7 | 16 E | 15 | 18 | 16 | 6.3 | 0.2 | 0.0 | 0.0 | 16 | | 17 | 3.4 | 27 | 9.3 | 7.7 | 15 E | 14 | 17 | 15 | 5.9 | 0.3 | 0.0 | 0.0 | 17 | | 18 | 3.2 | 22 | 9.3 | 13 | 15 E | 13 | 16 | 15 | 5.7 | 0.2 | 0.0 | 0.0 | 18 | | 19 | 3.2 | 28 | 9.3 | 15 | 13 E | 13 | 19 | 15 | 5.2 | 0 • 2 | 0.0 | 0.0 | 19 | | 20 | 3.2 | 267 * | 8.2 | 12 | 12 | 12 | 20 | 14 | 4 • 8 | 0.2 | 0.0 | 0.0 | 20 | | 21 | 3 • 2 | 87 | 8 • 2 | 34 | 12 | 12 | 18 | 14 | 4.5 | 0.3 | 0.0 | 0.0 | 21 | | 22 | 3.4 | 49 | 8.2 | 69 | 13 | 14 | 18 | 14 | 4.3 | 0.2 | 0.0 | 0.0 | 22 | | 23 | 3.4* | 44 | 8.5 | 35 | 13 | 32 | 18 | 13 | 3.9 | 0.2 | 0.0 | 0.0 | 23 | | 24 | 3.4 | . 84 | 8.7 | 29 | 12 | 39 | 25 | 12 | 3 • 3 | 0 • 2 | 0.0 | 0.0 | 24 | | 25 | 3.4 | 46 | 8.7 | 27 | 12 | 30 | 21 | 11 | 2.9 | 0.1 | 0.0 | 0.0 | 25 | | 26 | 3.4 | 34 | 8.7 | 30 | 12 | 40 | 20 | 12 | 2.7 | 0.1 | 0.0 | 0.0 | 26 | | 27 | 3.4 | 28 | 8.7 | 35 | ii | 45 | 19 | 12 | 2.5 | 0.1 | 0.0 | 0.0 | 27 | | 28 | 3.2 | 26 | 8.5 | 34 | 10 | 40 | 18 | 15 | 2.5 | 0.1 | 0.0 | 0.0 | 28 | | 29 | 3.3 | 23 | 8.5 | 36 | 11 | 35 | 18 | 13 | 2.3 | 0.1 | 0.0 | 0.0 | 29 | | 30 | 3.2 | 19 | 8.5 | 37 | | 29 | 17 | 11 | 2.6 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 3.2 | * 7 | 7.9 | 35 | | 27 | | 9.9 | | 0.0 | 0.0 | | 31 | | MEAN | 2.0 | | 10.7 | 70.7 | 10.3 | 19.7 | 25.4 | 18.6 | 6.6 | 0.6 | 0.0 | 0.0 | MEAN | | | 2 • 8 | 37.3 | 10.7 | 18.7 | 18.1 | 19.7
45.0 | 74.0 | | 19.0 | 2.2 | 0.0 | 0.0 | MAX | | MAX. | 10.0 | 267 | 20.0 | 69.0 | 34.0 | | | 38.0
9.9 | 2.3 | | | 0.0 | MIN. | | MIN. | 0 • 5 | 3.4 | 7.9 | 7.4 | 10.0 | 10.0 | 16.0 | | | 0.0 | 0.0 | 0.0 | AC.FL | | AC. FT. | 175 | 2218 | 656 | 1148 | 1039 | 1214 | 1509 | 1146 | 391 | 40 | | 1 | AC.FL | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AHD * | MEAN | | MAXIMU | Μ. | | |---------------------|------------------|--------------------|----|--| | DISCHARGE
13 • 1 | DISCHARGE
524 | GAGE HT.
5 • 82 | | | | | | | | | | | | MINIM | J M | | | |---|-----------|----------|-----|-----|------| | ı | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | ı | 0.0 | | 7 | 29 | 1940 | | | | | | | L | | | TO | TAL | |---|------|------| | | ACRE | FEET | | 1 | | 9537 | | | LOCATION | N | MAXI | MAXIMUM DISCHARGE PERIOD OF RECORD | | | | DATUM OF GAGE | | | | |----------|-----------|------------------|-----------|------------------------------------|-----------|-------------|------|---------------|------------|------|-------| | | | 1/4 SEC. T. 8 R. | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | 2ERO
ON | REF. | | | LATITUOE | LONGITUOE | M.D.B.B.M, | C.F.S. | GAGE HT. | DATE | 0.0000 | ONLY | FROM | то | GAGE | DATUM | | 37 20 09 | 119 48 59 | SE 7 7S 20E | 3710E | 10.34 | 1-31-63 | NOV 57-DATE | | 1957 | Date | 0.00 | LOCAL | Station located 1.1 mi. above mouth, 5.5 mi. W of Ahwahnee. Drainage area 57.8 sq. mi. Altitude of gage 980 ft. (from topographic map.) # **CULY MEAN DISCHARGE** (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 864300 WEST FORK CHOWCHILLA RIVER NEAR MARIPOSA | AY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |--------|-------|-------|-------|-------|------|-------|------|------|-------|------|------|-------|-------| | | 0.0 | 0.2 | 3.7 | 2.8 | 15 | 4.8 | 51 | 2.7 | 0.7 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.2 | 3.6 | 2.9 | 13 | 8.5 | 35 | 2.9 | 0.6 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.3 | 3.3 | 2.7 | 11 | 5.8* | 21 * | 3.5 | 0.5 | 0.0 | 0.0* | 0.0 | 3 | | 6 | 0.0 | 0.3 | 3.4 | 2.7 | 9.0 | 4.7 | 14 | 4.3 | 0.5 | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.8 | 3.4* | 2.7 | 8.8* | 4.1 | 12 | 4.3 | 0.4* | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 11 * | 3.4 | 2.7 | 8.3 | 4.3 | 10 | 12 * | 0.4 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 4.0 | 3.5 | 2.8 | 7.3 | 4.7 | 8.1 | 7.8 | 0.6 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 2.1 | 3.5 | 2.9* | 7.4 | 4.2 | 7.6 | 4.6 | 0.7 | 0.0 | 0.0 | 0.0* | 8 | | 9 | 0.0 | 1.6 | 6.3 | 2.7 | 7.3 | 3.6 | 6.9 | 3.7 | 1.3 | 0.0 | 0.0 | 0.0 | 9 | | 0 | 0.0 | 1.3 | 6.3 | 2.7 | 7.0 | 3 • 8 | 6.3 | 3.2 | 1.2 | 0.0 | 0.0 | 0.0 | 10 | | 1 | 0.3 | 1.1 | 4.3 | 2.7 | 6.3 | 3.8 | 5.8 | 2.9 | 0.9 | 0.0 | 0.0 | 0.0 | 11 | | 2 | 0.1 | 1.0 | 3.6 | 2.5 | 6.0 | 9.6 | 4.9 | 2.5 | 0.7 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.1 | 0.9 | 3.4 | 2 • 5 | 5.7 | 11 | 4.7 | 2.3 | 0.5 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 2 • 2 | 3.3 | 2.6 | 5.5 | 5.9 | 4.5 | 2.0 | 0.4 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 84 | 3.3 | 2.6 | 5.4 | 5 • 0 | 4.2 | 1.9 | 0.3 | 0.0 | 0.0 | 0.0 | 15 | | 6 | 0.1 | 7.4 | 3.1 | 2.5 | 5.2 | 4.4 | 4.1 | 1.8 | 0.3 | 0.0 | 0.0 | 0.0 | 16 | | :7 | 0.1 | 3 • 2 | 2.9 | 2.6 | 5.0 | 3.8 | 3.6 | 1.6 | 0.3 | 0.0 | 0.0 | 0.0* | 17 | | 8 | 0.1 | 2 • 1 | 2.9 | 5.0 | 5.1 | 3.7 | 3.8 | 1.5 | 0.3 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.1 | 5.4 | 2.9 | 5.2 | 5.0 | 3.3 | 4.9 | 1.6 | 0 • 2 | 0.0 | 0.0 | 0.0 | 19 | | 10 | 0+1 | 126 # | 2.9 | 4.4 | 5.1 | 3 • 1 | 4.6 | 1.4 | 0.2 | 0.0 | 0.0 | 0.0 | 20 | | n | 0.1 | 29 | 3.0 | 15 | 4.8 | 2.9 | 4.0 | 1.3 | 0.2 | 0.0 | 0.0 | 0.0 | 21 | | !2 | 0.1 | 8.0 | 3.1 | 66 | 4.6 | 4.4 | 3.7 | 1.3 | 0.1 | 0.0 | 0.0 | 0.0 | 23 | | 13 | 0.1* | 8.9 | 3.0 | 31 | 4.6 | 17 | 3.6 | 1.1 | 0.1 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.1 | 30 | 2.8 | 22 | 4.6 | 31 | 3.7 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 24 | | 1:5 | 0.2 | 11 | 2 . 8 | 18 | 4.7 | 28 | 3.4 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.2 | 6.9 | 2.8 | 22 | 4.8 | 34 | 3.3 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 17 | 0.2 | 5.5 | 2.8 | 28 | 4.8 | 38 | 3.2 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.2 | 4.7 | 2 • 8 | 22 | 4.9 | 32 | 3.0 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 19 | 0 • 2 | 4.1 | 2.8 | 22 | 4.8 | 23 | 2.9 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 10 | 0.2 | 3.9 | 2.8 | 22 | | 16 | 2.7 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.2 | | 2.8 | 16 | | 14 | | 0.8 | | 0.0 | 0.0 | | 31 | | 'AN | 0.1 | 12.2 | 3.4 | 11.2 | 6.6 | 11.1 | 8.4 | 2.6 | 0.4 | 0.0 | 0.0 | 0.0 | MEAN | | AX. | 0.3 | 126 | 6.3 | 66.0 | 15.0 | 38.0 | 51.0 | 12.0 | 1.3 | 0.0 | 0.0 | 0.0 | MAX | | IN. | 0.0 | 0.2 | 2.8 | 2.5 | 4.6 | 2.9 | 2.7 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | V. FT. | 6 | 728 | 207 | 687 | 379 | 680 | 497 | 160 | 23 | | | | AC.FT | -- ESTIMATED -- NO RECORD -- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW -- E AND * | MEAN | | |-----------|--------| | DISCNARGE | DISCHA | | 4.6 | 27 | | MAXIMUM | | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | | 270 | 4.97 | 11 | 15 | 0620 | | | | | | | | (| | | } | | | | | | | | | MINIMUM | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | 0.0 | | 10 | 1 | 0000 | | | | | | | (| | 1 | |) | | | | | | | TOTAL | |-----------| | ACRE FEET | | 3367 | | | LOCATIO | V | MAXIMUM DISCHARGE | | | PERIOD O | PERIOD OF RECORD | | | DATUM OF GAGE | | | | |----------|-----------|---------------------|-------------------|-----------|---------|-------------|-----------------------|------|------|---------------|-------|--|--| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | OIS CHARGE | CHARGE GAGE HEIGHT PE | | OOIS | 2ERO
ON | REF. | | | | LATITUDE | LUNGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | | 37 25 14 | 119 52 25 | SE10 6 S 19E | 3590E | 8.67 | 4- 3-58 | NOV 57-DATE | | 1957 | | 0.00 | LOCAL | | | Station located 15 ft. below Indian Peak Road Bridge, 6.7 mi. SE of Mariposa. Drainage area is 33.6 sq. mi. Altitude of gage is 1,680 ft. (from topographic map.) #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME B64360 MIDDLE FORK CHOWCHILLA RIVER NEAR NIPINNAWASEE 1964 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|--------| | 1 | 0.1 | 0.3 | 3.2 | 1.9 | 12 | 3.1 | 29 | 2.5 | 0.7 | 0.2 | 0.0 | 0.0 | 1 | | 2 | 0.1 | 0.3 | 3 • 2 | 1.9 | 10 | 5.0 | 20 | 2.5 | 0.6 | 0.1 | 0.0 | 0.0 | 2 | | 3 | 0.1 | 0.3 | 3.1 | 1.9 | 8.7 | 4.0* | 12 * | 2.6 | 0.6 | 0.2 | 0.0* | 0.0 | 3 | | 4 | 0.2 | 0 • 4 | 2.9 | 1.9 | 7.0 | 3.5 | 9.0 | 2.9 | 0.5 | 0.1 | 0.0 | 0.0 | 4 | | S | 0.2 | 0.4 | 2.8* |
1.9 | 6.5* | 3 • 2 | 7.7 | 3 • 2 | 0.5* | 0.1 | 0.0 | 0.0 | 5 | | 6 | 0 • 2 | 5.4* | 2.7 | 1.9 | 6.0 | 3 • 2 | 7.1 | 6.2* | 0 • 4 | 0.1 | 0.0 | 0.0 | 6 | | 7 | 0.2 | 2 • 8 | 2.5 | 1.9 | 5 • 2 | 3 • 2 | 6.2 | 6.5 | 0.5 | 0 • 2 | 0.0 | 0.0 | 7 | | 8 | 0.2 | 1.7 | 2.5 | 1.9* | 4.8 | 3.0 | 5.5 | 4.2 | 0.5 | 0.1* | 0.0 | 0.0* | 8 | | 9 | 0.3 | 1.4 | 3.7 | 1.9 | 4.6 | 2.7 | 5 • 2 | 3.4 | 0.8 | 0.1 | 0.0 | 0.0 | 9 | | 10 | 0.3 | 1.1 | 4 • 1 | 1.8 | 4.4 | 2.7 | 4 • 8 | 3.0 | 1.3 | 0.1 | 0.0 | 0.0 | 10 | | 11 | 0.7 | 0.9 | 3.1 | 1.7 | 4.3 | 2.7 | 4.5 | 2.8 | 1.2 | 0.1 | 0.0 | 0.0 | 11 | | 12 | 0.9 | 0.8 | 2.9 | 1.7 | 4.1 | 6 • 2 | 4.7 | 2.5 | 1.1 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.6 | 0.7 | 2.5 | 1.6 | 3.7 | 8.5 | 4.4 | 2.3 | 0.8 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.4 | 1 • 4 | 2.3 | 1.6 | 3.6 | 4.6 | 3.9 | 1.9 | 0.7 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.3 | 30 | 2.3 | 1.6 | 3.5 | 3.7 | 3.7 | 1.8 | 0.5 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.5 | 5 • 8 | 2•3 | 1.6 | 3 • 6 | 3.5 | 3.6 | 1.7 | 0.5 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.5 | 3.0 | 2 • 2 | 1.5 | 3.5 | 3 • 1 | 3.4 | 1.5 | 0.5 | 0.0 | 0.0 | 0.0 | | | 18 | 0.5 | 2 • 4 | 2 • 1 | 2 • 4 | 3.4 | 3.1 | 3.3 | 1.5 | 0.6 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.5 | 3.0 | 2.0 | 3.5 | 3.3 | 2.9 | 3.9 | 1.4 | 0.5 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.5 | 103 * | 1.9 | 2.8 | 3.4 | 2.9 | 4.0 | 1.3 | 0 • 4 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.5 | 16 | 2.0 | 7.7 | 3.2 | 2.7 | 3.6 | 1.1 | 0.4 | 0.0* | 0.0 | 0.0 | 21 | | 22 | 0.5 | 6.8 | 2.0 | 14 | 3.2 | 3.6 | 3.3 | 1.1 | 0.3 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.5* | 6 • 4 | 1.9 | 9.9 | 3.1 | 7.7 | 3.3 | 1.2 | 0.3 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.4 | 16 | 1.9 | 7 • 8 | 3.1 | 10 | 3.6 | 1.0 | 0.2 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.4 | 8 • 1 | 1.9 | 7.5 | 3.1 | 8.7 | 3,3 | 0.9 | 0.2 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.4 | 5.7 | 1.9 | 9.0 | 3.1 | 16 | 2.9 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.4 | 4.5 | 1.9 | 12 | 2.9 | 23 | 2.8 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.3 | 4.0 | 1.9 | 11 | 2 • 8 | 19 | 2.8 | 1.2 | 0.1 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.3 | 3.6 | 1.9 | 12 | 3.0 | 12 | 2.7 | 1.1 | 0.1 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.3 | 3.3 | 1.9 | 13 | | 8.5 | 2.6 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.3 | | 1.9 | 12 | | 7 • 2 | | 0.8 | | 0.0 | 0.0 | | 31 | | MEAN | 0.4 | 8.0 | 2.4 | 5.0 | 4.6 | 6.2 | 5.9 | 2.2 | 0.5 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.9 | 103 | 4.1 | 14.0 | 12.0 | 23.0 | 29.0 | 6.5 | 1.3 | 0.2 | 0.0 | 0.0 | MAX | | MIN. | 0.1 | 0.3 | 1.9 | 1.5 | 2.8 | 2.7 | 2.6 | 0.8 | 0.1 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 23 | 475 | 150 | 307 | 264 | 383 | 351 | 133 | 30 | 3 | | | AC.FT. | E -- ESTIMATED NR -- NO RECORD * -- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | M |
 | |--------------------|------------------|----------|---|--------------| | DISCHARGE
2 • 9 | DISCHARGE
217 | GAGE HT. | | TIME
0510 | | MINIMUM | | | | | | | | | | |-----------|----------|---|----|------|--|--|--|--|--| | DISCHARGE | GAGE HT. | | | | | | | | | | 0.0 | | 7 | 12 | 2400 | | | | | | | _ | | |--------|-----------| | \sim | TOTAL | | | ACRE FEET | | | 2118 | | | | | | LOCATION | ٧ | MAXIMUM DISCHARGE | | PERIOD O | F RECORD | DATUM OF GAGE | | | | | |----------|----------------------------|---------------|-------------------|----------|----------|-------------|---------------|------|------|------|-------| | LATITUDE | LONGITUDE 1/4 SEC. T. & R. | | & R. OF RECOR | |) | DISCHARGE | GAGE HEIGHT | PE | DOIP | ZERD | REF. | | LATTIODE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | 70 | GAGE | 0ATUM | | 37 22 56 | 119 50 11 | NE25 6S 19E | 1280 | 10.10 | 2- 1-63 | MAR 58-DATE | | 1958 | Date | 0.00 | LOCAL | Station located 6 mi. W of Nipinnawasee, 10 mi. SE of Mariposa. Tributary to East Fork Chowchilla River. Drainage area is 12.3 sq. mi. Altitude of gage is 1,520 ft. (from topographic map.) # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 864260 STRIPED ROCK CREEK NEAR RAYMOND | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|--------|------|-------|-------|-------|-------|------|------|-------|-------| | 1 | 0.0 | 0 • 2 | 1.4 | 0.7 | 1.9 | 0.9 | 8.6 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.2 | i.i | 0.7 | 1.8 | 1.9 | 5.5 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.2 | 1.2 | 0.6 | 1.6 | 1.0# | 3.9* | 1.5 | 0+1 | 0.0 | 0.0* | 0.0 | 3 | | 4 | 0.0* | 0.2 | 1.0 | 0.5 | 1.5 | 0.7 | 2.8 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.3 | 1.0# | 0.6 | 1.5* | 0.6 | 3.1 | 2.3 | 0.1* | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 1.1* | 0.8 | 0.5 | 1.4 | 0.7 | 2.7 | 3.9* | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.5 | 0.7 | 0.5 | 1.3 | 0.8 | 2.3 | 2 • 2 | 0.1 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.3 | 0.9 | 0.5* | 1.2 | 0.7 | 2.3 | 1.4 | 0 • 1 | 0.0 | 0.0 | 0.0 | _ | | 9 | 0.0 | 0.3 | 1.6 | 0.4 | 1.2 | 0.7 | 2.5 | 1.2 | 0.3 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.3 | 1.6 | 0.4 | 1.1 | 0.6 | 2.2 | 1.0 | 0.2 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.7 | 0 • 2 | 0.9 | 0.5 | 1.1 | 0.6 | 2 • 2 | 0.8 | 0.1 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.2 | 0 • 2 | 0 • 8 | 0.4 | 1.1 | 2.0 | 2.0 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.1 | 0 • 3 | 0 • 8 | 0.4 | 1.2 | 1.9 | 1.9 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.1 | 0 • 8 | 0.7 | 0.3 | 1.2 | 1.0 | 1.9 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.1 | 6 • 6 | 0.7 | 0.4 | 1.2 | 0.8 | 1.8 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.4 | 1.0 | 0 • 8 | 0.4 | 1.2 | 0.8 | 1.7 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0 • 2 | 0.5 | 0.8 | 0 • 8 | 1.0 | 0.8 | 1.5 | 0.3 | 0.0 | 0.0 | 0.0 | | 1 | | 18 | 0 • 2 | 0 • 4 | 0 • 8 | 1 • 4' | 1.0 | 8 • 0 | 1.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.1 | 0.8 | 0.7 | 1.0 | 0.9 | 0.7 | 2.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.1 | 24 | 0.8 | 0.7 | 1.0 | 0.7 | 2 • 2 | 0.2 | 0.0 | 0.0* | 0.0 | 0.0 | 20 | | 21 | 0.1 | 6.4 | 0.8 | 2.3 | 0.9 | 0.8 | 1.8 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.1 | 2.5 | 0.7 | 21 | 0.8 | 1 • 4 | 1.6 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.1 | 3.0 | 0.7 | 9.4 | 0.8 | 6.0 | 1.5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 24 | 0.1 | 5.9 | 0.6 | 5.3 | 0.8 | 13 | 1.4 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0 • 1 | 3.1 | 0.6 | 3.6 | 0.9 | 6.6 | 1.3 | 0.1 | 0.0 | 0.0 | 0.0 | | 25 | | 26 | 0.1 | 2.4 | 0.6 | 3.1 | 0.9 | 3.8 | 1.3 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.1 | 1.9 | 0.6 | 2.9 | 0.8 | 3.1 | 1.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.2 | 1.7 | 0.6 | 2.4 | 0.8 | 2.7 | 1.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.1 | 1.6 | 0.7 | 2.3 | 0.8 | 2 • 4 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.2 | 1.3 | 0.7 | 2 • 2 | | 2.4 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0 • 2 | | 0.7 | 2.0 | | 2.5 | | 0 • 1 | | 0.0 | 0.0 | | 31 | | MEAN | 0.1 | 2.3 | 0.9 | 2.2 | 1.1 | 2.0 | 2.3 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.7 | 24.0 | 1.6 | 21.0 | 1.9 | 13.0 | 8.6 | 3.9 | 0.3 | 0.0 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0 • 2 | 0.6 | 0.3 | 0.8 | 0.6 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 7 | 135 | 52 | 135 | 65 | 126 | 134 | 47 | 2 | | | 1 | AC.FT | E - ESTIMATEO NR - NO RECORD • OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND • | MEAN | | MAXIMU | Μ | | | |-----------|-----------|----------|----|----|------| | DISCHARGE | DISCHARGE | GAGE HT. | | | | | 1.0 | 45.0 | 3.11 | 11 | 20 | 0330 | | (| / (| | | | l / | | MINIMUM | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | 0.0 | | 10 | 1 | 0000 | | | | | | | | | | | | | | | | | | | TOTAL | | | | | | | |---|-------|------|--|--|--|--|--| | Г | ACRE | FEET | | | | | | | | | 705 | | | | | | | (| | | | | | | | | | LOCATION | | | MAXIMUM DISCHARGE | | | PERIOD OF RECORD | | | DATUM OF GAGE | | | |----------|-----------|---------------------|-----------|-------------------|---------|-------------|------------------|--------|----|---------------|-------|--| | | | 1/4 SEC. T. 8 R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F,S, | GAGE HT. | DATE | CIBBINANCE | ONLY | FROM | TO | GAGE | DATUM | | | 37 20 27 | 119 53 35 | NE 9 7 S 19E | 1180E | 8.87 | 4- 3-58 | NOV 57-DATE | | 1957 | | 0.00 | LOCAL | | Station located 8.7 mi. N of Raymond, 11 mi. SE of Mariposa. Tributary to Chowchilla River. Drainage area is 17.1 sq. mi. Altitude of gage is approximately 1090 ft. (from USGS topographic maps.) ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 B62400 MARIPOSA CREEK NEAR CATHEYS VALLEY | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|-------|-------|------|-------|------|------|------|------|------|-------|--------| | | 0.0 | 0.3 | 5.1 | 3.3 | 12 | 4.3 | 38 | 4.6 | 1.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.3 | 5.1 | 3.3 | 10 | 7.1 | 47 | 4.6 | 0.7 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0* | 0.5 | 5.1 | 3.1 | 9.0 | 5.8* | 26 | 4.9 | 0.5 | 0.0* | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.8 | 4.5* | 3.1 | 8.1 | 4.4 | 19 | 6.3 | 0.4# | 0.0 | 0.0* | 0.0 | 4 | | 5 | 0.0 | 1.2* | 4.3 | 3.3 | 7.4 | 4.0 | 16 | 6.1 | 0.4 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 5.0 | 4.3 | 3.3 | 7.0* | 3.5 | 14 * | 11 * | 0.3 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 3.3 | 3.9 | 3 • 1 | 6.8 | 3 • 8 | 11 | 8.9 | 0.3 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 1.6 | 3.8 | 3.1* | 6.3 | 3 • 2 | 10 | 6.4 | 0.4 | 0.0 | 0.0 | 0.0* | | | 9 | 0.0 | 1.1 | 4.9 | 3.1 | 6.3 | 3.0 | 9.2 | 5.3 | 0.7 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.9 | 5.3 | 3.0 | 6.2 | 2 • 6 | 8.2 | 4.8 | 1.1 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.9 | 4.4 | 2.9 | 5.8 | 2.5 | 7.4 | 4.2 | 1.1 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 0.7 | 4.3 | 3.0 | 5.5 | 4.1 | 6.4 | 3.9 | 1.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.8 | 4.2 | 2.9 | 5.3 | 5 • 7 | 6.1 | 3.5 | 0.7 | 0.0 | 0.0 | 0.0 | 13 | |
14 | 0.0 | 1.6 | 3.8 | 2 • 8 | 5.0 | 3 • 5 | 5.8 | 3.1 | 0.6 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 60 | 3 • 4 | 2•9 | 5•1 | 2.7 | 5•7 | 2.9 | 0.5 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 7.2 | 3.2 | 3.1 | 5.1 | 2.7 | 5.5 | 2.7 | 0.4 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0* | 3.1 | 3.3 | 3.2 | 4.8 | 2.2 | 5.0 | 2.4 | 0.3 | 0.0 | 0.0 | 0.0* | 17 | | 18 | 0.0 | 2.2 | 3.1 | 4.2 | 4.8 | 2 • 1 | 4.8 | 2.4 | 0.3 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 3.0 | 3.6 | 5.1 | 4.6 | 1.9 | 5.0 | 2.2 | 0.3 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 161 * | 3.3 | 4.6 | 4.1 | 1.8 | 6.0 | 2.0 | 0.2 | 0.0* | 0.0 | 0.0 | 20 | | 21 | 0.0 | 42 | 3.0 | 11 | 4.0 | 1.9 | 5.4 | 1.9 | 0.1 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 11 | 2.9 | 218 | 4.0 | 3.8 | 5.2 | 1.8 | 0.1 | 0.0 | 0.0 | 0.0* | 22 | | 23 | 0.0 | 10 | 2.9 | 70 | 4.0 | 48 | 5.5 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 53 | 2.7 | 50 | 3.9 | 107 * | 5.3 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 17 | 2.7 | 30 | 4.5 | 65 | 5.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 9.0 | 2.9 | 23 | 5.1 | 58 | 5.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 7.0 | 3.1 | 24 | 4.8 | 65 | 4.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.1 | 6.5 | 3.1 | 18 | 4.6 | 45 | 4.6 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.2 | 5.5 | 3.2 | 18 | 4.2 | 23 | 4.6 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.2 | 5•4 | 3.2 | 15 | | 15 | 4.5 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.2 | | 3.1 | 14 | | 13 | | 1.2 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 14.1 | 3.7 | 18.0 | 5.8 | 16.6 | 10.2 | 3.5 | 0.4 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.2 | 161 | 5.3 | 218 | 12.0 | 107 | 47.0 | 11.0 | 1.1 | 0.0 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.3 | 2.7 | 2.8 | 3.9 | 1.8 | 4.5 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 1 | 837 | 229 | 1106 | 334 | 1023 | 608 | 216 | 23 | | | | AC.FT. | E - ESTIMATED NR - NO RECORD * DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | | MEAN | | MAXIMU | M | | | |---|-----------|-----------|----------|-----|-----|------| | | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | l | 6.0 | 529 | 6.11 | 1 | 22 | 0540 | | | | (| | | | , | | MUNIMUM | | | | | | | | | | | |-----------|----------|-----|---|------|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | | | | | | | | | | 0.0 | | 10 | 1 | 0000 | | | | | | | | | | ļ | | | | | | | | | | TOTAL | |-----------| | ACRE FEET | | 4376 | | | LOCATIO | н | MA | XIMUM DISCH | ARGE | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|--------------------------------------|---------|-------------|------------------|-------------|---------------|--------|----|------|-------| | LATITUDE | LONGITUDE | ONGITUDE 1/4 SEC. T. & R. M.D. 8.&M. | | OF RECORD | | | GAGE HEIGHT | PERIOD | | ZERO | REF. | | LATITODE | LUNGITUDE | | | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | TO | GAGE | DATUM | | 37 23 55 | 120 00 10 | NE21 6S 18 | E 7180E | 11.62 | 4- 3 - 58 | NOV 57-DATE | | 1957 | | 0.00 | LOCAL | Station located at Co. Rd. bridge, 5.6 mi. E. of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 66.0 sq. mi. Altitude of gage is 1100 ft. (from topographic map.) ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | 1 | WATER YEAR | STATION NO. | STATION NAME | | |---|------------|-------------|---|--| | - | 1964 | 862100 | MARIPOSA CREEK BELOW MARIPOSA RESERVOIR | | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|------|------|------|-------|------|------|------|------|------|------|-------|--------| | 1 | 0.0 | 0.0 | 8.0 | 6.0 | 17 | 7.0 | 20 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 8.0 | 6.0 | 16 | 8.0 | 34 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 7.0 | 5.0 | 14 | 8.0 | 38 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 7.0 | 5.0 | 13 | 9.0 | 26 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 7.0 | 5.0 | 12 | 9.0 | 21 | 5.0 | 0.5 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.0 | 6.0 | 5.0 | 11 | 8.0 | 18 | 5.0 | 0.1 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 6.0 | 5.0 | 11 | 8.0 | 16 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 7 1 | | 8 | 0.0 | 0.0 | 6.0 | 5.0 | 10 | 7.0 | 15 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 6.0 | 5.0 | 10 | 7.0 | 14 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 7.0 | 5.0 | 10 | 7.0 | 12 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 7.0 | 5.0 | 10 | 7.0 | 12 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 111 | | 12 | 0.0 | 0.0 | 8.0 | 5.0 | 9.0 | 7.0 | 10 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 8.0 | 5.0 | 9.0 | 7.0 | 10 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 7.0 | 5.0 | 8.0 | 9.0 | 9.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.0 | 7.0 | 5.0 | 8.0 | 10 | 8.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 7.0 | 5.0 | 8.0 | 9.0 | 8.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | | 0.0 | 0.0 | 6.0 | 5.0 | 8.0 | 8.0 | 7.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17 | | 17 | 0.0 | 0.0 | 6.0 | 6.0 | 8.0 | 8.0 | 7.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 18 | 0.0 | 0.0 | 6.0 | 6.0 | 8.0 | 7.0 | 6.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 19 | 0.0 | 0.0 | 6.0 | 6.0 | 8.0 | 6.0 | 7.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | '.0 | 1 | | | | | 10 | | 21 | 0.0 | 60 | 6.0 | 6.0 | 7.0 | 5.0 | 7.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 26 | 6.0 | 68 # | 7.0 | 6.0 | 7.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 17 | 6.0 | 114 | 7.0 | 8.0 | 7.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 13 | 6.0 | 50 | 7.0 | 56 | 7.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 31 | 6.0 | 32 | 7.0 | 93 | 6.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 20 | 6.0 | 25 | 7.0 | 56 | 6.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 14 | 6.0 | 21 | 6.0 | 54 | 6.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 11 | 6.0 | 20 | 7.0 | 48 | 6.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 10 | 6.0 | 20 | 8.0 | 38 | 5.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 9.0 | 6.0 | 20 | - • • | 28 | 5.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | ,.0 | 6.0 | 18 | | 21 | | 1.0 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 7.0 | 6.5 | 16.1 | 9.3 | 18.4 | 12.0 | 3.3 | 0.1 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 60.0 | 8.0 | 114 | 17.0 | 93.0 | 38.0 | 10.0 | 0.5 | 0.0 | 0.0 | 0.0 | MAX. | | MIN. | 0.0 | 0.0 | 6.0 | 5.0 | 6.0 | 5.0 | 5.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | | 419 | 401 | 990 | 538 | 1129 | 714 | 200 | 5 | | | | AC.FT. | E - ESTIMATED NR - NO RECORD * OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AHD * | MEAN | . / | MAXIMUM | | | | | | MINIMUM | | | | | | | |-----------|-----|-----------|----------|-----|-----|------|---|-----------|----------|-----|-----|------|--|--| | DISCHARGE | | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | 6.1 | Н | | | | | | J | | | | | | | | | | ١. | | | | (| . / | 1 | (| | 1 | 1 1 | | | | TOTAL ACRE FEET 4396 | 1 | | LOCATION | N | MAXII | AUM DISCH | IARGE | PERIOD O | DATUM OF GAGE | | | | | |---|----------|-----------|------------------|--------|-----------|----------|-------------|---------------|--------|----|------------|-------| | ı | LATITUDE | LONGITUOE | 1/4 SEC, T, & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | 2ERO
ON | REF. | | - | LATITUDE | LONGITUDE | M.O.B.8 M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 16 52 | 120 09 45 | NE36 7S 16E | 6020 | | 12-24-55 | NOV 52-DATE | | 1952 | | 337.63 | USCGS | Station located 1.5 mi. below Mariposa Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Mariposa Reservoir. Records furn. by U.S.C.E. Drainage area is 108 sq. mi. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|----------------------------------| | 1964 | B00420 | MARIPOSA BYPASS NEAR CRANE RANCH | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |--------------|------|------|------|------|------|-------------|-------------|------|------|------|------|-------|--------------| | 1 | | | | | | | | | | | | | 1 | | 3 | | | | | | | | | | | | | 3 | | 4 5 | | | | | | | | | | | | | 4 5 | | | | | | | | | | | | | | | | | 6 7 | | | | | | | | | | | | | 7 | | 8 9 | | | | | | | | | | | | | 8 9 | | 10 | | | | | | | | | | | | | 10 | | 11 | | | | | | | | | | | | | 11 | | 12
13 | | | | | | | | | | | | | 12 | | 14 | | | | | | | | | | | | | 14 | | 15 | | | | | INSU | JFFICIENT D | PATA TO PUI | LISH | | | | | 15 | | 16 | | | | | | | | | | | | | 16 | | 1 <i>7</i> | | | | | 1 | | | | | | | | 17 | | 19 | | | | | | | | | | | | | 19 | | 20 | | | | | | | | | | | | | 20 | | 21 | | | | | | | | | | | | | 21 | | 22 23 | | | | | | | | | | | | | 22 | | 24
25 | | | | | | | | | | | | | 24 | | 25 | | | | 1 | | | | | | | | | 25 | | 26
27 | | | | | | | | | | | | | 26
27 | | 28 | | [] | | | | | | | | | | | 28 | | 29
30 | | | | | | | | | | | | | 29
30 | | 31 | | | | | | | | | | | | | 31 | | MEAN | | | | | | | | | | | | | MEAI | | MAX.
MIN. | | | | | | | | | | | | | MAX | | AC. FT. | | | | | | | | | | | | - | MIN
AC.FT | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AHD * | MEAN | | MAXIMU | J M | _ | | MINIM | J M | _ | |-----------|-----------|--------|---------|------|-----------|-------|---------|------| | DISCHARGE | DISCHARGE | | MO. DAY | TIME | DISCHARGE | | MO. DAY | TIME | | | TOTAL | 7 | |----|-----------|---| | | ACRE FEET | | | | | | | ١. | | | | | LOCATION | | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|-----------|-----------|-----------|---------------|----------|---------------|------------|------|-------| | LATITUOE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON
 REF. | | | LATITUDE | LONGITUDE | M, D, 8, 8, M, | C.F.S. | GAGE HT. | DATE | 5.5 3.1711.02 | ONLY | FROM | TO | GAGE | DATUM | | 37 12 00 | 130 41 50 | NW 31 8S 11E | | | | | | 1962 | | 0.00 | usces | This station was installed in January 1962 for the Lower San Joaquin Flood Control Project for the purpose of recording flows diverted into Mariposa bypass by float activated electrically operated gates. No continuous water stage recorder is installed to date. Miscellaneous measurements of instantaneous discharge will be presented when appropriate. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | 1 | |------------|-------------|-----------------------------------|---| | 1964 | B06170 | OWENS CREEK BELOW OWENS RESERVOIR | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|-------|------|------|-------|-------|-----|------|------|------|-------|--------| | 1 | 0.0 | 0.0 | 0.5 | 0.5 | 0.9 | 0.7 | 1.7 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 0.5 | 0.5 | 0.9 | 1.1 | 2.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 0.5 | 0.5 | 0.8 | 1.0 | 2.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.5 | 0.5 | 0.8 | 0.8 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 0.5 | 0.5 | 0.7 | 8 • 0 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.4 | 0.5 | 0.5 | 0.7 | 0.7 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0 • 4 | 0.5 | 0.5 | 0.6 | 0.7 | 1.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.4 | 0.5 | 0.6 | 0.6 | 0.8 | 0.9 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0 • 4 | 0.5 | 0.6 | 0.6 | 0.8 | 0.8 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0 • 4 | 0.5 | 0.6 | 0.6 | 8•0 | 0 • 8 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0 • 4 | 0.5 | 0.6 | 0.6 | 0.7 | 0.7 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 111 | | 12 | 0.0 | 0.4 | 0.5 | 0.6 | 0.5 | 0.8 | 0.6 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.4 | 0.5 | 0.6 | 0.5 | 1.0 | 0.6 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.4 | 0 • 5 | 0.6 | 0.5 | 1.0 | 0.6 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.5 | 0.5 | 0.6 | 0.5 | 0 • 8 | 0.5 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.5 | 0.5 | 0.6 | 0.7 | 0.7 | 0.5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0 • 4 | 0.5 | 0.6 | 0.7 | 0.6 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0 • 4 | 0.5 | 0.8 | 0.6 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0 • 5 | 0.5 | 0.8 | 0.6 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.5 | 0.5 | 0.8 | 0.5 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.5 | 0.5 | 1.1 | 0.5 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.5 | 0.5 | 9.0* | 0.5 | 1.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0.5 | 0.5 | 4.0 | 0.5 | 3.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0.5 | 0.5 | 2.0 | 0.5 | 4.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0 • 5 | 0 • 5 | 1.8 | 0.5 | 3.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0.5 | 0.5 | 1.5 | 0.5 | 2.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0.5 | 0.5 | 1.2 | 0.5 | 1.7 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.5 | 0.5 | 1.1 | 0.5 | 1.4 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.5 | 0.5 | 1.0 | 0.6 | 1.2 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.5 | 0.5 | 1.0 | | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3D | | 31 | 0.0 | | 0 • 5 | 0.9 | | 1.1 | _ | 0.0 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 0 • 4 | 0.5 | 1.2 | 0.6 | 1.1 | 0.8 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 0.5 | 0.5 | 9.0 | 0.9 | 4.0 | 2.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | MAX. | | MIN. | 0.0 | 0.0 | 0.5 | 0.5 | 0.5 | 0.6 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | | 23 | 31 | 72 | 35 | 71 | 46 | 16 | | | | | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR 085ERVATION OF NO FLOW # — E AHD * | MEAN | | MAXIMU | M | | | | | MINIMI | J M | | | |-----------|-----------|----------|-----|-----|------|-----|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | 1 [| DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 0.4 | | | | | | П | | | | | | | , | / (| | 1 | | l / | / 1 | | | | | | TOTAL ACRE FEET 293 | | LOCATION | ٠ | MAXI | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM OF GAG | | | |--------------------|-----------|------------------|-----------|-----------|----------|-------------|-------------|--------|--------------|--------|-------| | LATITUDE LONGITUDE | LONGITUDE | 1/4 SEC. T, & R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOO | | ZERO | REF. | | LATITUDE | LONGITUDE | M. D. 8. 8 M. | C.F.S. | GAGE HT. | DATE | DIS GITARGE | ONLY | FROM | то | GAGE | DATUM | | 37 18 28 | 120 11 35 | SW23 7S 16E | 590 | | 12-24-55 | FEB 50-DATE | | 1950 | | 338.22 | usces | Station located 0.25 mi. below Owens Dam. Tributary to San Joaquin River, via Eastside Bypass. Flow regulated by Owens Reservoir. Records furn. by U.S.C.E. Drainage area is 25.6 sq. mi. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME SEAR CREEK NEAR CATHEYS VALLEY 1964 B55400 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|-------|-------|------|-------|-------|-------|-------|------|------|-------|-------| | , | 0.0 | 0.0 | 1.2 | 0.6 | 4.0 | 0 • 8 | 6.9 | 0.8 | 0.3 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 1.1 | 0.6 | 3.2 | 1.1 | 17 | 0.7 | 0.3 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0* | 0.0 | 1.2 | 0.5 | 2.8 | 1.2* | 9.0 | 0.9 | 0.3 | 0.0* | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 1.0* | 0.5 | 2.4 | 1.0 | 5.8 | 1.1 | 0.2 | 0.0 | 0.0* | 0.0 | 4 | | s | 0.0 | 0.0 * | 1.0 | 0.5 | 2.0 | 0•9 | 4.3 | 1.2 | 0.2 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.0 | 0.9 | 0.5 | 1.7* | 0.8 | 3.4* | 2.8* | 0 • 2 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.8 | 0.5 | 1.5 | 0.9 | 2.8 | 2.5 | 0.2 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.7 | 0.5* | 1.4 | 0.9 | 2 • 3 | 1.6 | 0 • 1 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 1.0 | 0.4 | 1.3 | 0.8 | 2.0 | 1.4 | 0.1 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 1.0 | 0.4 | 1.2 | 0.8 | 1.8 | 1.2 | 0.1 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 0.9 | 0.4 | 1.1 | 0.8 | 1.6 | 1.1 | 0.1 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 0.0 | 0.9 | 0.4 | 1.1 | 1.0 | 1.5 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.9 | 0.4 | 1.1 | 1.7 | 1.3 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 12 | | 14 | 0.0 | 0.0 | 0 • 8 | 0 • 4 | 1.1 | 1.4 | 1.2 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.0 | 0.8 | 0 • 4 | 1.0 | 1.2 | 1.2 | 8•0 | 0.1 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 0.8 | 0.4 | 1.0 | 1.0 | 1.1 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.7 | 0.5 | 1.0 | 0.9 | 1.1 | 0.8 | 0.1 | 0.0 | 0.0 | 0.0, | | | 18 | 0.0 | 0.0 | 0.7 | 0.6 | 1.0 | 0.9 | 1.0 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0* | 0.7 | 0.7 | 1.0 | 8•0 | 1.1 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 11 * | 0.7 | 0.8 | 0.9 | 0.9 | 1.1 | 0.7 | 0.0 | 0.0* | 0.0 | 0.0 | 20 | | 21 | 0.0 | 9.3 | 0.7 | 2.7 | 0.9 | 1.0 | 1.1 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | | | 22 | 0.0 | 3.1 | 0.6 | 144 | 0.9 | 1.7 | 1.0 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 3 • 1 | 0.5 | 55 | 0.9 | 12 | 1.1 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0* | 21 | 0.6 | 37 | 0.8 | 39 * | 1.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 7.7 | 0.6 | 28 | 0.8 | 31 | 1.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 3 • 6 | 0.5 | 22 | 0.8 | 22 | 1.1 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 2.3 | 0.5 | 18 | 0.8 | 14 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 1.7 | 0.5 | 12 | 0.8 | 9.4 | 0.9 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 1.6 | 0.5 | 8.6 | 0.8 | 5.7 | 0.8 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 1.4 | 0.5 | 6.4 | | 4 • 2 | 0.8 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 0.6 | 5.2 | | 3.4 | | 0.3 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 2.2 | 0.8 | 11.3 | 1.4 | 5 • 3 | 2.6 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | MEA | | MAX. | 0.0 | 21.0 | 1.2 | 144 | 4.0 | 39.0 | 17.0 | 2 • 8 | 0.3 | 0.0 | 0.0 | 0.0 | KAM | | MIN. | 0.0 | 0.0 | 0.5 | 0.4 | 0.8 | 0.8 | 0.8 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | MIN | | AC. FT. | | 131 | 47 | 692 | 78 | 324 | 156 | 56 | 6 | | | | AC.FT | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | M | _ | _ | | M I | |--------------------|------------------|--------------------|---|---|--------------|--------------------|-----| | DISCHARGE
2 • 1 | DISCHARGE
427 | GAGE HT.
5 • 81 | | | 11ME
0530 | DISCHARGE
0 • 0 | GA | AGE HT. MO. DAY TIME TOTAL ACRE FEET 1489 | | LOCATIO | н | MA | XIMUM DISCH | ARGE | PERIOD O | F RECORD | RECORD | | | | |----------------|-----------|------------------|-------|-------------|----------------|-------------|-------------|--------|----|------|-------| | LATITUDE LONG! | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | CONGITODE | M.D.8.&M. | CFS | GAGE HT. | DATE | VISCHARGE | OHLY | FROM | TO | GAGE | DATUM | | 37 28 38 | 120 06 43 | SW21 5S 17E | 3850E | 9.98 | 2- 1-63 | DEC 57-DATE | | 1957 | | 0.00 | LOCAL | Station located at Co. Rd. bridge, 3.7 mi. N. of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 24.6 sq. mi. Altitude of gage is approx. 1,210 ft. (from topographic map.) # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|---------------------------------| | 1964 | B05570 | BEAR CREEK BELOW BEAR RESERVOIR | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|------|------------|-----------|------|------------|------|-----|------|------|------|-------|--------| | 1 | 0.0 | 0.0 |
4.0 | 3.0 | 8.0 | 3.0 | 7.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 3.0 | 3.0 | 7.0 | 3.0 | 8.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 3.0 | 3.0 | 6.0 | 3.0 | 14 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 3.0 | 3.0 | 6.0 | 3.0 | 10 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 3.0 | 3.0 | 6.0 | 3.0 | 8.0 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.0 | 3.0 | 3.0 | 6.0 | 3.0 | 7.0 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 3.0 | 3.0 | 5.0 | 3.0 | 6.0 | 4.0 | 1.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 3.0 | 3.0 | 5.0 | 3.0 | 6.0 | 5.0 | 1.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 3.0 | 3.0 | 4.0 | 3.0 | 5.0 | 5.0 | 1.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 3.0 | 3.0 | 4.0 | 3.0 | 5.0 | 4.0 | 1.0 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 3.0 | 3.0 | 4.0 | 3.0 | 4.0 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 0.0 | 4.0 | 3.0 | 4.0 | 3.0 | 4.0 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 4.0 | 3.0 | 0.5 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | 0.5 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3,0 | 2.0 | 0.5 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | 0.5 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.0 | 4.0 | 4.0 | 3.0 | 3.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 3.0 | 121 * | 3.0 | 3.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 3.0 | 93 | 3.0 | 4.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0.0 | 3.0 | 63 | 3.0 | 16 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 5.0 | 3.0 | 42 | 3.0 | 40 | 2,0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 9.0 | 3.0 | 31 | 3.0 | 27 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 7.0 | 3.0 | 25 | 3.0 | 18 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 6.0 | 3.0 | 19 | 3.0 | 14 | 3.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 5.0 | 3.0 | 13 | 3.0 | 10 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 4.0 | 3.0
3.0 | 11
8.0 | | 7.0
7.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 3.0 | 8.0 | | 7.0 | | 1.0 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 1.2 | 3.1 | 15.8 | 4.0 | 6.7 | 4.4 | 2.0 | 0.5 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 9.0 | 4.0 | 121 | 8.0 | 40 | 14 | 5.0 | 1.0 | 0.0 | 0.0 | 0.0 | MAX. | | MIN. | 0.0 | 0.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | | 71 | 190 | 972 | 230 | 415 | 262 | 123 | 31 | | | | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - EAND . | MEAN | | MAXIM | J M | | | | MINIM | J M | | | |--------------------|-----------|----------|-----|-----|------|-----------|----------|-----|-----|------| | DISCHARGE
3 • 2 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | ノ | | | | | | TOTAL ACRE FEET 2294 | | | LOCATION | N | MAXII | NUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|----------|-------------|-------------|------|-------|---------|-------| | Γ | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF. | | | LATTIOUE | CONGITODE | M.D.B.8.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | | 37 21 27 | 120 14 05 | NE 5 7S 16E | 4460 | | 12-24-55 | JAN 55-DATE | | 1955 | | 320.50 | USCGS | Station located approx. 0.75 mi. below Bear Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Bear Reservoir. Records furn. by U.S.C.E. Drainage area is 72 sq. mi. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 856400 BURNS CREEK AT HORNITOS | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|------|------|-------|------|------|------|------|------|-------|-------| | 1 | 0.0 | 0.0 | 0.1 | 0.2 | 1.1 | 0.4 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 0.1 | 0.1 | 1.0 | 0.5 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 0.1 | 0.1 | 1.0 | 0.4# | 0.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.1# | 0.1 | 0.9 | 0.4 | 0.4 | 0.2 | 0.0 | 0.0 | 0.0* | 0.0 | 4 | | 5 | 0.0 | 0.0 | 0.1 | 0.1 | 0.8 | 0.3 | 0.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.1 | 0.1 | 0.1 | 0.7* | 0.3 | 0.3* | 0.3# | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.1 | 0.2 | 0.7 | 0 • 4 | 0.3 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.1 | 0.2* | 0.6 | 0.3 | 0.3 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | | | 9 | 0.0 | 0.0 | 0.2 | 0.1 | 0.6 | 0.3 | 0.3 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0 • 1 | 0.1 | 0.6 | 0.3 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | - 11 | 0.2 | 0.0 | 0.1 | 0.2 | 0.6 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0 • 1 | 0.0 | 0 • 1 | 0.2 | 0.6 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.1 | 0.2 | 0.5 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.1 | 0.1 | 0.1 | 0.5 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0 • 2 | 0.1 | 0.1 | 0.5 | 0 • 2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.1 | 0.1 | 0.1 | 0.5 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.1 | 0.1 | 0.2 | 0.5 | 0.3 | 0.2E | 0.1 | 0.0 | 0.0 | 0.0 | 0.07 | | | 18 | 0.0 | 0.0 | 0.1 | 0.2 | 0.4 | 0.3 | 0.2E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0+2* | 0 • 2 | 0.2 | 0.4 | 0.3 | 0.2E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0 • 4 | 0.2 | 0.2 | 0.5 | 0.3 | 0.2E | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.1 | 0.1 | 14 * | 0.5 | 0.2 | 0.2E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.1 | 0.1 | 95 | 0.4 | 0.4 | 0.2E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0 • 2 | 0.2 | 21 | 0.4 | 0.8 | 0.lE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0 • 2 | 0.2 | 7.5 | 0.4 | 1.0 | 0.1E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0 • 2 | 0.2 | 4.2 | 0.4 | 0.7 | 0.1E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0.1 | 0.2 | 2.9 | 0.4 | 0.6 | 0.1E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0.1 | 0.1 | 2.0 | 0.3 | 0.6 | 0.1E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.1 | 0.1 | 1.7 | 0.4 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.1 | 0.2 | 1.5 | 0.4 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.1 | 0.2 | 1.2 | | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 0 • 2 | 1.2 | | 0.5 | | 0.0 | 1 | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 0.1 | 0.1 | 5.0 | 0.6 | 0 • 4 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | MEA | | MAX. | 0.2 | 0.4 | 0.2 | 95.0 | 1.1 | 1.0 | 0.7 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.0 | 0.1 | 0.1 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN | | AC. FT. | 1 | 5 | 8 | 308 | 33 | 26 | 14 | 5 | | | | | AC.FT | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AHD * | MEAN | | MAXIMU | м | | \rightarrow | |-----------|-----------|----------|-----|-----|---------------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 0.5 | 222 | 4.25 | 1 | 22 | 0443 | | | | | | | / | MINIMUM GAGE HT. MO. DAY TIME DISCHARGE 10 1 0000 0.0 TOTAL ACRE FEET 399 | | LOCATION | 1 | MA | XIMUM DISCH | ARGE | PERIOD O | F RECORD | | DATU | M OF GAGE | | |----------|-----------|------------------|-------|-------------|---------|-------------|-------------|------|------|-----------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECOR |) | DISCHARGE | GAGE HEIGHT | PER | IOD | ZERO | REF. | | LATITODE | LONGFIODE | M.D.B.&M. | CFS | GAGE HT. | DATE | Dischange | OHLY | FROM | то | GAGE | DATUM | | 37 29 42 | 120 14 17 | SE17 5S 16E | 4340E | 10.66 | 2-15-62 | DEC 58-DATE | | 1958 | | 0.00 | LOCAL | Station located 130 ft. S of Stockton-Mariposa Road, 0.2 mi. SW of Hornitos. Tributary of San Joaquin River via Bear Creek. Drainage area is 26.7 sq. mi. Maximum discharge from slope-area measurement. Altitude of gage is approx. 780 ft. (From U.S.G.S. topographic map.) #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME BURNS CREEK BELOW BURNS RESERVOIR B56100 1964 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|------|------|------|------|------|-----|------|------|------|-------|----------------| | 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 111 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 14 | | 15 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0 • 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0 • 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.5 | 0.0 | 2.8* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0.3 | 0.0 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 1.2 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 1.2 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0.6 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0.4 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.2 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.1 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.3 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 0.0 | 0.3 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 0 • 2 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 1.2 | 0.0 | 3.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MAX. | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN.
AC.FT. | | AC. FT. | | 14 | | 22 | 1 | | | | | | | | | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | . / | | MAXIMU | M | | | | | MINIM | JM | | | |-------|------------------|-----------|----------|-----|-----|------|--------|-----|----------|-----|-----|------| | O • 0 | $\left \right $ | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHA | RGE | GAGE HT. | MO. | DAY | TIME | TOTAL ACRE FEET 37 | 1 | | LOCATION | ١ | | | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|-------|------------|------|--------|-----------|----------|--------------|-------------|------|-------|------------|-------| | 1 | | | 1/4 S | EC. T. | 8 R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO
ON | REF. | | ı | LATITUDE | LONGITUDE | M. | D.B.8 | M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 22-27 | 120 16 35 | NE36 | 6 S | 15E | 2590 | | 12-24-55 | APR 50- DATE | | 1950 | | 260.60 | usces | Station located 0.5 mi. below Burns Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Burns Reservoir. Records furn. by U.S.C.E. Drainage area is 73.8 sq. mi. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 B07400 SAN JOAQUIN RIVER NEAR STEVINSON | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|------|------------|----------|------|------|------|--------|------|----------|----------|----------|--------| | 1 | 63 | 21 | 21 | 27 | 33 | 25 | 46 | 49 | 100 | 42 | 42 | 55 | 1 | | 2 | 59 | 19 | 18 | 29 | 33 | 25 * | 49 # | 47 | 100 | 30 | 42 | 52 | 2 | | 3 | 53 | 18 | 18 | 37 * | 30 | 24 | 48 | 46 | 81 | 34 * | 49 | 50 | 3 | | 4 | 51 | 16 | 19 * | 45 | 31 | 22 | 51 | 48 # | 53 + | 33 | 55 + | | | | 5 | 55 | 16 | 18 | 80 | 26 * | 22 | 43 | 51 | 41 | 31 | 54 | 41 | 5 | | 6 | 56 | 17 | 17 | 81 | 26 | 25 | 37 | 59 | 41 | 28 | 49 | 36 | 6 | | 7 | 55 | 16 | 20 | 115 | 25 | 25 | 38 | 59 | 38 | 26 | 44 | 36 | 7 | | 8 | 62 | 15 * | 22 | 75
52 | 19 | 26 | 40 | 52 | 38 | 29
32 | 36
35 | 39
34 | 8 | | 9 | 69 | 14 | 21 | 52 | 19 | 29 | 37 | 55 | 43 | 34 | 36 | 32 | 9 | | 10 | 63 | 12 | 21 | 49 | 19 | 31 | 32 | 54 | 58 | 34 | 36 | 32 | 10 | | 111 | 53 | 14 | 20 | 47 | 15 | 30 | 31 | 53 | 83 | 32 | 35 | 30 | 11 | | 12 | 62 | 20 | 14 | 44 | 14 | 32 | 28 | 61 | 125 | 32 | 34 | 28 | 12 | | 13 | 65 | 20 | 13 | 55 | 14 | 35 | 32 | 63 | 148 | 37 | 36 | 27 | 13 | | 14 | 65 | 16 | 13 | 54 | 15 | 38 | 37 | 62 | 119 | 36 | 35 | 27 | 14 | | 15 | 81 | 18 | 16 | 54 | 33 | 42 | 39 | 53 | 86 | 42 | 36 | 25 | 15 | | 16 | 83 * | 25 | 21 | 49 | 44 | 44 | 37 | 51 | 67 | 44 | 39 | 25 | 16 | | 17 | 61 | 26 | 21 | 42 | 25 | 43 | 40 | 49 | 57 | 38 | 40 | 24 | 17 | | 18 | 60 | 28 | 21 | 36 | 26 | 38 | 41 | 48 | 53 | 34 | 37 | 24 | 18 | | 19 | 67 | 28 | 21 | 34 | 22 | 45 | 44 | 50 | 46 | 36 | 33 | 22 | 19 | | 20 | 68 | 37 | 26 | 32 | 23 | 37 | 56 | 62 | 40 | 38 | 40 | 23 | 20 | | 21 | 62 | 42 | 27 | 31 | 23 | 33 | 76 | 76 | 38 | 40 | 41 | 22 | 21 | | 22 | 62 | 43 | 24 | 61 | 22 | 34 | 53 | 74 | 40 | 44 | 44 | 26 | 22 | | 23 | 52 | 45 | 22 | 103 | 22 | 35 | 43 | 75 | 48 | 44 | 47 | 29 | 23 | | 24 | 47 | 42 | 23 | 112 | 22 | 37 | 46 | 83 | 55 | 44 | 48 | 25 | 24 | | 25 | 47 | 39 | 24 | 111 | 20 | 47 | 50 | 91 | 52 | 44 | 51 | 25 | 25 | | 26 | 51 | 35 | 2 7 | 96 | 21 | 48 | 51 | 89 | 44 | 42 | 58 | 26 | 26 | | 27 | 46 | 30 | 26 | 81 | 26 | 45 | 51 | 89 | 38 | 39 | 57 | 26 | 27 | | 28 | 43 | 28 | 25 | 53 | 27 | 46 | 50 | 88 | 41 | 36 | 53 | 29 | 28 | | 29 | 40 | 26 | 23 | 33 | 24 | 46 | 50 | 89 | 40 | 38 | 50 | 31 | 29 | | 30 | 32 | 24 | 25 | 25 | | 42 | 48 | 88 | 43 | 42 | 51 | 32 | 30 | | 31 | 25 | | 24 | 30 | | 42 | | 86 | | 41 | 52 | | 31 | | MEAN | 56.7 | 25.0 | 21.0 | 57.2 | 24.1 | 35.3 | 44.1 | 64.5 | 61.9 | 36.8 | 43.9 | 31.6 | | | MAX. | 83.0 | 45.0 | 27.0 | 115 | 44.0 | 48.0 | 76.0 | 91.0 | 148 | 44.0 | 58.0 | 55.0 | | | MIN. | 25.0 | 12.0 | 13.0 | 25.0 | 14.0 | 22.0 | 28.0 | 46 • 0 | 38.0 | 26 • 0 | 33.0 | 22.0 | | | AC. FT. | 3487 | 1488 | 1291 | 3517 | 1386 | 2168 | 2626 | 3967 | 3681 | 2265 | 2700 | 1882 | AC.FT. | E - ESTIMATED NR - NO RECORD * - DISCHARGE MEASUREMENT OR OBSENVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | | | | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 42.0 | 152 | 62.48 | 6 | 12 | 2100 | | , | (| | | | | MINIMUM GAGE HT. MO. DAY TIME DISCHARGE 11 10 1220 12.0 60.6 TOTAL ACRE FEET 30460 | | LOCATION | V | MAXII | NUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|-------------------|--------|-----------|---------|-------------|---------------|------|-------|------------|-------| | | | 1/4 SEC. T. B. R. | | OF RECORE | | DISCHARGE | GAGE HEIGHT | PER | 100 | 2ERO
ON | REF. | | LATITUOE | LONGITUOE | M, O, B, & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | OATUM | | 37 17 42 | 120 51 00 | 26 7 S 10E | 6060 | 73.04 | 2-17-62 | OCT 61-DATE | MAY 61-SEP 61 | 1961 | | 0.00 | USCGS | Station located on bridge 2.3 miles south of Stevinson on Lander Avenue. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|---| | 1964 | 852600 | NORTH FORK MERCEO RIVER NEAR COULTERVILLE | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|------|-------|--------| | 3 | 2 • 4 | 7.8 | 4.5 | 1.5 | 13 | 3.7 | 16 | 3.5 | 2.4 | 0.6 | 0.2 | 0.9 | 7 | | 2 | 2.0 | 8 • 2 | 4.9 | 1.5 | 11 | 5.4 | 18 | 3.6 | 2.5 | 0.5 | 0.1 | 0.8 | 2 | | 3 | 1.3 | 8.8 | 4.7 | 1.4 | 9.9 | 3.7* | 13 | 4.6 | 2.3 | 0.3* | 0.1 | 0.5 | 3 | | 4 | 0.7 | 8.5 | 3.4* | 1.4 | 8.5 | 3 • 1 | 11 | 5.0 | 2.1* | 0.3 | 0.1* | 0.3* | 4 | | 5 | 0.7 | 6.1* | 3 • 1 | 1.5 | 8.0* | 2 • 8 | 8.6 | 5+1 | 1.9 | 0 • 4 | 0.3 | 0.4 | 5 | | 6 | 0•8 | 7.5 | 3.5 | 1.3 | 8.0 | 2.8 | 7.6* | 8.2* | 2.2 | 0.4 | 0.3 | 0.4 | 6 | | 7 | 1.0 | 2.7 | 3.4 | 1.3 | 6.4 | 3.0 | 6.3 | 7.9 | 2.4 | 0.4 | 0.4 | 0.3 | 7 | | 8 | 1.0 | 2.0 | 3.3 | 1.3* | 6.0 | 2 • 4 | 6.2 | 7.3 | 2.4 | 0.2 | 0.3 | 0.3 | 8 | | 9 | 1.3 | 1.8 | 5 • 2 | 1.6 | 6.3 | 2.4 | 5.8 | 7.1 | 3.7 | 0.3 | 0.3 | 0.4 | 9 | | 10 | 1•5 | 1 • 8 | 3.9 | 1.8 | 6.3 | 2 • 5 | 5.4 | 6.5 | 2.4 | 0.3 | 0.3 | 0.4 | ID | | 11 | 2•7 | 1.4 | 3.6 | 1.6 | 5.7 | 2.7 | 4.7 | 5.0 | 2.1 | 0.3 | 0.5 | 0.6 | 11 | | 12 | 0.8 | 1.5 | 3 • 2 | 1.8 | 4.9 | 5.9 | 4.1 | 4.7 | 2.1 | 0.3 | 0.5 | 0.6 | 12 | | 13 | 0.7 | 1.4 | 2 • 8 | 2 • 2 | 4.7 | 5.5 | 3.6 | 4 • 6 | 1.9 | 0.3 | 0.5 | 0.5 | 13 | | 14 | 1.0 | 4.8 | 2.7 | 2 • 2 | 4.3 | 5 • 2 | 3.7 | 4.3 | 1.6 | 0.2 | 0.4 | 0.5 | 14 | | 15 | 1.0 | 7.3* | 2.7 | 2.1 | 4.5 | 4.3 | 3.8 | 4.0 | 1.3 | 0.3 | 0.5 | 0.6 | 15 | | 16 | 1.0 | 2.5 | 2.4 | 2.3 | 4.4 | 3 . 8 | 3.6 | 3.8 | 1.3 | 0.5 | 0.3 | 0.5 | 16 | | 17 | 0.5* | 2.4 | 2 • 2 | 2.5 | 4.0 | 3.6 | 3.3 | 3.6 | 1.3 | 0.3 | 0.6 | 0.5 | 17 | | 18 | 0.8 | 2.6 | 2.2 | 4.3 | 3.4 | 3.7 | 2.7 | 3 • 2 | 1.1 | 0.1 | 0.5 | 0.4 | 18 | | 19 | 1.2 | 8.0 | 2.1 | 3.8 | 2 • 6 | 3.1 | 4.7 | 3 • 2 | 0.9 | 0.1 | 0.6 | 0.6 | 19 | | 20 | 1.8 | 30 * | 2.1 | 4 • 2 | 3.1 | 3.0 | 3.7 | 2.9 | 0•9 | 0 • 2 | 0.8 | 0.6 | 20 | | 21 | 2.5 | 11 | 2.1 | 18 * | 2.9 | 3.1 | 4.0 | 3.1 | 0.7 | 0.1 | 0.6 | 0.6 | 21 | | 22 | 3.1 | 5+5 | 2 • 1 | 16 | 3.1 | 4.7 | 3.8 | 3 • 2 | 0.7 | 0.2 | 0.7 | 0.6 | 22 | | 23 | 4.9 | 12 | 2.1 | 11 | 2.9 | 8.0 | 4+1 | 3.1 | 0.7 | 0 • 2 | 0.8 | 0.6 | 23 | | 24 | 6+2 | 18 | 2 • 1 | 9.2 | 2.9 | 10 * | 4.1 | 3.1 | 0.6 | 0.2 | 1.1 | 0.5 | 24 | | 25 | 6.3 | 9•2 | 1.8 | 9•1 | 3.1 | 9.3 | 4.0 | 2 • 8 | 0.6 | 0 • 2 | 0.8 | 0.6 | 25 | | 26 | 5.7 | 6.6 | 1.8 | 8.8 | 3.2 | 11 | 3.8 | 3.1 | 0.6 | 0 • 2 | 0.9 | 0.5 | 26 | | 27 | 6.2 | 5+3 | 1.8 | 9.4 | 3.1 | 16 | 3.7 | 3.8 | 0.6 | 0.1 | 0.8 | 0.5 | 27 | | 28 | 5.5 | 5.6 | 1.8 | 10 | 3.1 | 19 | 3.5 | 3.2 | 0.8 | 0.3 | 0.6 | 0.5 | 28 | | 29 | 3.7 | 4.8 | 1.8 | 12 | 3.1 | 18 | 3 • 1 | 3.1 | 0.8 | 0 • 4 | 0.6 | 0.3 | 29 | | 30 | 7.5 | 4.5 | 1.8 | 15 | | 12 | 3.1 | 2.9 | 0.6 | 0.4 | 0.5 | 0.3 | 3D | | 31 | 7.8 | | 1.5 | 14 | | 11 | | 2.7 | | 0 • 4 | 0.7 | | 31 | | MEAN |
2.7 | 6.7 | 2.8 | 5.6 | 5.3 | 6.3 | 5.8 | 4.3 | 1.5 | 0.3 | 0.5 | 0.5 | MEAN | | MAX. | 7.8 | 30.0 | 5 • 2 | 18.0 | 13.0 | 19.0 | 18.0 | 8 • 2 | 3.7 | 0.6 | 1.1 | 0.9 | MAX. | | MIN. | 0.5 | 1.4 | 1.5 | 1.3 | 2.6 | 2.4 | 2.7 | 2.7 | 0.6 | 0.1 | 0.1 | 0.3 | MIN. | | AC. FT. | 166 | 396 | 172 | 345 | 302 | 386 | 343 | 262 | 90 | 18 | 31 | 30 | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | | MAXIMU | M | | $\overline{}$ | |-----------|-----------|----------|-----|-----|---------------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 3.5 | 43.0 | 3.72 | 11 | 20 | 0210 | | | | | | | | | · | MINIMU | | | | |-----------|----------|----|-----|------| | DISCHARGE | GAGE NT. | МО | DAY | TIME | | 0.0 | | 7 | 17 | 1500 | | | | | L | | | | TOTAL | • | |---|-----------|---| | Г | ACRE FEET | I | | | 2542 | | | | LOCATION | | | MAXIMUM DISCHARGE PERIOD OF RECORD | | | DATUM OF GAGE | | | | | | |---|----------|-----------|------------------|------------------------------------|-----------|---------|---------------|-------------|------|-----|------------|-------| | ſ | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 001 | 2ERO
ON | REF. | | L | LATITODE | LONGITODE | M, O, B, & M, | C.F.S. | GAGE HT. | DATE | - CONTACT | ONLY | FROM | ТО | GAGE | DATUM | | 1 | 37 44 51 | 120 02 12 | NW19 25 18E | 3440 | 7.83 | 1-31-63 | DEC 58-DATE | | 1958 | | 0.00 | LOCAL | Station located 40 ft. above Greeley Hill Road Bridge, 9 mi. NE of Coulterville. Drainage area is 30.3 sq. mi. Altitude of gage is 2,360 ft. (from U.S.G.S. topographic map.) ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 851250 MAXWELL CREEK AT COULTERVILLE | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|---------|-------|-------|------|-------|------|-------|-------|------|-------|-------|--------| | 1 | 0.0 | 0.0 | 0.6 | 0.5 | 3.6 | 1.1 | 14 | 0.7 | 0 • 2 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 0.6 | 0.5 | 3.1 | 2.1 | 12 | 0.6 | 0.2 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0* | 0.0 | 0.5 | 0 • 4 | 2.1 | 1.4* | 5.9 | 1.5 | 0.2 | 0.0* | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.1 | 0.8* | 0.4 | 1.8 | 1.2 | 4.0 | 1.4 | 0.2* | 0.0 | 0.0 * | 0.0* | 4 | | 5 | 0.0 | 0 • 2 * | 0.8 | 0.4 | 1.7 | 1.0 | 3.1 | 1.2 | 0 • 2 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 1.2 | 0.8 | 0 • 4 | 1.5* | 1.2 | 2.5* | 4.9* | 0 • 2 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.4 | 0.8 | 0.4 | 1.1 | 1.4 | 2.0 | 3.7 | 0 • 2 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.3 | 0.8 | 0.5* | 1.1 | 1 • 2 | 1.8 | 2.1 | 0.2 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.3 | 1.6 | 0.5 | 1.1 | 1.1 | 1.6 | 1.6 | 0.3 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0 • 4 | 1.3 | 0.5 | 1.3 | 1.0 | 1.5 | 1.6 | 0.2 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.8 | 0.4 | 1.0 | 0.6 | 1.3 | 0 • 8 | 1.3 | 1.3 | 0 • 2 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.3 | 0.6 | 0.8 | 0.6 | 1.1 | 3 • 8 | 1.2 | 1.2 | 0.1 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.2 | 0.8 | 0.6 | 0.5 | 1.1 | 3.9 | 1.1 | 1.1 | 0.1 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0-1 | 1.9 | 0.6 | 0.5 | 1.1 | 2.2 | 1.0 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0 • 1 | 10 * | 0.7 | 0.4 | 1.0 | 1.7 | 1.0 | 8.0 | 0.1 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.1 | 1.3 | 0.6 | 0.4 | 1.1 | 1.5 | 0.9 | 0.8 | 0.2 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0* | 0.6 | 0.5 | 0.5 | 1.4 | 1.4 | 0.9 | 0.8 | 0.1 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.3 | 0.4 | 1.4 | 1.3 | 1.1 | 8.0 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0* | 18 | | 19 | 0.0 | 2.8 | 0.5 | 1.4 | 1.0 | 1.0 | 1.4 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0 • 1 | 17 * | 0 • 4 | 1•4 | 1.4 | 1.0 | 1.2 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.1 | 2 • 1 | 0 • 4 | 19 * | 1.4 | 1.1 | 1.0 | 0.5 | 0.1 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.1 | 0 - 4 | 0.4 | 46 | 1.2 | 1.7 | 0.8 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.1 | 3.7 | 0.4 | 9.9 | 1.2 | 3.9 | 0.9 | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 6.0 | 0.4 | 5.8 | 1.3 | 18 * | 1.2 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 1.4 | 0 • 4 | 4.5 | 1.2 | 12 | 0.9 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0.7 | 0 • 4 | 4.3 | 1.1 | 18 | 0.7 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0 • 5 | 0.4 | 4.3 | 1.0 | 15 | 0.7 | 0 • 4 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.5 | 0.4 | 3.7 | 0.9 | 8.7 | 0.6 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.5 | 0.5 | 4.3 | 0.9 | 4.6 | 0.6 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.5 | 0.5 | 6.3 | | 3.0 | 0.5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.1 | | 0 - 4 | 4.9 | | 2 • 6 | | 0.2 | | 0.0 | 0.0 | | 31 | | MEAN | 0.1 | 1.8 | 0.6 | 4.0 | 1.4 | 3.9 | 2.2 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.8 | 17.0 | 1.6 | 46.0 | 3.6 | 18.0 | 14.0 | 4.9 | 0.3 | 0.0 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.0 | 0.4 | 0.4 | 0.9 | 0.8 | 0.5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 4 | 109 | 38 | 248 | 80 | 237 | 133 | 63 | 7 . | | | | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | , | MEAN | | MAXIMU | M | | | |---|-----------|-----------|----------|-----|-----|------| | ľ | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | Į | 1.3 | 135 | 4.28 | 1 | 22 | 0330 | MINIMUM DISCHARGE GAGE HT. MO. DAY TIME 10 0.0 1 2000 TOTAL ACRE FEET 921 | | LOCATION | | | MUM DISCH | HARGE | GE PERIOD OF RECORD | | | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|---------|---------------------|-----------------------|------|---------------|-------------|-------|------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE GAGE HEI | DISCHARGE GAGE HEIGHT | | PEF | PERIOO ZERO | | REF. | | CATTIONE | LONGITODE | M.D.8.8.M, | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | | 37 42 58 | 120 11 20 | SE34 2S 16E | 1720E | 5.73 | 2- 8-60 | DEC 58-DATE | | 1958 | | 0,00 | LOCAL | | \$tation located below Dogtown Road Bridge, 0.5 mi. NE of Coulterville. Tributary to Merced River. Drainage area is 17.0 sq. mi. Altitude of gage is 1740 ft. (from topographic map.) #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 805170 MERCED RIVER BELOW SNELLING | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|--------|------|------|------|------|------|------|------|------|----------|----------------|--------| | 1 | 34 | 19 | 21 | 17 | 20 | 19 | 28 * | 63 * | 48 | 67 | 77 | 70 | 1 | | 2 | 45 | 19 | 21 | 17 | 20 | 18 * | 26 | 67 | 47 | 63 | 76 | 69 | 2 | | 3 | 84 | 20 | 21 | 17 | 20 # | 17 | 26 | 79 | 50 * | 66 * | 76 | 69 | 3 | | 4 | 26 | 21 | 21 * | 18 | 20 | 18 | 23 | 82 | 4.9 | 71 | 76 * | 61 * | _ | | S | 20 | 24 * | 22 | 21 | 19 | 17 | 18 | 91 | 46 | 68 | 75 | 62 | S | | 6 | 14 | 28 | 21 | 22 * | 19 | 19 | 16 | 94 | 50 | 67 | 68 | 50 | 6 | | 7 | 13 | 24 | 21 | 22 | 19 | 19 | 18 | 94 | 53 | 69 | 69 | 50 | 7 | | 8 | 9.5 | 23 | 21 | 22 | 22 | 19 | 13 | 77 | 55 | 70 | 66 | 43 | 8 | | 9 | 8.4 | 22 | 21 | 21 | 22 | 16 | 14 | 73 | 74 | 68 | 69
71 | 28 | 9 | | 10 | 8.6 | 23 | 21 | 22 | 26 | 18 | 18 | 68 | 94 | 70 | 71 | 19 | 10 | | 11 | 19 | 23 | 20 | 22 | 26 | 19 | 29 | 59 | 82 | 76 | 72 | 9.0 | 11 | | 12 | 15 | 23 | 19 | 21 | 26 | 23 | 28 | 56 | 79 | 79 | 75 | 19 | 12 | | 13 | 12 | 22 | 18 | 21 | 26 | 21 | 26 | 55 | 73 | 79 | 73 | 17 | 13 | | 14 | 11 | 25 | 18 | 21 | 25 | 20 | 23 | 71 | 60 | 320 | 72 | 8 · 4
7 · 3 | 14 | | 15 | 11 | 33 | 19 | 21 | 22 | 19 | 38 | 70 | 57 | 70 | 75 | 7.3 | 15 | | 16 | 13 * | 26 | 19 | 20 | 23 | 19 | 54 | 60 | 69 | 61 | 73 | 5.0 | 16 | | 17 | 15 | 25 | 18 | 20 | 22 | 19 | 62 | 59 | 71 | 58 | 79 | 3.4 | 17 | | 18 | 15 | 25 | 18 | 21 | 23 | 20 | 53 | 58 | 51 | 53 | 79 | 3.0 | 18 | | 19 | 14 | 30 | 19 | 21 | 22 | 20 | 61 | 56 | 59 | 56 | 73
82 | 2.7 | 19 | | 20 | 14 | 41 | 19 | 21 | 22 | 19 | 70 | 51 | 66 | 54 | 8.2 | 2.5 | 20 | | 21 | 14 | 33 | 18 | 29 | 22 | 17 | 70 | 52 | 67 | 52 | 101 | 2.2 | 21 | | 22 | 13 | 29 | 18 | 38 | 21 | 18 | 70 | 57 | 73 | 51 | 76 | 2.1 | 22 | | 23 | 14 | 31 | 18 | 36 | 21 | 20 | 75 | 57 | 71 | 59 | 53 | 2.1 | 23 | | 24 | 14 | 32 | 18 | 27 | 21 | 23 | 80 | 60 | 67 | 62 | 19 | 1.9 | 24 | | 25 | 15 | 28 | 19 | 24 | 21 | 22 | 69 | 64 | 68 | 73 | 44 | 1.7 | 25 | | 26 | 15 | 27 | 18 | 24 | 17 | 22 | 67 | 68 | 74 | 68 | 55 | 1.5 | 26 | | 27 | 15 | 27 | 18 | 23 | 17 | 21 | 68 | 72 | 72 | 65 | 57 | 1.5 | 27 | | 28 | 15 | 22 | 19 | 21 | 17 | 19 | 68 | 63 | 66 | 75 | 64 | 1.5 | 28 | | 29 | 17 | 21 | 18 | 21 | 18 | 16 | 64 | 60 | 70 | 75 | 63 | 1.5 | 29 | | 30 | 20 | 21 | 18 | 21 | | 16 | 62 | 49 | 69 | 79 | 63 | 1.3 | 30 | | 31 | 17 | | 18 | 22 | | 15 | | 47 | | 81 | 65 | | 31 | | MEAN | 18.4 | 25 • 6 | 19.3 | 22.4 | 21.3 | 19.1 | 44.6 | 65.5 | 64.3 | 75.6 | 68.9 | 20.5 | MEAN | | MAX. | 84.0 | 41.0 | 22.0 | 38.0 | 26.0 | 23.0 | 80.0 | 94.0 | 94.0 | 320 | 101 | 70.0 | MAX. | | MIN. | 8.4 | 19.0 | 18.0 | 17.0 | 17.0 | 15.0 | 13.0 | 47.0 | 46.0 | 51.0 | 19.0 | 1.3 | MIN. | | AC. FT. | 1132 | 1521 | 1186 | 1377 | 1228 | 1174 | 2652 | 4030 | 3828 | 4651 | 4237 | 1221 | AC.FT. | E - ESTIMATED NR - NO RECORD * - DISCNARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | M | | |-----------|-----------|----------|-----|-----| | DISCHARGE | DISCHARGE | GAGE HT. | MD. | DAY | | 38 • 9 | 1530 | 9 • 35 | 7 | 14 | | | MINIMUM | | | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | | | | 1.3 | 4.73 | 9 | 27 | 1630 | TOTAL ACRE FEET 28240 | | LOCATION MAXIMUM DISCHARGE PERIOD OF RECORD | | | F RECORD | DATUM OF GAGE | | | | | | | |--------------------|---|------------------|--------|-----------|---------------|-------------|-------------|--------|----|------|-------| | LATITUDE LONGITUDE | | 1/4 SEC. T. & R. | | OF RECORD | RD DISCHARGE |
| GAGE HEIGHT | PERIOD | | ZERO | REF. | | LATITUDE | LONGITUOE | M.O.B.8.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 30 06 | 120 27 03 | NE17 5S 14E | 4910 | 12.51 | 5-10-63 | NOV 58-DATE | | 1958 | | 0.00 | LOCAL | TIME 1440 Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream. Altitude of gage is 221 feet, USGS datum. ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 805155 MERCED RIVER AT CRESSEY | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|------|------|------|-------|------|------|------|------|------|------|-------|--------| | 1 | 107 | 75 | 8.8 | 86 | 104 | 75 | 71 * | 64 | 86 | 72 | 73 | 93 | , | | 2 | 106 | 76 | 86 | 88 | 102 | 78 * | 70 | 65 | 91 | 71 | 86 | 86 | 2 | | 3 | 113 | 76 | 83 | 89 * | 101 # | 81 | 69 | 77 | 76 | 61 | 88 | 97 | 3 | | 4 | 145 | 77 | 83 * | 90 | 100 | 81 | 66 | 85 * | 78 * | 63 | 91 * | | 4 | | S | 137 | 76 * | 85 | 90 | 100 | 81 | 61 | 93 | 74 | 71 | 75 | 97 | 5 | | 6 | 109 | 76 | 85 | 90 | 97 | 84 | 63 | 105 | 70 | 89 * | 89 | 92 | 6 | | 7 | 101 | 84 | 86 | 91 | 96 | 92 | 60 | 123 | 76 | 95 | 88 | 85 | 7 | | 8 | 89 | 85 | 86 | 92 | 95 | 90 | 57 | 140 | 86 | 88 | 87 | 64 | 8 | | 9 | 83 | 82 | 86 | 91 | 94 | 86 | 56 | 125 | 96 | 87 | 82 | 88 | 9 | | 10 | 77 | 79 | 86 | 92 | 97 | 82 | 52 | 120 | 122 | 84 | 89 | 85 | 10 | | 11 | 94 | 79 | 85 | 91 | 95 | 84 | 53 | 115 | 136 | 88 | 82 | 74 | 11 | | 12 | 106 | 78 | 86 | 90 | 92 | 91 | 53 | 103 | 135 | 71 | 72 | 66 | 12 | | 13 | 109 | 78 | 85 | 89 | 91 | 92 | 56 | 87 | 126 | 73 | 70 | 60 | 13 | | 14 | 101 | 81 | 85 | 92 | 90 | 92 | 64 | 75 | 109 | 69 | 94 | 61 | 14 | | 15 | 95 | 91 | 84 | 95 | 90 | 92 | 64 | 65 | 108 | 311 | 98 | 52 | 15 | | 16 | 98 * | 100 | 82 | 93 | 95 | 8.6 | 64 | 57 | 95 | 178 | 99 | 55 | 16 | | 17 | 99 | 100 | 85 | 93 | 94 | 82 | 83 | 54 | 95 | 111 | 105 | 58 | 17 | | 18 | 102 | 96 | 86 | 95 | 92 | 81 | 91 | 61 | 94 | 93 | 103 | 62 | 18 | | 19 | 101 | 97 | 84 | 96 | 93 | 82 | 106 | 57 | 87 | 78 | 100 | 67 | 19 | | 20 | 98 | 107 | 84 | 95 | 92 | 82 | 127 | 48 | 75 | 63 | 110 | 65 | 20 | | 21 | 94 | 111 | 86 | 103 | 93 | 78 | 122 | 48 | 66 | 63 | 110 | 56 | 21 | | 22 | 91 | 111 | 86 | 136 | 93 | 75 | 127 | 58 | 64 | 64 | 120 | 51 | 22 | | 23 | 89 | 105 | 83 | 343 | 92 | 79 | 124 | 67 | 67 | 67 | 151 | 44 | 23 | | 24 | 86 | 103 | 85 | 215 | 96 | 81 | 114 | 71 | 70 | 59 | 142 | 49 | 24 | | 25 | 86 | 104 | 87 | 158 | 87 * | 80 | 113 | 70 | 75 | 58 | 118 | 53 | 25 | | 26 | 83 | 101 | 86 | 132 | 86 | 80 | 109 | 75 | 72 | 68 | 81 | 49 | 26 | | 27 | 84 | 97 | 89 | 116 | 83 | 80 | 104 | 85 | 63 | 73 | 82 | 45 | 27 | | 28 | 85 | 95 | 88 | 112 | 81 | 79 | 89 | 83 | 58 | 69 | 100 | 40 | 28 | | 29 | 82 | 94 | 87 | 107 | 80 | 76 | 72 | 96 | 59 | 64 | 99 | 27 | 29 | | 30 | 76 | 91 | 86 | 103 | | 75 | 70 | 93 | 62 | 59 | 111 | 33 | 30 | | 31 | 74 | | 86 | 105 | | 72 | | 90 | | 63 | 112 | | 31 | | MEAN | 96.8 | 90.2 | 85.5 | 112 | 93.1 | 82.3 | 81.0 | 82.4 | 85.7 | 84.6 | 97.0 | 65.6 | MEAN | | MAX. | 145 | 111 | 89.0 | 343 | 104 | 92.0 | 127 | 140 | 136 | 311 | 151 | 97.0 | MAX. | | MIN. | 74.0 | 75.0 | 82.0 | 86.0 | 80.0 | 72.0 | 52.0 | 48.0 | 58.0 | 58.0 | 70.0 | 27.0 | MIN. | | AC. FT. | 5950 | 5365 | 5254 | 6859 | 5357 | 5060 | 4820 | 5068 | 5100 | 5203 | 5964 | 3901 | AC.FT. | E — ESTIMATEO NR — NO RECORO * — OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | | MEAN | |---|-----------| | П | DISCHARGE | | l | 88.0 | M A X I M U M GAGE HT. MO. DAY TIME DISCHARGE 7 15 1220 523 12.40 MINIMUM DISCHARGE GAGE HT. MO MO. DAY TIME 25.0 10.35 9 29 1850 TOTAL ACRE FEET 63900 | | LOCATION | | | MUM DISCH | IARGE | PERIOD (| F RECORD | DATUM OF GAGE | | | | |------------|--------------------------------|---------------|-----------|-----------|----------|-------------|---------------|---------------|----|------------|-------| | 1.07/7/105 | LATITUDE LONGITUDE 1/4 SEC. T. | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOO | | ZERO
ON | REF. | | LATITODE | LONGITODE | M, D, B, & M, | C.F.S. | GAGE HT. | DATE | 5.00////102 | ONLY | FROM | TO | GAGE | DATUM | | 37 25 28 | 120 39 47 | SW 9 6S 12E | 34400 | 22.67 | 12- 4-50 | JUL 41-DATE | APR 41-JUL 41 | 1950 | | 96.24 | USCGS | Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream. Altitude of gage is approximately B5 ft. (USC & GS datum) ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME ORESTIMBA CREEK NEAR CROWS LANDING B08720 1964 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|------|------|-------|-------|-------|-------|------|-------|-------|------|-----------|-------| | 1 | 6.0 | 0.8 | 0.0 | 0.0 | 0.0 | 1.8 | 5.4 | 3.5 | 46 | 3.3 | 6.9 | 31 | 1 | | 2 | 6.8 | 4.3 | 0.0 | 0.0* | 0.0 | 2.1* | 19 * | 12 | 27 | 4.4 | 8.2 | 25 | 2 | | 3 | 5.5 | 13 | 0.0 | 0.0 | 0.0 | 1.7 | 6.2 | 9.3 | 10 | 4.1* | 11 | 6.5* | 3 | | 4 | 5.3 | 23 | 0.0* | 0.0 | 0.0* | 2.3 | 3.4 | 14 | 8.8 | 4.9 | 11 * | 7.8 | 4 | | 5 | 3.9 | 27 | 0.0 | 0.2 | 0.0 | 2.9 | 6.1 | 18 * | 7.9 | 5.1 | 13 | 17 | 5 | | 6 | 9.1 | 21 | 0.0 | 0.6 | 0.0 | 3 • 2 | 8.0 | 4.9 | 7.4 | 4.5 | 16 | 11 | 6 | | 7 | 12 | 20 | 0.0 | 0.6 | 0.0 | 3.8 | 7.1 | 3.2 | 5.9 | 6.7 | 25 | 4.0 | 7 | | 8 | 2 • 6 | 22 * | 0.0 | 0.5 | 0.0 | 2 • C | 7.4 | 3.7 | 7.8* | 11 | 20 | 28
4.8 | 8 | | 9 | 2 • 0 | 17 | 0.0 | 0.4 | 0.0 | 2 • 2 | 7.3 | 2.3 | 18 | 10 | 22 | 4 • 8 | 9 | | 10 | 2.9 | 6.5 | 0.0 | 0.8 | 0.0 | 1.5 | 6.8 | 1.1 | 11 | 11 | 27 | 7.7 | 10 | | 11 | 3.5 | 0.6 | 0.0 | 0.6 | 3.3 | 2.9 | 7.6 | 7.6 | 62 | 9.9 | 14 | 8.2 | 11 | | 12 | 6.2 | 0.4 | 0.0 | 9.0 | 4.6 | 2.1 | 6.8 | 4.8 | 46 | 6.7 | 13 | 23 | 12 | | 13 | 1.9 | 16 | 0.0 | 0.7 | 4.4 | 8.7 | 8.7 | 4.4 | 20 | 6.2 | 14 | 4.0 | 13 | | 14 | 1.3 | 9.7 | 0.0 | 0.9 | 4.9 | 2 • 5 | 6.5 | 2.5 | 11 | 5 • 8 | 13 | 4.3 | 14 | | 15 | 0.8 | 4.4 | 0.0 | 1.1 | 4.0 | 5 • 0 | 6.3 | 6.3 | 7.4* | 6.8 | 7.3 | 6.5 | 15 | | 16 | 5.2* | 1.2 | 0.0 | 2 • 3 | 5.9 | 7 . 2 | 6.2 | 1.9 | 4.3 | 7.6 | 7.3 | 6.2 | 16 | | 17 | 2 • 3 | 0.2 | 0.0 | 1.3* | 6.5* | 11 | 6.4 | 4.8 | 6.7 | 8.2 | 23 | 6.7 | 17 | | 18 | 0.8 | 0.0 | 0.0* | 0.3 | 4.7 | 6.7 | 5.5 | 23 | 24 | 7.5 | 16 | 11 | 18 | | 19 | 0.5 | 0.0 | 0.0 | 0.2 | 3.6 | 5 • 2 | 6.4 | 27 | 5.7 | 7.8 | 14 | 7.5 | 19 | | 20 | 0 • 4 | 0.0 | 0.0 | 0.6 | 4 • 6 | 5.5 | 26 | 8.0 | 3.8 | 25 | 12 | 2.6 | 20 | | 21 | 0.3 | 0.0* | 0.0 | 1.1 | 2.2 | 6.2 | 26 | 16 | 12 | 11 | 12 | 52 | 21 | | 22 | 0.3 | 0.0 | 0.0 | 0.7 | 3.2 | 7.5 | 24 | 17 | 21 | 8.3 | 9.7 | 28
5•6 | 22 | | 23 | 0.3 | 0.0 | 0.0 | 0.2 | 4.9 | 22 | 3 . 8 | 5.0 | 13 | 8.3 | 19 | 5.6 | 23 | | 24 | 0 • 4 | 0.0 | 0.0 | 0.0 | 4.3 | 72 | 21 | 7.2 | 7.7 | 9.5 | 49 | 5.4 | 24 | | 25 | 0.4 | 0.0 | 0.0 | 0.0 | 3.5 | 93 | 13 | 32 | 4 • 3 | 12 | 20 | 6.3 | 25 | | 26 | 0 • 4 | 0.0 | 0.0 | 0.0 | 4.3 | 101 | 7.5 | 21 | 5.4 | 14 | 6.9 | 15 | 26 | | 27 | 0.5 | 0.0 | 0.0 | 0.0 | 3.3 | 110 | 5.6 | 20 | 4 • 2 | 15 | 22 | 1.2 | 27 | | 28 | 0.6 | 0.0 | 0.0 | 0.0 | 2.7 | 57 | 4.5 | 20 | 6.1 | 21 | 12 | 19 | 28 | | 29 | 0.6 | 0.0 | 0.0 | 0.0 | 2.2 | 36 | 7.9 | 17 | 5.0 | 6.5 | 19 | 6.6 | 29 | | 30 | 0.7 | 0.0 | 0.0 | 0.0 | | 2.8 | 9.3 | 11 | 2.4 | 5.5 | 4.3 | 1.8 | 30 | | 31 | 0.7 | | 0.0 | 0.0 | | 12 | | 18 | | 6 • 2 | 6.7 | | 31 | | MEAN | 2.7 | 6.2 | 0.0 | 0.4 | 2.7 | 20.2 | 9.5 | 11.2 | 14.1 | 8.8 | 15.3 | 12.1 | MEAN | | MAX. | 12.0 | 27.0 | 0.0 | 2.3 | 6.5 | 110 | 26.0 | 32.0 | 62.0 | 25.0 | 49.0 | 52.0 | MAX | | MIN. | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 3.4 | 1.1 | 2.4 | 3.3 | 4.3 | 1.2 | MIN. | | AC. FT. | 167 | 371 | | 28 | 153 | 1240 | 567 | 687 | 837 | 543 | 941 | 721 | AC.FT | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW | MEAN | | MAXIMU | M. | _ | | |-----------|-----------|--------|----|----|------| | DISCHARGE | DISCHARGE | | | | TIME | | 8 • 6 | 122 | 2.96 | 3 | 27 | 1150 | | | (| | | | / | | | MINIM | J M | | | | |-----------|----------|-----|----|------|---| | DISCHARGE | GAGE HT. | | | | | | 0.0 | | 11 | 18 | 0000 | | | | | | | | 4 | | _ | | |-----------|-----------| | \subset | TOTAL | | Г | ACRE FEET | | | 6254 | | 1 | | | | LOCATION | ٧ | MAXIMUM DISCHARGE | | | PERIOD C | F RECORD | DATUM OF GAGE | | | | |-----------|-----------------------------------|------------|-------------------|----------|-----------|-------------|----------|---------------|------|------|-------| | I ATITUDE | ATITUDE LONGITUDE 1/4 SEC. T. & F | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | LATITUDE | LONGITUDE | M.D.B.8.M. | C.F.S. | GAGE HT. | DATE | OIS OIL MOE | ONLY | FROM | то | GAGE | DATUM | | 37 24 59 | 121 00 45 | SW 8 6S 9E | 2650E | 12.08 | 2- 1-63 | DEC 57-DATE | | 1957 | | 0.00 | LOCAL | Station located 0.1 mi. below River Road Bridge, 3.7 mi. NE of crows Landing. This includes drainage returned to San Joaquin River. Daily flows are estimated during periods of backwater from San Joaquin River. Altitude of gage is approximately 50 feet (from USGS topographic map). ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 B07080 SAN JOAQUIN RIVER AT GRAYSON | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------| | 1 | 695 | 545 | 705 | 570 | 620 | 380 | 500 | 380 | 475 | 320 | 245 | 435 | 1 | | 2 | 635 | 525 | 705 | 570 | 605 | 365 | 555 | 385 | 465 | 330 | 235 | 470 | 2 | | 3 | 600 | 535 | 705 | 580 | 605 | 350 | 510 | 395 | 490 | 335 | 280 | 480 | 3 | | 4 | 645 | 535 | 765 | 570 | 800 | 360 | 510 | 460 | 465 | 320 | 275 | 440 | 4 | | 5 | 755 | 555 | 765 | 575 | 600 | 335 | 445 | 480 | 440
| 345 | 280 | 425 | 5 | | 6 | 850 | 570 | 765 | 600 | 580 | 330 | 450 | 490 | 425 | 350 | 265 | 455 | 6 | | 7 | 1000 | 550 | 765 | 655 | 570 | 350 | 415 | 495 | 420 | 305 | 250 | 465 | 7 | | 8 | 1300 | 545 | 765 | 740 | 555 | 345 | 400 | 510 | 420 | 310 | 250 | 420 | 8 | | 9 | 940 | 555 | 765 | 785 | 535 | 355 | 365 | 510 | 490 | 285 | 270 | 375 | 9 | | 10 | 870 | 540 | 765 | 760 | 510 | 355 | 330 | 455 | 540 | 270 | 275 | 360 | 10 | | 11 | 910 | 525 | 765 | 745 | 500 | 330 | 315 | 480 | 610 | 260 | 240 | 330 | 11 | | 12 | 1020 | 510 | 725 | 725 | 500 | 365 | 290 | 460 | 625 | 255 | 250 | 345 | 12 | | 13 | 1260 | 510 | 725 | 710 | 490 | 455 | 290 | 425 | 610 | 250 | 240 | 370 | 13 | | 14 | 1700 | 520 | 730 | 705 | 480 | 440 | 290 | 430 | 630 | 245 | 250 | 360 | 14 | | 15 | 1600 | 540 | 715 | 700 | 475 | 415 | 310 | 400 | 610 | 230 | 250 | 330 | 15 | | 16 | 1560 | 555 | 700 | 685 | 460 | 430 | 335 | 360 | 555 | 245 | 260 | 355 | 16 | | 17 | 1010 | 570 | 700 | 680 | 480 | 410 | 330 | 385 | 490 | 285 | 300 | 360 | 17 | | 18 | 1080 | 600 | 695 | 655 | 460 | 395 | 335 | 390 | 470 | 315 | 350 | 345 | 18 | | 19 | 1030 | 640 | 680 | 635 | 445 | 370 | 405 | 430 | 425 | 320 | 330 | 350 | 19 | | 20 | 1060 | 720 | 665 | 630 | 435 | 360 | 470 | 455 | 420 | 315 | 280 | 360 | 20 | | 21 | 1480 | 760 | 655 | 655 | 425 | 305 | 485 | 460 | 440 | 305 | 290 | 365 | 21 | | 22 | 1510 | 755 | 840 | 695 | 410 | 325 | 495 | 455 | 445 | 290 | 275 | 405 | 22 | | 23 | 1260 | 805 | 625 | 715 | 410 | 490 | 470 | 430 | 390 | 260 | 345 | 410 | 23 | | 24 | 1070 | 865 | 625 | 740 | 400 | 535 | 440 | 440 | 335 | 220 | 410 | 535 | 24 | | 25 | 925 | 860 | 670 | 775 | 405 | 595 | 485 | 470 | 330 | 230 | 405 | 705 | 25 | | 26 | 770 | 860 | 680 | 775 | 395 | 570 | 480 | 470 | 330 | 245 | 365 | 725 | 26 | | 27 | 670 | 860 | 695 | 725 | 375 | 550 | 480 | 480 | 320 | 290 | 345 | 765 | 27 | | 28 | 615 | 860 | 610 | 695 | 360 | 560 | 455 | 490 | 305 | 290 | 350 | 750 | 28 | | 29 | 585 | 880 | 595 | 665 | 355 | 525 | 415 | 550 | 365 | 280 | 335 | 735 | 29 | | 30 | 580 | 885 | 570 | 630 | | 570 | 390 | 510 | 340 | 230 | 385 | 735 | 30 | | 31 | 580 | | 570 | 630 | | 525 | | 490 | | 235 | 390 | | 31 | | MEAN | 986 | 651 | 694 | 677 | 484 | 421 | 418 | 452 | 456 | 283 | 299 | 465 | MEAN | | MAX. | 1700 | 885 | 765 | 785 | 620 | 595 | 555 | 550 | 630 | 350 | 410 | 765 | MAX. | | MIN. | 580 | 510 | 570 | 570 | 355 | 305 | 290 | 360 | 305 | 220 | 235 | 330 | MIN. | | AC. FT. | 60625 | 38747 | 42655 | 41603 | 27848 | 25874 | 24883 | 27808 | 27124 | 17385 | 18387 | 27689 | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | | MAXIMU | M | | _ | | MINIM | J M | _ | $\overline{}$ | |------------------|-----------|----------|-----|-----|------|-----------|----------|-----|-----|---------------| | DISCHARGE
524 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 324 | | | | |) | | | | | | TOTAL ACRE FEET 380628 | | LOCATION | | | MUM DISCH | IARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|------------------------------------|------------|-----------------|-----------|---------|-------------|-------------|---------------|------|------------|-----------------------| | | ATITUDE LONGITUDE 1/4 SEC. T. & R. | | OF RECORD | | | OIS CHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | LATITOOE | LUNGITUUE | M.D.B.B.M. | C.F.S. GAGE HT. | | DATE | | ONLY | FROM | то | GAGE | DATUM | | 37 33 47 | 121 09 06 | NW25 4S 7E | 23900 | 45.15 | 3- 8-41 | JUL 28-DATE | | 1960
1960 | 1959 | 0.00 | USED
USCGS
USED | Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn. by City of San Francisco. ## DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 804175 TUOLUMNE RIVER AT LAGRANGE BRIDGE | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|--------|--------|--------|--------|-------|------|------|-------|-------|-------|------|-------|-------| | 1 | 175 | 1400 | 2800 | 1590 | 616 | 27 | 13 | 13 | 3.1 | 1.6 | 1.1 | 4.7 | 1 | | 2 | 184 | 1440 | 2750 | 1660 | 530 | 23 * | 16 # | 12 | 3.3 | 2.7* | 8.9 | 4.4* | 2 | | 2 | 192 | 1420 | 2410 * | 1190 | 580 * | 17 | 16 | 13 | 2.9* | 2.7 | 8.3* | 4.7 | 3 | | 4 | 192 | 1460 * | 2400 | 1400 | 645 | 16 | 9.8 | 13 * | 3.5 | 1.7 | 11 | 4.0 | 4 | | 5 | 193 | 1470 | 2420 | 1430 | 637 | 16 | 9.5 | 11 | 3.5 | 6.7 | 11 | 4.7 | 5 | | 6 | 8.5 | 1460 | 2460 | 1480 # | 656 | 15 | 9.8 | 12 | 4.0 | 5.5 | 12 | 4.2 | 6 | | 7 | 187 | 1460 | 2400 | 1400 | 656 | 16 | 9.8 | 11 | 2.0 | 2.1 | 11 | 4.2 | 7 | | 8 | 190 | 1470 | 2410 | 957 | 646 | 13 | 9.7 | 7.1 | 2.6 | 2.3 | 11 | 4.8 | 8 | | 9 | 190 | 1490 | 2400 | 735 | 457 | 13 | 11 | 3.8 | 2.9 | 4.5 | 11 | 12 | 9 | | 10 | 191 | 1480 | 2220 | 728 | 565 | 15 | 14 | 3.0 | 1.9 | 4.1 | 11 | 16 | 10 | | 11 | 194 | 1510 | 2260 | 528 | 649 | 14 | 11 | 1.3 | 1.4 | 3.5 | 12 | 4.4 | 31 | | 12 | 195 | 1540 | 2240 | 505 | 671 | 16 | 11 | 1.2 | 17 | 2.7 | 12 | 2.8 | 12 | | 13 | 6.9 | 1560 | 2310 | 649 | 807 | 15 | 10 | 1.8 | 14 | 1.2 | 12 | 2.0 | 13 | | 14 | 184 | 1580 | 2050 | 647 | 678 | 15 | 11 | 1.4 | 7.6 | 1.1 | 12 | 1.7 | 14 | | 15 | 265 | 1670 | 2070 | 684 | 649 | 15 | 16 | 1.7 | 2 • 1 | 6.6 | 12 | 3.8 | 15 | | 16 | 741 | 1860 | 2200 | 597 | 470 | 14 | 13 | 2.4 | 1.1 | 9.8 | 16 | 5.6 | 16 | | 17 | 869 | 1860 | 2110 | 605 | 579 | 15 | 12 | 2 • 6 | 35 | 2.4 | 14 | 4.5 | 17 | | 18 | 881 | 2030 | 2010 | 546 | 536 | 18 | 26 | 2.2 | 4 . 8 | 2.6 | 14 | 2.0 | 18 | | 19 | 1230 | 2200 | 1870 | 540 | 348 | 14 | 13 | 16 | 1.9 | 0 • 2 | 13 | 1.6 | 19 | | 20 | 1350 | 2280 | 1890 | 509 | 347 | 15 | 11 | 4.5 | 2 • 3 | 0.1 | 47 | 1.4 | 20 | | 21 | 1710 | 2170 | 1860 | 787 | 354 | 16 | 16 | 2.7 | 1.7 | 0.0 | 13 | 1.2 | 21 | | 22 | 1730 * | 2340 | 1870 | 719 | 351 | 18 | 15 | 2.0 | 1.6 | 0.4 | 7.6 | 1.7 | 22 | | 23 | 1720 | 2410 | 2090 | 618 | 305 | 16 | 12 | 2.0 | 3.3 | 1.3 | 3.9 | 4.1 | 23 | | 24 | 1570 | 2400 | 2430 | 583 | 362 | 17 | 12 | 2.0 | 7.3 | 6.4 | 3.5 | 9.3 | 24 | | 25 | 1120 | 2380 | 2370 | 576 | 443 | 16 | 12 | 2.3 | 3.7 | 10 | 24 | 5.5 | 25 | | 26 | 1130 | 2440 | 2380 | 502 | 179 | 27 | 12 | 3.6 | 1.8 | 0.4 | 6.8 | 1.9 | 26 | | 27 | 980 | 2540 | 1660 | 546 | 33 | 17 | 12 | 3.5 | 1.5 | 0.0 | 3.7 | 1.8 | 27 | | 28 | 1170 | 2720 | 1640 | 616 | 54 | 24 | 12 | 3.2 | 1.4 | 0.0 | 3.4 | 1.1 | 28 | | 29 | 1200 | 2710 | 1550 | 624 | 36 | 17 | 12 | 3.0 | 1.5 | 0.3 | 3.5 | 1.3 | 29 | | 30 | 1210 | 2780 | 1470 | 779 | | 15 | 13 | 3.3 | 1.5 | 1.1 | 3.4 | 0.6 | 30 | | 31 | 1210 | | 1730 | 632 | | 18 | | 3.5 | | 0.0 | 3.6 | | 31 | | MEAN | 722 | 1918 | 2153 | 818 | 477 | 16.9 | 12.7 | 5.3 | 4.7 | 2.7 | 10.9 | 4.1 | MEAN | | MAX. | 1730 | 2780 | 2800 | 1660 | 807 | 27.0 | 26.0 | 16.0 | 35.0 | 10.0 | 47.0 | 16.0 | MAX | | MIN. | 6.9 | 1400 | 1470 | 502 | 33.0 | 13.0 | 9.5 | 1.2 | 1.1 | 0.0 | 1.1 | 0.6 | MIN. | | AC. FT. | 44370 | 114100 | 132400 | 50310 | 27450 | 1037 | 755 | 327 | 282 | 167 | 668 | 242 | AC.FT | E - ESTIMATED NR - NO RECORD * DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | M | | _ | |-----------|-----------|----------|----|----|------| | DISCHARGE | DISCHARGE | GAGE HT. | | | | | 512 | 2920 | 72.31 | 12 | 11 | 2020 | | MINIMUM | | | | | | | | | | | |---------------------------------|--|---|----|------|--|--|--|--|--|--| | DISCHARGE GAGE HT. MO. DAY TIME | | | | | | | | | | | | 0.0 | | 7 | 20 | 2400 | TOTAL | |---|-----------| | | ACRE FEET | | | 372100 | | (| | | ſ | | LOCATION | N . | MAXIMUM DISCHARGE | | PERIOD O | DATUM OF GAGE | | | | | | |---|----------|-----------|------------------|-------------------|-----------|----------|------------------------------|-----------------------|------|--------|------------|-------| | ľ | | | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | DISCHARGE GAGE HEIGHT | | PERIOD | | REF. | | ١ | LATITUDE | LONGITUOE | M. O. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | ON
GAGE | DATUM | | | 37 39 59 | 120 27 40 | NW20 3S 14E | 48200 | 188.0 | 12- 8-50 | OCT 36-SEP 60
OCT 61-DATE | | 1937 | | 0.00 | USGS | Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. Drainage area is 1,540 sq. mi. Altitude of gage is approximately 175 feet (from USGS topographic map.) # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE 1964 B04165 | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|--------|--------|--------|--------|-------|------|------|------|------|------|------|-------|--------| | 1 1 | 61 | 1490 | 3040 | 1810 | 779 | 75 | 62 | 45 | 29 | 31 | 26 | 36 | 1 | | 2 | 208 | 1590 | 3070 | 1840 | 701 | 67 * | 58 * | 46 | 36 | 30 * | 27 | | 2 | | 3 | 233 | 1600 | 2690 * | 1410 | 681 * | 58 | 53 | 49 | 34 * | 29 | 27 * | 31 | 3 | | 4 | 233 | 1610 * | 2650 | 1570 | 774 | 51 | 57 | 52 * | 37 | 29 | 27 | 33 | 4 | | 5 | 231 | 1640 | 2670 | 1480 | 771 | 51 | 55 | 50 | 40 | 32 | 27 | 31 | 5 | | 6 | 140 | 1660 | 2700 | 1480 * | 774 | 52 | 51 | 55 | 39 | 33 | 29 | 34 | 6 | | 7 | 94 | 1650 | 2660 | 1430 | 785 | 52 | 45 | 51 | 40 | 33 | 35 | 35 | 7 | | 8 | 219 | 1660 | 2650 | 1290 | 770 | 48 | 45 | 50 | 42 | 31 | 36 | 32 | 8 | | 9 | 225 | 1670 | 2650 | 845 | 636 | 46 | 44 | 50 | 46 | 31 | 37 | 30 | 9 | | 10 | Ž30 | 1680 | 2420 | 845 | 613 | 46 | 45 | 45 | 42 | 31 | 35 | 28 | 10 | | 11 | 251 | 1720 | 2410 | 755 | 733 | 45 | 46 | 43 | 43 | 28 | 35 | 29 | 11 | | 12 | 232 | 1760 | 2430 | 622 | 728 | 52 | 49 | 39 | 47 | 27 | 33 | 29 | 12 | | 13 | 139 | 1770 | 2510 | 626 | 815 | 53 | 50 | 36 | 45 | 27 | 33 | 30 | 13 | | 14 | 98 | 1800 | 2250 | 775 | 850 | 49 | 51 | 31 | 44 | 30 | 38 | 30 | 14 | | 15 | 249 |
1880 | 2260 | 780 | 765 | 49 | 45 | 32 | 46 | 30 | 41 | 26 | 15 | | 16 | 642 | 2110 | 2330 | 744 | 599 | 48 | 49 | 33 | 46 | 29 | 43 | 27 | 16 | | 17 | 1050 | 2110 | 2290 | 721 | 610 | 46 | 47 | 34 | 42 | 27 | 43 | 27 | 17 | | 18 | 1050 | 2180 | 2180 | 720 | 668 | 45 | 49 | 33 | 4.4 | 25 | 39 | 31 | 18 | | 19 | 1230 | 2430 | 2070 | 650 | 444 | 46 | 59 | 31 | 46 | 26 | 41 | 32 | 19 | | 20 | 1470 | 2560 | 2080 | 635 | 409 | 46 | 51 | 31 | 44 | 29 | 46 | 31 | 20 | | 21 | 1790 | 2410 | 2090 | 701 | 412 | 46 | 43 | 33 | 43 | 29 | 68 | 28 | 21 | | 22 | 1860 * | 2610 | 2060 | 948 | 404 | 50 | 43 | 36 | 36 | 28 | 49 | 29 | 22 | | 23 | 1870 | 2680 | 2170 | 823 | 364 | 56 | 43 | 39 | 35 | 27 | 46 | 28 | 23 | | 24 | 1840 | 2670 | 2570 | 750 | 350 | 53 | 43 | 36 | 37 | 28 | 42 | 28 | 24 | | 25 | 1300 | 2650 | 2510 | 718 | 468 | 53 | 40 | 36 | 33 | 29 | 39 | 30 | 25 | | 26 | 1320 | 2700 | 2630 | 686 | 426 | 54 | 38 | 36 | 32 | 30 | 37 | 35 | 26 | | 27 | 1170 | 2770 | 1840 | 602 | 113 | 59 | 38 | 34 | 33 | 29 | 36 | 33 | 27 | | 28 | 1290 | 2980 | 1810 | 723 | 84 | 56 | 42 | 34 | 34 | 28 | 37 | 32 | 28 | | 29 | 1370 | 2960 | 1730 | 761 | 110 | 59 | 36 | 31 | 32 | 27 | 36 | 31 | 29 | | 30 | 1360 | 3040 | 1650 | 819 | | 56 | 39 | 30 | 32 | 28 | 35 | 28 | 30 | | 31 | 1370 | | 1830 | 872 | | 54 | | 32 | | 27 | 38 | | 31 | | MEAN | 801 | 2135 | 2352 | 949 | 574 | 52.3 | 47.2 | 39.1 | 39.3 | 29.0 | 37.5 | 30.5 | MEAN | | MAX. | 1870 | 3040 | 3070 | 1840 | 850 | 75.0 | 62.0 | 55.0 | 47.0 | 33.0 | 68.0 | 36.0 | MAX | | MIN. | 61.0 | 1490 | 1650 | 602 | 84.0 | 45.0 | 36.0 | 30.0 | 29.0 | 25.0 | 26.0 | 26.0 | MIN. | | AC. FT. | 49240 | 127000 | 144600 | 58380 | 33000 | 3215 | 2809 | 2406 | 2339 | 1781 | 2303 | 1815 | AC.FT. | E — ESTIMATED NR — NO RECORD * — OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | MAXIMUM | | | | | | | | | | |-----------|-----------|----------|-----|-----|------|--|--|--|--|--| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | 590 | 3080 | 13.12 | 12 | 2 | 2030 | | | | | | | | | | | i I | | | | | | | | MINIMUM | | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | | 03.0 | 8.58 | 10 | 1 | 1640 | TOTAL | |---|-----------| | | ACRE FEET | | | 428900 | | (| , | | LOCATION | | | | MAXIMUM DISCHARGE | | | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|---------------|-----------|-------------------|-----------|----------|---|---------------|--------------|-----|---------|----------------| | LATITUDE | | 1/4 SEC. | . T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | HOD | OD ZERO | | | | LONGITUDE | M. D. B. & M. | | C.F,S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 38 08 | 120 37 03 | NW35 3 | 3S 12E | 49800 | 128.2 | 12- 8-50 | JUL 28-OCT 36
JAN 37-FEB 38
JUN 38-DATE | | 1930
1940 | | 0.00 | USCGS
USCGS | Station located at highway bridge, 7.5 mi. E of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 110 feet (from USGS topographic map.) #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME TUOLUMNE RIVER AT HICKMAN BRIDGE 1964 804150 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|--------|--------|--------|--------|-------|-------|-------|-------|------|------|------|-------|-------| | | 83 | 1600 | 2770 | 1780 | 718 | 160 | 117 | 101 | 67 | 74 | 70 | 97 | 1 | | 2 | 317 | 1710 | 2810 | 1830 | 653 | 149 * | 114 * | 108 | 69 | 77 * | 69 | 92 * | 2 | | 3 | 370 | 1710 | 2480 * | 1450 | 610 * | 141 | 112 | 113 | 77 * | 79 | 65 * | 93 | 3 | | 4 | 382 | 1700 * | 2430 | 1630 | 724 | 130 | 119 | 111 * | 75 | 75 | 53 | 99 | 4 | | 5 | 399 | 1720 | 2450 | 1500 | 725 | 126 | 115 | 109 | 77 | 80 | 55 | 93 | 5 | | 6 | 363 | 1740 | 2510 | 1490 * | 725 | 128 | 110 | 120 | 78 | 82 | 56 | 94 | 6 | | 7 | 158 | 1700 | 2490 | 1520 | 739 | 126 | 101 | 122 | 77 | 78 | 63 | 101 | 7 | | 8 | 361 | 1710 | 2480 | 1460 | 731 | 123 | 98 | 118 | 84 | 77 | 68 | 101 | 8 | | 9 | 388 | 1700 | 2490 | 941 | 668 | 118 | 99 | 118 | 102 | 80 | 62 | 94 | 9 | | 10 | 385 | 1680 | 2280 | 917 | 539 | 115 | 94 | 114 | 88 | 80 | 55 | 98 | 10 | | 111 | 586 | 1690 | 2240 | 856 | 710 | 118 | 95 | 112 | 84 | 77 | 51 | 97 | 11 | | 12 | 594 | 1730 | 2280 | 697 | 714 | 121 | 96 | 100 | 86 | 72 | 50 | 101 | 12 | | 13 | 532 | 1740 | 2350 | 680 | 771 | 122 | 102 | 98 | 84 | 72 | 50 | 99 | 13 | | 14 | 208 | 1740 | 2150 | 847 | 862 | 120 | 99 | 92 | 82 | 69 | 55 | 101 | 14 | | 15 | 417 | 1810 | 2110 | 826 | 758 | 116 | 92 | 85 | 84 | 75 | 58 | 96 | 15 | | 16 | 653 | 1970 | 2200 | 802 | 645 | 113 | 91 | 90 | 89 | 78 | 65 | 94 | 16 | | 17 | 1150 | 1980 | 2150 | 767 | 590 | 115 | 94 | 89 | 92 | 74 | 70 | 94 | 17 | | 18 | 1190 | 2000 | 2080 | 761 | 701 | 108 | 93 | 82 | 93 | 70 | 62 | 93 | 18 | | 19 | 1300 | 2310 | 1920 | 692 | 502 | 112 | 108 | 80 | 104 | 65 | 55 | 100 | 19 | | 20 | 1610 | 2450 | 1930 | 682 | 442 | 111 | 107 | 79 | 95 | 74 | 62 E | 100 | 20 | | 21 | 1880 | 2300 | 1960 | 711 | 441 | 114 | 98 | 84 | 95 | 78 | 63 E | 93 | 21 | | 22 | 2000 - | 2480 | 1930 | 988 | 441 | 119 | 94 | 86 | 88 | 69 | 69 E | 90 | 22 | | 23 | 1950 | 2540 | 2020 | 850 | 415 | 123 | 97 | 87 | 79 | 66 | 74 E | 91 | 23 | | 24 | 1960 | 2550 | 2480 | 762 | 388 | 119 | 94 | 92 | 72 | 72 | 81 E | 85 | 24 | | 25 | 1480 | 2510 | 2450 | 718 | 505 | 117 | 95 | 99 | 76 | 67 | 97 E | 87 | 25 | | 26 | 1480 | 2530 | 2600 | 694 | 530 | 117 | 92 | 100 | 70 | 71 | 8.8 | 94 | 26 | | 27 | 1350 | 2550 | 1810 | 584 | 260 | 120 | 92 | 94 | 69 | 76 | 88 | 96 | 27 | | 28 | 1360 | 2750 | 1790 | 705 | 278 | 115 | 92 | 93 | 70 | 73 | 95 | 97 | 28 | | 29 | 1500 | 2730 | 1650 | 727 | 249 | 112 | 91 | 95 | 73 | 67 | 93 | 94 | 29 | | 30 | 1480 | 2780 | 1590 | 729 | | 110 | 94 | 83 | 76 | 69 | 92 | 91 | 30 | | 31 | 1490 | | 1770 | 834 | | 107 | | 69 | | 73 | 98 | | 31 | | MEAN | 948 | 2070 | 2215 | 982 | 587 | 121 | 99.8 | 97.5 | 81.8 | 73.8 | 68.8 | 95.2 | MEAN | | MAX. | 2000 | 2780 | 2810 | 1830 | 862 | 160 | 119 | 122 | 104 | 82.0 | 98.0 | 101 | MAX | | MIN. | 83.0 | 1600 | 1590 | 584 | 249 | 107 | 91.0 | 69.0 | 67.0 | 65.0 | 50.0 | 85.0 | MIN. | | AC. FT. | 58270 | 123200 | 136200 | 60360 | 33790 | 7428 | 5940 | 5996 | 4869 | 4540 | 4229 | 5663 | AC.FT | E — ESTIMATED NR — NO RECORD * — OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | | MAXIMU | м | | _ | |-----------|-----------|----------|----|----|------| | DISCHARGE | DISCHARGE | GAGE HT. | | | | | 620 | 2870 | 76 • 12 | 12 | 26 | 1340 | | . , | (| | | | | MINIMUM DISCHARGE GAGE HT. MO DAY TIME 42.0 71.36 8 12 2150 TOTAL ACRE FEET 450400 | | LOCATION | | | MAXI | MUM DISCH | ARGE | PERIOD OF RECORD DATUM OF | | | OF GAGE | AGE | | |--|---|-----------|---------------|-----------|-----------|-----------------------|---|--------|------|------------|------|-------| | | LATITUDE LONGITUDE 1/4 SEC. T. & R. M. D. B. & M. | | | OF RECORD | | DISCHARGE GAGE HEIGHT | | PERIOD | | ZERO
ON | REF. | | | | | | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | TO | GAGE | DATUM | | | 37 38 10 | 120 45 14 | NW34 3S 11E | 59000 | 96.2 | 12- 8-50 | JUL 32-OCT 36
JAN 37-MAR 37
JUL 37-FEB 38 | | 1932 | | 0.00 | USCGS | | | | | | | | | JUL 38-DEC 38 | | | | | | Station located at Hickman-Waterford Road Bridge, immediately S of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 80 feet, USC&GS Datum. In August 1964 this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford Road Bridge. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) STATION NAME WATER YEAR STATION NO. B04130 DRY CREEK NEAR MODESTO 1964 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|--------|------|-------|------|------|------|--------|------|----------|------|-------|--------| | 1 1 | 59 | 20 | 20 | 16 | 33 | 13 | 53 | 78 | 46 | 40 | 30 | 61 | 1 | | 2 | 60 | 20 | 20 | 16 | 29 | 14 * | 67 * | 83 | 51 | 39 + | 31 | 57 | 2 | | 3 | 62 | 19 | 19 * | 16 | 25 | 16 | 53 | 85 | 48 | 33 | 34 * | 52 | 3 | | 4 | 66 | 19 # | 19 | 16 | 23 | 15 | 34 | 92 | 47 | 29 | 28 | 53 * | 4 | | 5 | 77 | 20 | 19 | 16 | 20 * | 19 | 32 | 82 * | 46 | 29 | 28 | 42 | 5 | | 6 | 80 | 21 | 19 | 16 * | 19 | 31 | 29 | 89 | 5 3 | 35 | 28 | 44 | 6 | | 7 | 75 | 21 | 19 | 16 | 18 | 51 | 30 | 86 | 51 | 32 | 25 | 43 | 7 | | 8 | 69 | 21 | 19 | 17 | 17 | 50 | 32 | 61 | 52 * | 24 | 27 | 47 | 8 | | 9 | 69 | 21 | 19 | 16 | 18 | 59 | 44 | 49 | 58 | 26 | 33 | 50 | 9 | | 10 | 78 | 21 | 19 | 16 | 17 | 59 | 43 | 43 | 71 | 26 | 38 | 51 | 10 | | 111 | 110 | 20 | 19 | 15 | 16 | 51 | 46 | 44 | 53 | 33 | 33 | 53 | 11 | | 12 | 236 | 20 | 19 | 16 | 15 | 50 | 50 | 44 | 43 | 30 | 30 | 51 | 12 | | 13 | 124 | 20 | 18 | 16 | 15 | 46 | 49 | 45 | 47 | 29 | 27 | 43 | 13 | | 14 | 74 | 22 | 18 | 17 | 15 | 35 | 48 | 53 | 46 | 27 | 30 | 47 | 14 | | 15 | 58 | 29 | 19 | 16 | 16 | 29 | 61 | 47 | 46 | 27 | 30 | 42 | 15 | | 16 | 54 * | 30 | 18 | 16 | 16 | 20 | 63 | 39 | 53 | 24 | 27 | 47 | 16 | | 17 | 51 | 30 | 18 | 17 | 16 | 27 | 54 | 36 | 54 | 30 | 36 | 43 | 17 | | 18 | 42 | 29 | 18 | 17 | 17 | 26 | 60 | 41 | 55 | 30
28 | 38 | 42 | 18 | | 19 | 37 | 30 | 18 | 16 | 16 | 27 | 62 | 42 | 5.5 | 28 | 33 | 47 | 19 | | 20 | 32 | 34 | 18 | 20 | 16 | 29 | 75 | 44 | 62 | 33 | 38 | 45 | 20 | | 21 | 28 | 45 | 17 | 30 | 15 | 37 | 68 | 44 | 57 | 30 | 43 | 43 | 21 | | 22 | 25 | 42 | 17 | 213 | 16 | 54 | 71 | 44 | 51 | 36 | 38 | 45 | 22 | | 23 | 24 | 31 | 17 | 779 | 16 | 89 | 73 | 46 | 43 | 29 | 39 | 43 | 23 | | 24 | 23 | 32 | 17 | 227 * | 15 | 59 | 76 | 49 | 41 | 29 | 40 | 47 | 24 | | 25 | 23 |
38 | 17 | 128 | 14 | 42 | 78 | 48 | 43 | 30 | 31 | 47 | 25 | | 26 | 21 | 30 | 17 | 88 | 13 | 31 | 81 | 47 | 38 | 29 | 28 | 46 | 26 | | 27 | 20 | 25 | 17 | 68 | 12 | 27 | 8.8 | 46 | 37 | 30 | 34 | 43 | 27 | | 28 | 20 | 22 | 17 | 56 | 12 | 26 | 72 | 51 | 31 | 35 | 37 | 50 | 28 | | 29 | 20 | 20 | 17 | 47 | 14 | 25 | 59 | 49 | 35 | 33
37 | 37 | 57 | 29 | | 30 | 21 | 20 | 17 | 42 | | 23 | 60 | 51 | 36 | 37 | 44 | 57 | 30 | | 31 | 20 | | 17 | 38 | | 27 | | 50 | | 33 | 52 | | 31 | | MEAN | 56.7 | 25.7 | 18.1 | 65.9 | 17.4 | 35.7 | 57.0 | 55 • 1 | 48.3 | 30.8 | 33.8 | 47.9 | MEAN | | MAX. | 236 | 45 • 0 | 20.0 | 779 | 33.0 | 89.0 | 88.0 | 92.0 | 71.0 | 40.0 | 52.0 | 61.0 | MAX. | | MIN. | 20.0 | 19.0 | 17.0 | 15.0 | 12.0 | 13.0 | 29.0 | 36.0 | 31.0 | 24.0 | 25.0 | 42.0 | MIN. | | AC. FT. | 3487 | 1531 | 1115 | 4052 | 1000 | 2196 | 3394 | 3388 | 2874 | 1894 | 2077 | 2852 | AC.FT. | E — ESTIMATED NR — NO RECORO * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | M | _ | _ | MINIMUM | | | | | | |-----------|-----------|----------|-----|-----|------|---------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | ı | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 41.1 | 1060 | 75.53 | 1 | 23 | 0700 | l | 10.0 | 67.55 | 2 | 28 | 0650 | TOTAL ACRE FEET 29860 | | LOCATION | | | MAXIMUM DISCHARGE | | | PERIOD OF RECORD | | | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-------------------|----------|-------------|------------------|------|------|---------------|-------|--|--| | LATITUDE | LONGITUOE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO
ON | REF. | | | | LATITUDE | LONGITODE | M. O. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FRDM | TO | GAGE | DATUM | | | | 37 39 26 | 120 55 19 | SE24 3S 9E | 7710 | 88.04 | 12-23-55 | MAR 41-DATE | | 1941 | | 0.00 | USCGS | | | Station located 0.1 mi. below Claus Road Bridge, 4 mi. E of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. This is a Department of Water Resources-Modesto Irrigation District cooperative station. Altitude of gage is approximately 80 feet. USC & GS datum. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|---------------------------------| | 1964 | 804105 | TUOLUMNE RIVER AT TUOLUMNE CITY | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------| | 1 | 370 | 1700 | 2850 | 1930 | 645 | 345 | 300 | 270 | 240 | 230 | 200 | 260 | 1 | | 2 | 370 | 1800 | 2860 | 1900 | 770 | 335 | 320 | 280 | 230 | 230 | 200 | 255 | 2 | | 3 | 460 | 1860 | 2870 | 1930 | 720 | 330 | 305 | 285 | 235 | 230 | 195 | 240 | 3 | | 4 | 530 | 1880 | 2650 | 1640 | 700 | 325 | 300 | 295 | 230 | 230 | 190 | 235 | 4 | | 5 | 555 | 1890 | 2610 | 1720 | 755 | 315 | 300 | 290 | 225 | 225 | 195 | 240 | 5 | | 6 | 595 | 1910 | 2630 | 1670 | 755 | 310 | 300 | 300 | 230 | 225 | 185 | 240 | 6 | | 7 | 555 | 1910 | 2650 | 1720 | 755 | 325 | 290 | 300 | 245 | 230 | 180 | 230 | 7 | | 8 | 435 | 1900 | 2620 | 1640 | 760 | 325 | 285 | 290 | 250 | 220 | 190 | 225 | 8 | | 9 | 545 | 1900 | 2620 | 1470 | 745 | 325 | 275 | 270 | 265 | 200 | 205 | 230 | 9 | | 10 | 585 | 1910 | 2600 | 1180 | 760 | 330 | 270 | 260 | 260 | 205 | 200 | 235 | 10 | | 111 | 715 | 1900 | 2470 | 1110 | 660 | 325 | 265 | 255 | 255 | 205 | 200 | 240 | 111 | | 12 | 970 | 1910 | 2440 | 1000 | 735 | 340 | 270 | 250 | 240 | 205 | 200 | 240 | 12 | | 13 | 1010 | 1940 | 2440 | 905 | 745 | 340 | 265 | 245 | 240 | 200 | 200 | 245 | 13 | | 14 | 855 | 1960 | 2480 | 915 | 805 | 315 | 265 | 235 | 245 | 200 | 200 | 235 | 14 | | 15 | 645 | 2010 | 2320 | 970 | 815 | 315 | 260 | 235 | 240 | 190 | 215 | 245 | 15 | | 16 | 725 | 2050 | 2280 | 970 | 760 | 300 | 265 | 240 | 250 | 185 | 225 | 255 | 1,, | | 17 | 915 | 2170 | 2350 | 935 | 670 | 290 | 260 | 245 | 250 | 185 | 205 | 250 | 16 | | 18 | 1280 | 2190 | 2290 | 905 | 670 | 290 | 260 | 245 | 250 | 190 | 200 | 245 | | | 19 | 1320 | 2270 | 2230 | 870 | 695 | 295 | 260 | 240 | 245 | 200 | 200 | 240 | 18 | | 20 | 1510 | 2500 | 2150 | 830 | 540 | 295 | 265 | 240 | 245 | 200 | 200 | 250 | 19 | | 20 | 1310 | 2500 | 2150 | 050 | 340 | 2,72 | 207 | 240 | 243 | 200 | 200 | 2,50 | 20 | | 21 | 1750 | 2560 | 2140 | 880 | 535 | 290 | 275 | 235 | 250 | 200 | 210 | 240 | 21 | | 22 | 2030 | 2480 | 2140 | 1000 | 530 | 310 | 275 | 230 | 245 | 195 | 220 | 235 | 22 | | 23 | 2130 | 2620 | 2120 | 1530 | 520 | 330 | 275 | 235 | 230 | 205 | 225 | 235 | 23 | | 24 | 2130 | 2660 | 2240 | 1350 | 490 | 330 | 275 | 235 | 225 | 200 | 220 | 230 | 24 | | 25 | 2080 | 2650 | 2510 | 1010 | 485 | 320 | 265 | 235 | 225 | 195 | 210 | 235 | 25 | | 26 | 1700 | 2630 | 2530 | 900 | 545 | 310 | 265 | 230 | 225 | 200 | 205 | 240 | 26 | | 27 | 1660 | 2650 | 2510 | 810 | 530 | 305 | 280 | 225 | 230 | 195 | 210 | 240 | 27 | | 28 | 1550 | 2680 | 2040 | 745 | 390 | 300 | 275 | 230 | 230 | 185 | 215 | 235 | 28 | | 29 | 1610 | 2800 | 1960 | 795 | 350 | 300 | 270 | 230 | 225 | 180 | 210 | 255 | 29 | | 30 | 1680 | 2800 | 1860 | 800 | | 295 | 265 | 240 | 235 | 185 | 220 | 285 | 30 | | 31 | 1690 | | 1810 | 825 | | 285 | | 240 | | 190 | 240 | | 31 | | MEAN | 1128 | 2203 | 2396 | 1189 | 657 | 314 | 277 | 253 | 240 | 204 | 205 | 242 | MEAN | | MAX. | 2130 | 2800 | 2870 | 1930 | 845 | 345 | 320 | 300 | 265 | 230 | 240 | 285 | MAX. | | MIN. | 370 | 1700 | 1810 | 745 | 350 | 285 | 260 | 225 | 225 | 180 | 180 | 225 | MIN. | | AC. FT. | 69332 | 131088 | 147312 | 73101 | 37795 | 19329 | 16463 | 15540 | 14261 | 12526 | 12635 | 14410 | | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | | MAXIMI | J M | | $\overline{}$ | |------------------|-----------|----------|-----|-----|---------------| | DISCHARGE
776 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | MINIMUM | | | | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | TOTAL | |-----------| | ACRE FEET | | 563792 | | | | | LOCATION | N | MAXIMUM DISCHARGE | | | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|------------------|-------------------|---------------|---|------------|---------------|--------|------|------------|---------------| | LATITUOE | | 1/4 SEC. T. & R. | OF RECORD | | | OISCHARGE | GAGE HEIGHT | PERIO0 | | ZERÓ
ON | REF. | | LATITUDE | LONGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. DATE | | OID CHARGE | ONLY | FROM | то | GAGE | DATUM | | 37 36 12 | 121 07 50 | NW 7 4S 8E | | | | 30-DATE | | 1960 | 1959 | 0.00 | USED
USCGS | | 1 | 1 | • | 1 | • | 1 | l | | 1960 | f i | 3.50 | USED | Station located at highway bridge, 3.35 mi. above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Records furn. by City of San Francisco. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | 1 | |------------|-------------|---|---| | 1964 | B07060 | SAN JOAQUIN RIVER AT HETCH HETCHY AQUEDUCT CROSSING | , | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|--------------|-------|--------| | 3 | 1070 | 2155 | 3285 | 2385 | 1665 | 615 | 765 | 615 | 630 | 480 | 335 | 799 | | | 2 | 1025 | 2130 | 3295 | 2415 | 1595 | 615 | 810 | 660 | 570 | 480 | 345 | 790 | 2 | | 3 | 1050 | 2200 | 3275 | 2430 | 1545 | 575 | 775 | 685 | 565 | 490 | 390 | 770 | 3 | | 4 | 1160 | 2220 | 3115 | 2280 | 1500 | 560 | 700 | 740 | 525 | 485 | 370 | 706 | 4 | | 5 | 1310 | 2245 | 3000 | 2250 | 1535 | 525 | 700 | 765 | 520 | 485 | 340 | 657 | 5 | | 6 | 1575 | 2285 | 2975 | 2245 | 1540 | 505 | 665 | 810 | 495 | 525 | 325 | 690 | 6 | | 7 | 1865 | 2275 | 2975 | 2285 | 1530 | 570 | 590 | 780 | 505 | 480 | 305 | 719 | 7 | | 8 | 2035 | 2260 | 2955 | 2350 | 1505 | 570 | 595 | 745 | 555 | 440 | 310 | 667 | 8 | | 9 | 1785 | 2275 | 2955 | 2335 | 1435 | 570 | 575 | 685 | 695 | 410 | 340 | 626 | 9 | | 10 | 1680 | 2275 | 2965 | 2080 | 1375 | 580 | 520 | 640 | 785 | 395 | 380 | 581 | 10 | | 111 | 1790 | 2250 | 2880 | 1975 | 1260 | 560 | 515 | 630 | 790 | 385 | 330 | 575 | 11 | | 12 | 2175 | 2245 | 2820 | 1905 | 1295 | 585 | 540 | 580 | 805 | 390 | 340 | 598 | 12 | | 13 | 2490 | 2260 | 2825 | 1780 | 1315 | 690 | 520 | 530 | 740 | 395 | 345 | 623 | 13 | | 14 | 2755 | 2275 | 2835 | 1740 | 1320 | 670 | 500 | 510 | 725 | 365 | 335 | 633 | 14 | | 15 | 2840 | 2315 | 2760 | 1790 | 1360 | 640 | 500 | 495 | 720 | 325 | 370 | 579 | 15 | | 16 | 2445 | 2360 | 2685 | 1775 | 1290 | 625 | 530 | 485 | 640 | 295 | 410 | 582 | 16 | | 17 | 2330 | 2345 | 2700 | 1760 | 1255 | 575 | 540 | 495 | 580 | 345 | 505 | 567 | 17 | | 18 | 2485 | 3140 | 2710 | 1660 | 1185 | 585 | 540 | 520 | 530 | 380 | 525 | 582 | 18 | | 19 | 2520 | 2565 | 2650 | 1570 | 1205 | 630 | 565 | 575 | 510 | 420 | 538 a | | 19 | | 20 | 2515 | 2820 | 2586 | 1570 | 1090 | 650 | 665 | 585 | 480 | 420 | 493 | 616 | 20 | | 21 | 2965 | 2950 | 2595 | 1640 | 990 | 610 | 660 | 630 | 490 | 405 | 462 | 632 | 21 | | 22 | 3340 | 2910 | 2630 | 1700 | 945 | 630 | 660 | 625 | 520 | 390 | 476 | 702 | 22 | | 23 | 3850 | 3005 | 2620 | 2145 | 935 | 855 | 660 | 590 | 480 | 390 | 540 | 772 | 23 | | 24 | 3000 | 3115 | 2635 | 2300 | 895 | 890 | 630 | 575 | 435 | 345 | 611 | 913 | 24 | | 25 | 2950 | 3125 | 2885 | 2000 | 840 | 900 | 640 | 635 | 435 | 325 | 607 | 1070 | 25 | | 26 | 2580 | 3115 | 3030 | 1875 | 860 | 875 | 685 | 650 | 420 | 365 | 574 | 1100 | 26 | | 27 | 2325 | 3125 | 3040 | 1780 | 860 | 840 | 705 | 640 | 435 | 385 | 545 | 1170 | 27 | | 28 |
2165 | 3140 | 2680 | 1655 | 725 | 805 | 690 | 620 | 480 | 360 | 592 | 1200 | 28 | | 29 | 2140 | 3225 | 2515 | 1655 | 605 | 775 | 630 | 645 | 485 | 330 | 582 | 1100 | 29 | | 30 | 2195 | 3855 | 2410 | 1650 | | 780 | 605 | 680 | 505 | 295 | 625 | 1110 | 30 | | 31 | 2200 | | 2355 | 1620 | | 740 | | 650 | | 280 | 707 | | 31 | | MEAN | 2213 | 2615 | 2827 | 1955 | 1223 | 664 | 623 | 628 | 550 | 396 | 450 | 757 | MEAN | | MAX. | 3850 | 3855 | 3295 | 2430 | 1665 | 900 | 810 | 810 | 805 | 525 | 707 | 1200 | MAX. | | MIN. | 1025 | 2130 | 2355 | 1570 | 605 | 505 | 500 | 485 | 420 | 280 | 305 | 567 | MIN. | | AC. FT. | 136086 | 155623 | 173821 | 120198 | 70324 | 40850 | 37041 | 38618 | 33818 | 24357 | 27670 | 45040 | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * a - See note (a) below. | MEAN | | MAXIMU | JM | | | | | MINIM | J M | | | |------|-----------|----------|-----|-----|------|---|-----------|----------|-----|-----|------| | 1242 | DISCHARGE | GAGE HT. | MO. | DAY | TIME |) | DISCHARGE | GAGE HT. | MO. | DAY | TIME | TOTAL ACRE FEET 903446 | | TUDE LONGITUDE 1/4 SEC. T. & R. M. D. B. B.M. C.F.S. GAGE HT. D | | | | | | | PERIOD C | F RECORD | l | DATUM | OF GAGE | | |------------|---|------|-----|--------|----------|-------|---------|-------------|-------------|--------|-------|---------|------| | LATITUDE | TITUDE LONGITUDE | | | | | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF | | LATITUDE | ATITUDE LONGITUDE M. D. B. B. M. | | | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | | 37 38 10 1 | .21 12 54 | NE32 | 3\$ | 7E | 38400 | 38.43 | 4- 2-40 | MAR 33-DATE | | 1960 | 1959 | 0.00 | USED | Station located 2.9 mi. above the mouth of the Stanislaus River. Records furn.by City of San Francisco. (a) Daily mean discharge from August 19 through September 30, 1964, computed from San Joaquin River at Maze Road Bridge gage height record by Department of Water Resources. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 803175 STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|-------|-------|------|-------|------|------|------|------|-------|--------| | 1 | 94 | 146 | 170 | 770 | 854 | 85 | 182 | 34 | 30 | 23 | 24 | 31 | 1 | | 2 | 92 | 144 | 269 | 770 | 853 | 71 | 168 * | 33 | 30 | 21 * | 25 | 28 * | ا 2 ا | | 3 | 92 | 139 | 181 * | 779 | 850 | 70 * | 121 | 36 | 32 | 20 | 27 * | 29 | 3 | | 4 | 93 | 144 # | 183 | 779 | 855 * | 71 | 116 | 36 * | 29 * | 22 | 27 | 23 | 4 | | 5 | 95 | 153 | 185 | 775 | 858 | 73 | 113 | 31 | 26 | 30 | 30 | 26 | 5 | | 6 | 91 | 154 | 183 | 781 | 852 | 79 | 117 | 37 | 26 | 26 | 32 | 21 | 6 | | 7 | 91 | 165 | 181 | 773 * | 642 | 85 | 126 | 36 | 31 | 22 | 39 | 18 | 7 | | 8 | 97 | 171 | 184 | 779 | 197 | 85 | 147 | 28 | 32 | 22 | 30 | 18 | 8 | | 9 | 95 | 159 | 194 | 778 | 188 | 83 | 123 | 28 | 36 | 20 | 28 | 19 | 9 | | 10 | 93 | 164 | 182 | 781 | 168 | 86 | 75 | 28 | 31 | 20 | 27 | 20 | 10 | | 11 | 149 | 156 | 174 | 776 | 162 | 86 | 68 | 24 | 27 | 23 | 29 | 21 | 111 | | 12 | 683 | 159 | 161 | 781 | 177 | 83 | 79 | 30 | 25 | 25 | 30 | 20 | 12 | | 13 | 633 | 158 | 175 | 780 | 163 | 81 | 83 | 25 | 26 | 22 | 32 | 23 | 13 | | 14 | 601 | 161 | 180 | 771 | 131 | 75 | 60 | 27 | 31 | 21 | 35 | 20 | 14 | | 15 | 617 | 164 | 156 | 777 | 97 | 74 | 40 | 28 | 28 | 23 | 32 | 20 | 15 | | 16 | 606 | 183 | 167 | 657 | 90 | 77 | 41 | 25 | 27 | 30 | 30 | 28 | 16 | | 17 | 610 | 159 | 176 | 354 | 86 | 80 | 35 | 27 | 26 | 25 | 30 | 21 | 17 | | 18 | 199 | 182 | 157 | 544 | 84 | 80 | 39 | 23 | 28 | 25 | 33 | 19 | 18 | | 19 | 94 | 166 | 560 | 539 | 84 | 78 | 39 | 23 | 31 | 23 | 28 | 19 | 19 | | 20 | 115 | 230 | 777 | 542 | 83 | 78 | 35 | 24 | 29 | 26 | 27 | 21 | 20 | | 21 | 125 * | 178 | 775 | 757 | 82 | 80 | 36 | 27 | 29 | 23 | 26 | 21 | 21 | | 22 | 141 | 208 | 775 | 1210 | 81 | 81 | 39 | 27 | 29 | 22 | 28 | 23 | 22 | | 23 | 149 | 194 | 775 | 871 | 81 | 78 | 35 | 29 | 30 | 24 | 30 | 25 | 23 | | 24 | 145 | 210 | 777 | 849 | 83 | 76 | 37 | 27 | 33 | 22 | 31 | 20 | 24 | | 25 | 142 | 189 | 775 | 848 | 80 | 76 | 38 | 24 | 28 | 25 | 28 | 18 | 25 | | 26 | 153 | 186 | 776 | 840 | 80 | 75 | 35 | 27 | 25 | 24 | 25 | 21 | 26 | | 27 | 152 | 161 | 764 | 836 | 76 | 77 | 36 | 35 | 24 | 29 | 27 | 22 | 27 | | 28 | 132 | 172 | 746 | 837 | 80 | 78 | 41 | 33 | 25 | 27 | 26 | 23 | 28 | | 29 | 135 | 176 | 773 | 838 | 80 | 82 | 39 | 29 | 22 | 26 | 29 | 25 | 29 | | 30 | 146 | 178 | 777 | 837 | | 82 | 34 | 28 | 25 | 26 | 26 | 21 | 30 | | 31 | 142 | | 734 | 845 | | 97 | | 27 | | 24 | 27 | | 31 | | MEAN | 219 | 170 | 421 | 770 | 283 | 79.4 | 72.6 | 28.9 | 28.4 | 23.9 | 29.0 | 22.1 | MEAN | | MAX. | 683 | 230 | 777 | 1210 | 858 | 97.0 | 182 | 37.0 | 36.0 | 30.0 | 39.0 | 31.0 | MAX. | | MIN. | 91.0 | 139 | 156 | 354 | 76.D | 70.0 | 34.0 | 23.0 | 22.0 | 20.0 | 24.0 | 18.0 | MIN. | | AC. FT. | 13490 | 10130 | 25870 | 47310 | 16260 | 4883 | 4318 | 1777 | 1688 | 1470 | 1781 | 1317 | AC.FT. | E — ESTIMATED NR — NO RECORD • DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND • | MEAN | | MAXIMU | M | | | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 179 | 1640 | 5 • 28 | 1 | 22 | 0650 | | | (| | | | l 1 | MINIMUM GAGE HT. MO. DAY TIME 1-31 9 7 1740 DISCHARGE 17.0 TOTAL ACRE FEET 130300 | ſ | <u> </u> | LOCATION | V | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|--|------------------|-----------|---------------|------|------------------------------|-------------|--------|-------|------------|-------| | Ī | LATITUOE | ITUDE LONGITUDE 1/4 SEC. T. 8. M. O. B. 8 M. | 1/4 SEC. T. & R. | OF RECORO | | | DISCHARGE | GAGE HEIGHT | PERIOD | | 2ERO
ON | REF. | | | LATITUDE | LONGITODE | M. O. B. & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 47 18 | 120 45 41 | SW 4 2S 11E | 52000 | 52000 30.05 1 | | JUN 28-DEC 39
APR 40-DATE | | | | 0.00 | LOCAL | Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants. Drainage area, 1,020 sq. mi. Altitude of gage is approximately 70 feet (from U.S.G.S. topographic map). #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 803145 STANISLAUS RIVER AT RIVERBANK | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|-------|--------| | 1 | 170 | 207 | 211 | 809 | 904 | 128 | 188 | 72 | 45 | 62 | 74 | 80 | 1 | | 2 | 167 | 211 | 215 | 848 | 900 | 128 | 153 * | 71 | 47 | 59 # | 67 | | * 2 | | 3 | 162 | 211 | 310 # | 853 | 904 | 119 * | 108 | 71 | 41 | 62 | 73 * | 73 | 3 | | 4 | 165 | 209 # | 224 | 849 | 903 * | 116 | 96 | 71 * | 41 # | 61 | 63 | 76 | 4 | | 5 | 169 | 217 | 226 | 840 | 906 | 124 | 96 | 71 | 39 | 67 | 65 | 72 | 5 | | 6 | 163 | 222 | 226 | 840 | 898 | 131 | 94 | 73 | 36 | 70 | 65 | 75 | 6 | | 7 | 168 | 219 | 219 | 846 # | 880 | 144 | 98 | 73 | 41 | 67 | 66 | 72 | 7 | | 8 | 166 | 229 | 222 | 845 | 391 | 140 | 103 | 67 | 46 | 73 | 75 | 63 | 8 | | 9 | 170 | 225 | 230 | 850 | 259 | 133 | 105 | 56 | 54 | 66 | 70 | 67 | 9 | | 10 | 173 | 224 | 245 | 853 | 244 | 136 | 100 | 53 | 56 | 63 | 71 | 62 | 10 | | 11 | 234 | 221 | 231 | 850 | 2 2 6 | 146 | 83 | 52 | 48 | 64 | 68 | 64 | 11 | | 12 | 579 | 216 | 216 | 849 | 224 | 173 | 83 | 52 | 48 | 72 | 74 | 66 | 12 | | 13 | 772 | 215 | 211 | 856 | 230 | 122 | 91 | 52 | 48 | 71 | 80 | 68 | 13 | | 14 | 728 | 216 | 224 | 854 | 200 | 113 | 83 | 49 | 52 | 72 | 82 | 75 | 14 | | 15 | 727 | 225 | 217 | 855 | 177 | 114 | 67 | 47 | 55 | 69 | 80 | 71 | 15 | | 16 | 738 | 225 | 197 | 846 | 152 | 123 | 61 | 47 | 58 | 70 | 77 | 69 | 16 | | 17 | 735 | 231 | 217 | 488 | 146 | 114 | 61 | 50 | 57 | 72 | 80 | 75 | 17 | | 18 | 559 | 218 | 216 | 559 | 144 | 115 | 62 | 46 | 57 | 71 | 78 | 73 | 18 | | 19 | 199 | 230 | 320 | 596 | 143 | 109 | 62 | 45 | 56 | 67 | 78 | 68 | 19 | | 20 | 164 | 263 | 818 | 596 | 141 | 115 | 62 | 43 | 52 | 77 | 69 | 69 | 20 | | 21 | 177 * | 290 | 853 | 686 | 139 | 114 | 62 | 42 | 57 | 78 | 67 | 72 | 21 | | 22 | 189 | 245 | 853 | 1220 | 139 | 125 | 61 | 43 | 60 | 65 | 70 | 77 | 22 | | 23 | 207 | 249 | 853 | 1020 | 136 | 159 | 63 | 52 | 51 | 67 | 78 | 82 | 23 | | 24 | 204 | 259 | 852 | 933 | 132 | 118 | 60 | 50 | 59 | 68 | 77 | 79 | 24 | | 25 | 199 | 247 | 847 | 917 | 130 | 112 | 59 | 45 | 62 | 63 | 75 | 75 | 25 | | 26 | 207 | 231 | 846 | 907 | 125 | 109 | 68 | 42 | 5.4 | 74 | 69 | 75 | 26 | | 27 | 211 | 223 | 853 | 903 | 125 | 103 | 73 | 44 | 48 | 72 | 66 | 73 | 27 | | 28 | 201 | 205 | 811 | 902 | 124 | 105 | 74 | 47 | 62 | 69 | 74 | 77 | 28 | | 29 | 185 | 217 | 847 | 897 | 128 | 112 | 81 | 41 | 59 | 74 | 75 | 79 | 29 | | 30 | 203 | 216 | 845 | 902 | | 120 | 74 | 43 | 58 | 72 | 77 | 77 | 30 | | 31 | 205 | | 837 | 901 | | 116 | | 44 | | 71 | 69 | | 31 | | MEAN | 300 | 227 | 468 | 838 | 350 | 124 | 84.4 | 53.4 | 51.6 | 68.6 | 72.6 | 72.7 | | | MAX. | 772 | 290 | 853 | 1220 | 906 | 173 | 188 | 73.0 | 62.0 | 78.0 | 82.0 | 82.0 | MAX. | | MIN. | 162 | 205 | 197 | 488 | 124 | 103 | 59.0 | 41.0 | 36.0 | 59.0 | 63.0 | 62.0 | MIN. | | AC. FT. | 18440 | 13520 | 28740 | 51510 | 20130 | 7609 | 5020 | 3261 | 3068 | 4221 | 4467 | 4326 | AC.FT. | E — ESTIMATED NR — NO RECORD * — OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AHD * | , | MEAN | _ | | MAX | IMU | M | | | ١. | $\overline{}$ | MINIM | J M | | | |---|-----------|---|-----------|------|-----|-----|-----|------|----|---------------|----------|-----|-----|------| | | DISCHARGE | | DISCHARGE | GAGE | HT. | MO. | DAY | TIME | 1 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | 226 | | 1520 | 77. | 47 | 1 | 122 | 1500 | 1 | 34.0 | 72.4 | 6
| 6 | 1520 | | ľ | | 1 | | | | | | | " | | | | | | TOTAL ACRE FEET 164300 | | LOCATION | 4 | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|----------|-------------|-------------|---------------|-----|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T, & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO
ON | REF. | | LATITODE | CONGITODE | M.D.8.8 M, | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 34 44 31 | 120 56 21 | SW24 2S 9E | 85800 | 103.18 | 12-23-55 | JUL 40-DATE | | 194D | | 0.00 | USCGS | Station located at Burneyville Bridge, immediately N of Riverbank. Drainage area 1,055 sq. mi. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|-----------------------------------| | 1964 | 803115 | STANISLAUS RIVER AT KOETITZ RANCH | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|--------| | 1 | 324 | 281 | 303 | 858 | 922 | 185 | 258 | 120 | 131 | 95 | 106 | 151 | * , | | 2 | 327 | 278 | 296 | 868 | 917 | 167 | 315 * | 110 | 122 | 98 | 112 | 152 | 2 | | 3 | 363 | 279 | 311 * | 883 | 915 | 182 * | 269 | 117 | 136 | 108 | 91 * | 160 | 3 | | 1 4 | 343 | 280 * | 348 | 887 | 913 * | 170 | 217 | 137 * | 120 * | 124 | 102 | 154 | 4 | | 5 | 319 | 281 | 311 | 889 | 916 | 157 | 225 | 140 | 124 | 145 | 116 | 134 | 5 | | 6 | 302 | 290 | 304 | 889 | 918 | 160 | 212 | 162 | 118 | 132 * | 108 | 128 | 6 | | 1 7 | 321 | 290 | 300 | 888 * | 915 | 171 | 178 | 139 | 126 | 132 | 95 | 127 | 7 | | 8 | 324 | 289 | 298 | 889 | 824 | 191 | 169 | 149 | 138 | 149 | 96 | 123 | 8 | | 9 | 307 | 293 | 298 | 889 | 501 | 201 | 179 | 134 | 192 | 139 | 117 | 121 | 9 | | 10 | 313 | 291 | 303 | 890 | 400 | 186 | 193 | 129 | 180 | 125 | 153 | 127 | 10 | | 11 | 440 | 288 | 310 | 890 | 359 | 189 | 187 | 111 | 198 | 106 | 149 | 120 | 11 | | 12 | 552 | 288 | 300 | 890 | 330 | 210 | 189 | 107 | 175 | 117 | 144 | 110 | 12 | | 13 | 742 | 286 | 291 | 887 | 321 | 215 | 178 | 113 | 148 | 124 | 122 | 108 | 13 | | 14 | 816 | 287 | 285 | 890 | 314 | 184 | 174 | 106 | 137 | 126 | 116 | 119 | 14 | | 15 | 832 | 291 | 292 | 885 | 287 | 175 | 171 | 110 | 134 | 131 | 108 | 134 | 15 | | 16 | 823 | 289 | 284 | 883 | 262 | 171 | 155 | 92 | 134 | 125 | 126 | 140 | 16 | | 17 | 784 | 295 | 273 | 823 | 242 | 172 | 137 | 96 | 136 | 123 | 109 | 136 | 17 | | 18 | 753 | 295 | 280 | 579 | 229 | 243 | 156 | 121 | 131 | 111 | 112 | 147 | 18 | | 19 | 563 | 293 | 277 | 633 | 218 | 233 | 156 | 111 | 122 | 118 | 125 | 150 | 19 | | 20 | 365 | 313 | 401 | 645 | 211 | 209 | 153 | 105 | 131 | 116 | 109 | 147 | 20 | | 21 | 308 * | 348 | 708 | 660 | 207 | 233 | 143 | 110 | 143 | 120 | 114 | 169 | 21 | | 22 | 290 | 350 | 796 | 798 | 204 | 225 | 135 | 106 | 133 | 119 | 118 | 178 | 22 | | 23 | 291 | 329 | 826 | 1120 | 197 | 303 | 134 | 108 | 128 | 108 | 134 | 175 | 23 | | 24 | 293 | 340 | 846 | 1020 | 196 | 250 | 122 | 118 | 109 | 112 | 134 | 171 | 24 | | 25 | 289 | 349 | 849 | 951 | 194 | 227 | 122 | 127 | 109 | 112 | 109 | 168 | 25 | | 26 | 285 | 329 | 848 | 932 | 186 | 218 | 130 | 120 | 115 | 118 | 108 | 183 | 26 | | 27 | 291 | 312 | 856 | 926 | 179 | 217 | 143 | 126 | 108 | 115 | 93 | 189 | 27 | | 28 | 291 | 300 | 862 | 919 | 184 | 204 | 134 | 120 | 107 | 100 | 91 | 182 | 28 | | 29 | 280 | 290 | 847 | 919 | 182 | 214 | 118 | 119 | 112 | 98 | 105 | 153 | 29 | | 30 | 274 | 294 | 869 | 919 | | 212 | 116 | 131 | 124 | 94 | 119 | 158 | 30 | | 31 | 281 | | 877 | 921 | | 213 | | 135 | | 107 | 128 | | 31 | | MEAN | 422 | 301 | 492 | 868 | 436 | 204 | 172 | 120 | 134 | 118 | 115 | 147 | MEAN | | MAX. | 832 | 350 | 877 | 1120 | 922 | 303 | 315 | 162 | 198 | 149 | 153 | 189 | MAX. | | MIN. | 274 | 278 | 273 | 579 | 179 | 157 | 116 | 92.0 | 107 | 94.0 | 91.0 | 108 | MIN. | | AC. FT. | 25960 | 17890 | 30250 | 53400 | 25080 | 12510 | 10250 | 7396 | 7976 | 7234 | 7079 | 8755 | AC.FT. | E - ESTIMATED NR - NO RECORD * OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | M | | | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 294 | 1170 | 33.09 | 1 | 23 | 1440 | | MINIMUM | | | | | | | | | | | | |-----------|----------|-----|-----|------|--|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | | | | 79.0 | 26.53 | 7 | 1 | 2400 | | | | | | | | | (| | | | l / | | | | | | | | | TOTAL | |-----------| | ACRE FEET | | 213800 | | | LOCATION | | | MAXIMUM DISCHARGE | | | PERIOD OF RECORD | | | DATUM OF GAGE | | | |----------|------------------|---------------|-----------|-------------------|------|-------------|------------------|----------------------|------|----------------------|-----------------------|--| | | 1/4 SEC. T. & R. | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | LATITUDE | LONGITUDE | M. O. B. & M, | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | 70 | GAGE | DATUM | | | 37 41 57 | 121 10 08 | SW 2 3S 7E | | | | OCT 62-DATE | MAR 50-SEP 62 | 1950
1951
1951 | 1951 | 0.00
0.00
3.60 | USED
USCGS
USED | | Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon. # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 807020 SAN JOAQUIN RIVER NEAR VERNALIS | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|--------|--------|--------|--------|--------|-------|--------|-------|-------|-------|-------|-------|--------| | | 1440 E | 2550 | 3900 | 3300 | 2600 | 800 E | 1120 | 672 | 690 | 493 | 274 | 911 | 1 | | 2 | 1420 E | 2480 | 3920 # | 3330 | 2530 | 760 E | 1200 # | 704 | 601 | 461 | 320 | 930 | 2 | | 3 | 1400 E | 2570 | 3910 | 3350 | 2500 | 720 E | 1170 | 736 | 589 | 457 | 340 | 898 | 3 | | 4 | 1440 E | 2600 | 3810 | 3250 | 2450 # | 695 # | 925 | 785 | 569 * | 465 | 334 # | 880 | 4 | | s | 1630 E | 2610 | 3620 | 3190 | 2480 | 695 | 862 | 834 * | 557 | 517 | 320 | 834 | 5 | | 6 | 1920 | 2660 | 3560 | 3180 | 2480 | 722 | 844 | 888 | 537 | 557 | 320 | 821 | 6 | | 7 | 2190 | 2660 | 3550 | 3200 | 2470 | 785 | 740 | 935 | 569 | 513 * | 267 | 857 | 7 | | 8 | 2470 | 2640 | 3530 | 3280 * | 2440 | 826 | 686 | 898 | 628 | 437 | 274 | 821 | 8 | | 9 | 2220 | 2640 | 3540 | 3290 | 2000 E | 839 | 677 | 850 E | 848 | 445 | 306 | 780 | 9 | | 10 | 2050 | 2650 | 3540 | 3050 | 1800 E | 816 | 659 | 800 E | 1060 | 393 | 373 | 718 | 10 | | 11 | 2230 * | 2640 | 3490 | 2910 | 1600 E | 776 | 659 | 700 E | 1080 | 397 | 344 | 704 | 11 | | 12 | 2720 | 2630 * | 3400 | 2840 | 1600 E | 821 | 672 | 632 | 1060 | 377 | 316 | 708 | 12 | | 13 | 3140 | 2630 | 3400 | 2710 | 1650 E | 970 | 636 | 581 | 960 | 405 | 330 | 704 | 13 | | 14 | 3470 | 2640 | 3410 | 2650 | 1650 E | 960 | 589 | 561 | 852 | 337 | 302 | 749 | 14 | | 15 | 3660 | 2690 | 3370 | 2700 | 1700 E | 880 | 561 | 501 | 848 | 288 | 330 | 740 | 15 | | 16 | 3310 | 2740 | 3260 | 2680 | 1600 E | 830 | 614 | 505 | 776 | 253 | 377 | 704 | 16 | | 17 | 3120 | 2800 | 3260 | 2680 | 1500 E | 767 | 593 * | 505 | 708 | 306 | 501 | 700 | 17 | | 18 | 3200 | 2920 | 3280 | 2450 | 1400 E | 762 | 589 | 561 | 614 | 340 | 489 | 700 | 18 | | 19 | 3210 | 2980 | 3230 | 2360 | 1500 E | 902 | 597 | 654 | 577 * | 397 | 521 | 704 | 19 | | 20 | 3040 | 3220 | 3150 | 2350 | 1400 E | 893 | 749 | 650 | 521 | 409 | 485 | 722 | 20 | | 21 | 3290 | 3420 | 3350 | 2410 | 1200 E | 888 | 780 | 672 | 541 | 369 | 429 | 776 | 21 | | 22 | 3680 | 3430 | 3490 | 2510 | 1200 E | 898 | 767 | 672 | 593 | 358 | 457 | 790 | 22 | | 23 | 3670 | 3530 | 3510 | 3110 | 1150 E | 1240 | 776 | 664 | 533 | 373 | 537 | 816 | 23 | | 24 | 3540 | 3690 | 3540 | 3360 | 1150 E | 1330 | 785 | 668 | 441 | 344 | 654 | 1040 | 24 | | 25 | 3370 | 3740 | 3790 | 3000 | 1100 E | 1290 | 772 | 722 | 425 | 298 | 650 | 1220 | 25 | | 26 | 3090 | 3740 | 3910 | 2840 | 1100 E | 1260 | 785 | 726 | 409 | 351 | 589 | 1290 | 26 | | 27 | 2790 | 3720 | 3980 | 2730 | 1150 E | 1220 | 808 | 722 | 429 | 369 | 56.5 | 1390 | 27 | | 28 | 2650 | 3740 | 3700 | 2600 | 1000 E | 1160 | 821 | 944 | 489 | 358 | 581 | 1490 | 28 | | 29 | 2520 | 3820 | 3460 | 2590 | 820 E | 1120 | 776 | 740 | 481 | 320 | 589 | 1290 | 29 | | 30 | 2550 | 3860 | 3360 | 2580 | | 1100 | 713 | 780 | 517 | 250 | 677 | 1300 | 30 | | 31 | 2570 | | 3300 | 2550 | | 1070 | | 740 | | 236 | 790 | | 31 | | MEAN | 2677 | 3021 | 3533 | 2872 | 1697 | 929 | 764 | 703 | 650 | 383 | 440 | 900 | MEAN | | MAX. | 3680 | 3860 | 3980 | 3360 | 2600 | 1330 | 1200 | 935 | 1080 | 557 | 790 | 1490 | MAX. | | MIN. | 1400 E | 2480 | 3150 | 2350 | 820 E | 695 | 561 | 501 | 409 | 236 | 267 | 700 | MIN. | | AC. FT. | 164600 | 179800 | 217200 | 176600 | 97630 | 57100 | 45470 | 43240 | 38680 | 23550 | 27060 | 53530 | AC.FT. | E - ESTIMATED NR - NO RECORD - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | M | | | |-----------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 1547 | 4020 | 15.58 | 12 | 27 | 1400 | |) | (| | | | ر | | MINIMUM | | | | | | | | | | | | | | |-----------|----------|---|----|--|--|--|--|--|--|--|--|--|--| | DISCHARGE | GAGE HT. | | | | | | | | | | | | | | 213 | 8 . 86 | 7 | 31 | | | | | | | | | | | | | 1 | 1 | l | | | | | | | | | | | | TOTAL | | |-----------|--| | ACRE FEET | | | 1124000 | | | LOCATION | | | MAXIMUM DISCHARGE | | | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|------------------|-------------------|-----------|---------|--------------------------------|---------------|------|------|------|-------------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | 2100 | ZERO | REF. | | LATITODE | LONGITODE | M.O.B.&M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | то
| GAGE | OATUM | | 37 40 34 | 121 15 51 | | 79000 | 27.75 | 12-9-50 | JUL 22-DEC 23
JAN 24-FEB 25 | | 1931 | | | USED | | • | | ' | | ' | ' | JUN 25-OCT 28 MAY 29-DATE | | 1959 | 1959 | | USCGS USCGS | Station located on left bank 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River 3.4 mi. NE of Vernalis. Drainage area is approx. 14,010 sq. mi. Natural flow of stream affected by storage reservoirs, power development, ground water withdrawals and diversions for irrigation. Low flows consist mainly of return flow from irrigation. This station is operated under the Federal-State Cooperative Program. The records are furnished by the U.S.G.S. ### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | | |------------|-------------|---|--| | 1964 | C01120 | SOUTH FORK KINGS RIVER BELOW EMPIRE WEIR #2 | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|------|--------|------|------|------|-----|------|------|------|-------|--------| | 1 1 | 110 | 0.0 | 0.0 | 18.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 1 | | 2 | 99 | 0.0 | 0.0 | 21.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 2 | | 3 | 100 | 0.0 | 0.0 | 21.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.7 | 3 | | 4 | 130 | 0.0 | 0.0 | 24.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.7 | 4 | | 5 | 114 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.7 | 5 | | 6 | 94 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25.8 | 6 | | 7 | 34 | 0.0 | 0.0 | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 7 | | 8 | 6.0 | 0.0 | 0.0 | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 8 | | 9 | 5.0 | 0.0 | 0.0 | 34 • 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 9 | | 10 | 5.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 10 | | 111 | 4.0 | 0 • 0 | 0.0 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 111 | | 12 | 4.0 | 0.0 | 0.0 | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 12 | | 13 | 3.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.9 | 29.4 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.9 | 29.4 | 18 | | 19 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.9 | 29.4 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.1 | 29.4 | 20 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 29.4 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 29.0 | 22 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 29.0 | 23 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 29.0 | 24 | | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 28.0 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 28.0 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 28.0 | 27 | | 28 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 28.0 | 28 | | 29 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 28.0 | 29 | | 30 | 0.0 | 0.0 | 8.0 | 20.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 28.0 | 30 | | 31 | 0.0 | | 13 | 19.0 | | 0.0 | | 0.0 | | 0.0 | 10.4 | | 31 | | MEAN | 22 | 0.0 | 0.0 | 26.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 26.0 | MEAN | | MAX. | 130 | 0.0 | 13.0 | 62.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.4 | 29.4 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 1404 | | 42 | 1587 | 131 | | | | | | 292 | 1543 | AC.FT. | E — ESTIMATEO NR — NO RECORD * — DISCHARGE MEASUREMENT OR 005ERVATION OF NO FLOW # — E AHD * | MEAN | | MAXIMU | M | | _ | | MINIM | U M | | $\overline{}$ | |--------------------|-----------|----------|-----|-----|------|-----------|----------|-----|-----|---------------| | DISCHARGE
6 • 8 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO, | DAY | TIME | | TO | TAL | |------|------| | ACRE | FEET | | | 4999 | | | , | | | LOCATION | ı | MAXI | MUM DISCH | ARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|--------|-----------|------|-----------|-------------|---------------|------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORO | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO
ON | REF | | LATITODE | LONGITODE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 36 10 | 119 50 | 20S 19E | | | | | | | | | | Station located 1.0 mi. SW of Stratford. So. Fork Kings River, composed of Kings River water, is a tributary to the Tulare Lake area. Records furn. by Kings River Water Association. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 C02602 CROSS CREEK BELOW LAKELAND CANAL #2 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------------------------------|------|------|------|------|------|------|------|-----|------|------|------|-------|----------------------------------| | 1
2
3
4
5 | | | | | | | | | | | | | 1
2
3
4
5 | | 6
7
8
9 | | | | ; | | | | | | | | | 6
7
8
9 | | 11
12
13
14
15 | | | | | | NO i | FLOW | | | | | | 11
12
13
14
15 | | 16
17
18
19
20 | | | | | | | | | | | | | 16
17
18
19
20 | | 21
22
23
24
25 | | | | | | i | | | | | | | 21
22
23
24
25 | | 26
27
28
29
30
31 | | | | | | | | | | | | | 26
27
28
29
30
31 | | MEAN
MAX.
MIN.
AC. FT. | | | | | | | | | | | | | MEAN
MAX.
MIN.
AC.FT. | E -- ESTIMATED NR -- NO RECORD * DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # -- E AND * | MEAN | | MAXIMU | J M | | $\overline{}$ | MINIMUM | | | | | | | | |-----------|-----------|----------|-----|-----|---------------|-----------|----------|----------|-----|----------|--|--|--| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | 0.0 | | | | |) | 0.0 | | 10 | 1 | 0000 | | | | | | | | | L | | | | <u> </u> | | <u> </u> | | | | | 6 | TOTAL | $\overline{}$ | |---|-----------|---------------| | Г | ACRE FEET | | | | | | | | LOCATIO | V | MAXI | MUM DISCH | ARGE | PERIOD 0 | F RECORD | DATUM OF GAGE | | | | | |----------|-----------|------------------|-----------|-----------|-----------|-------------|----------|---------------|------------|------|-------|--| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | | | LATITODE | LONGITODE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM TO | | GAGE | DATUM | | | 36 12 42 | 119 34 05 | NE10 20S 22E | | | | 21-DATE | | | | | | | Station located below Cross Creek Weir, 4 mi. E of Guernsey. Tributary to Tulare Lake area. At times the flow is a combination of water from Kaweah River, Kings River, and Cottonwood Creek. Records furn. by the Kaweah River Watermaster. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME C03130 ELK BAYOU NEAR TULARE a | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----------------|------|------|------|------|------|------|------|------|------|------|------|-------|---------------| | 1 1 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 1 2 | | 3 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0* | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 111 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 111 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0* | 0.0 | 0.0* | 17 | | 18 | 0.0* | 0.0 | 0.0* | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0* | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MAX | | MIN.
AC. FT. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN.
AC.FT | E - ESTIMATED NR - NO RECORD * OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * a - See note (a) below. | MEAN | | MAXIMU | M | | | 1 | | MINIM | J M | | | 1 | |-----------|-----------|----------|-----|-----|------|-----|-----------|----------|-----|-----|------|---| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | lí | DISCHARGE | GAGE HT. | MO. | DAY | TIME | l | | 0.0 | | | | | | Н | 0.0 | | 10 | 1 | 0000 | ı | | | ' (| | ı | | 1 / | ' (| | | ì | | | , | TOTAL ACRE FEET | | LOCATION | V | MAXII | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM OF GAGE | | | | |----------|------------------------------------|--------------|--------|-----------|---------|--------------|---------------|--------|---------------|------------|-------|--| | LATITUDE | LATITUDE LONGITUDE 1/4 SEC. T. & F | | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO
ON | REF. | | | LATITODE | LONGITUDE | M.D.B.B.M. | C.F.S. | GAGE HT. | DATE | 5.00.111.102 | ONLY | FROM | TO | GAGE | DATUM | | | 36 08 37 | 119 19 48 | SW36 20S 24E | 261 | 2.35 | 2- 5-63 | OCT 58-DATE | MAR 57-SEP 58 | 1959 | | 0.00 | LOCAL | | Station located 1.8 mi. W of U.S. Highway 99, 5.8 mi. S of Tulare. Prior to Mar. 4, 1960, station located 700 feet W of U.S. Highway 99, 4.5 mi. S of Tulare. Tributary to Tule River. Prior records, 1942 to July 1953, available at a site 1 mi. E of Elk Bayou Ave. 3.6 mi. below Old Highway 99 Bridge. Recorder installed March 6, 1957. Altitude of gage is approximately 250 ft. (from U.S.G.S. topographic map.) (a) A partially opened gate in the control created a condition making it impossible to record low flows if such flow did occur. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | 4 | WATER YEAR | STATION NO. | STATION NAME | |---|------------|-------------|---| | | 1964 | C03913 | FRIANT-KERN CANAL DELIVERY TO PORTER SLOUGH | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|------|------|------|------|------|-----|------|------|------|-------|--------| | 1 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | | 1 4 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | | s | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | s | | 6 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 9.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 6.7 | 2 • 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 6.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 10 | 0.0 | 0.0 | 0.0 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 10 | | 0.0 | 0.0 | | 10 | | 0.0 | | 0.0 | 0.0 | | 31 | | MEAN | 4.7 | 5 • 4 | 0.0 | 0.0 | 0.0 | 1.5 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 10.0 | 10.0 | 0.0 | 0.0 | 0.0 | 10.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 291 | 322 | | | | 93 | 7 | | | | | | AC.FT. | E — ESTIMATEO NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | UMIXAM | M | | $\overline{}$ | . 4 | | MINIMU | JM | | | |-----------|-----------|----------|-----|-----|---------------|-----|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | I | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 1.0 | | | | | | Ш | | | | | | | / | (| | | | , | ı۷ | | | | | | TOTAL ACRE FEET 712 | | LOCATION | ٧ | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|-----------|-------------|------|-------|---------|-------| | L ATITUE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORO | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO | REF. | | LATITUDE | LONGITUDE | М.О.В.В.М. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 36 05 00 | 119 04 50 | SW20 21S 27E | | | | | | | | | | These flows are deliveries from Friant-Kern Canal into Porter Slough under contract agreement with the U.S.B.R. Delivery is at the intersection of Porter Slough with the Friant-Kern Canal approx. 4 mi. W of Porterville. Records furn. by U.S.B.R. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 C03923 FRIANT-KERN CANAL DELIVERY TO TULE RIVER | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|------|------|------|------|------|------|-----|------|------|------|-------|--------| | 1 | 169 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2 | 53 | 0.0 | 0.0 | 0.0 | 0.0 | 0.C | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1,, | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 13 | 0.0 | 0.0 | | | | | | | | | | - | 13 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | 0.00 | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | 31 | | MEAN | 7.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
MEAN | | MAX. | 169 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MAX. | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 840 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR 085ERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | J M | | 7 | | MINIM | J M | | | |--------------------|-----------|----------|-------|---------|---|-----------|----------|-----|-----|------| | DISCHARGE
0 • 6 | DISCHARGE | GAGE HT. | MO. D | AY TIME | 1 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | |) | | | | | | TOTAL ACRE FEET 440 | | LOCATIO | V | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|-----------|-------------|------|-------|------------|-------| | LATITUOS | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 36 04 25 | 119 05 15 | NW29 21S 27E | | | | | | | | | | These flows are deliveries from Friant-Kern Canal into Tule River under contract agreements with the U.S.B.R. Delivery is located on the Tule River approximately 4 mi. W of Porterville. Record furnished by U.S.B.R. ### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | (| WATER YEAR | STATION NO. | STATION NAME | |---|------------|-------------|--------------------------------------| | | 1964 | C32100 | NORTH FORK TULE RIVER AT SPRINGVILLE | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|-------|-------|----------|------|----------|----------|-------|-------|------------|--------| | 1 | 0.7 | 1.9 | 17 | 9.8 | 18 | 5.8 | 185 | 47 | 27 | 1.4 | 0 • 2 | 0.4 | 1 | | 2 | 0.3 | 2.3 | 16 | 8.8 | 17 | 20 | 168 | 46 | 26 | 1.3 | 0 • 2 | 0.4* | 2 | | 3 | 0 • 4 | 2 • 2 | 15 | 8.6 | 17 | 13 | 97 | 42 | 25 | 1.0 | 0.2* | 0.4 | 3 | | 4 | 0.5 | 2.0 | 14 | 8.6 | 17 | 12 | 77 | 40 | 22 | 1.0 | 0.3 | 0 • 4 | 4 | | 5 | 0.5 | 2 • 5 | 13 | 8.6 | 16 | 11 | 72 | 43 | 21 | 1.1 | 0 • 4 | 0 • 4 | 5 | | 6 | 0.5 | 9•2 | 12 | 8.8 | 15 | 11 | 67 | 64 | 19 | 1.3 | 0.4 | 0.3 | 6 | | 7 | 1.1 | 15 | 12 | 8 • 8 | 15 | 14 | 56 | 56 | 20 | 0.8 | 0.6 | 0.4 | 7 | | 8 | 0.7 | 10 | 11 | 8.6 | 14 | 14 | 53 * | 51 | 23 | 0.7 | 0.4 | 0 • 4 | 8 | | 9 | 0.7 | 9.7 | 16 | 8 • 5 | 13 | 13
13 | 57 | 55
58 | 30
28 | 0.6 | 0.3 | 0.6
0.4 | 9 | | 10 | 0.7 | 10 | 15 | 8.6 | 12 | 13 | 68 | 20 | 28 | 0 • 6 | 0.2 | 0.4 | 10 | | 1 11 | 0.9 | 9.1 | 12 | 8.7 | 12 | 12 | 76 | 65 | 26 | 0.6 | 0.3 | 0.2 | 111 | | 12 | 0.5 | 7.6 | 13 | 8.0 | 12 | 18 | 77 | 70 | 21 | 0.7 | 0 • 4 | 0.1 | 12 | | 13 | 0.9 | 6.5 | 12 | 8.0 | 12 | 26 | 83 | 76 | 18 | 0.6 | 0.4 | 0.1 | 13 | | 14 | 0.9 | 5.9 | 12 | 7.9 | 11 | 19 | 88 | 74 | 15 | 0+7 | 0 • 4 | 0.1 | 14 | | 15 | 0.9 | 36 | 12 | 7.7 | 10 | 19 | 93 | 73 | 13 | 2 • 1 | 0.1 | 0.0 | 15 | | 16 | 1.3 | 46 | 12 | 7.6 | 10 | 20 | 91 | 70 | 13 | 0.3 | 0.1 | 0.0 | 16 | | 17 | 2 • 1 | 25 | 12 | 7.6 | 9.9 | 20 | 84 | 65 | 12 # | 0.3 | 0.1 | 0.1 | 17 | | 18 | 1.4 | 19 | 12 * | 8.1 | 9.3* | 24 | 73 | 62 | 12 | 0 • 4 | 0.0 | 0.5 | 18 | | 19 | 1.2 | 15 * | 12 | 9.2 | 9.3 | 28 * | 75 | 58 * | 9.5 | 0.7 | 0.1 | 0.5 | 19 | | 20 | 1.9 | 40 | 11 | 8 • 6 | 7•6 | 28 | 64 | 57 | 8 • 2 | 1.2 | 0 • 2 | 0.5 | 20 | | 21 | 2.4 | 58 | 11 | 15 | 6 • 6 | 28 | 57 | 56 | 7.7 | 0.4 | 0.2 | 0.4 | 21 | | 22 | 2.7 | 31 | 11 | 29 | 6.6 | 37 | 53 * | 52 | 6.9 | 0.3 | 0 • 2 | 0.3 | 22 | | 23 | 2.7 | 26 | 10 | 21 | 6.8 | 55 | 51 | 47 | 5.6 | 0.5 | 0.1 | 0.3 | 23 | | 24 | 3.1 | 30 | 10 | 17 | 7.0 | 57 | 48 | 44 | 6.0 | 0.6 | 0.1 | 0.2 | 24 | | 25 | 3 • 2 | 30 | 9.6 | 16 | 6.6 | 47 | 44 | 42 | 4.3 | 0.7 | 0.1 | 0.2 | 25 | | 26 | 3.1 | 25 | 9.4 | 16 | 5.6 | 50 | 41 | 48 | 2 • 3 | 0.4 | 0 • 2 | 0.2 | 26 | | 27 | 2.6 | 23 | 9.4 | 15 | 4 • 8 | 50 | 40 | 45 | 2.7 | 0.9 | 0.3 | 0.4 | 27 | | 28 | 2 • 4 | 21 | 9.0 | 15 | 3.6 | 68 | 43 | 41 | 2.8 | 1.0 | 0.4 | 0.4 | 28 | | 29 | 2.5 | 21 | 9.0 | 14 | 5.1 | 80 | 47 | 37 | 2.1 | 0.3 | 0.4 | 0.2 | 29 | | 30 | 2 • 0 | 19 | 8.7 | 15 | | 85 | 46 * | 33 | 1.8 | 0.3 | 0.2 | 0.2 | 30 | | 31 | 1.5 | | 8 • 5 | 16 * | | 92 | | 30 | | 0.3 | 0.4 | | 31 | | MEAN | 1.5 | 18.6 | 11.8 | 11.6 | 10.7 | 31.9 | 72.5 | 53.1 | 14.4 | 0.7 | 0.3 | | MEAN | | MAX. | 3 • 2 | 58.0 | 17.0 | 29.0 | 18.0 | 92.0 | 185 | 76.0 | 30.0 | 2 • 1 | 0.6 | | MAX. | | MIN. | 0.3 | 1.9 | 8.5 | 7.6 | 3.6 | 5 • 8 | 40.0 | 30.0 | 1.8 | 0.3 | 0.0 | 0.0 | MIN. | | AC. FT. | 92 | 1109 | 727 | 710 | 614 | 1963 | 4316 | 3267 | 855 | 46 | 16 | 18 | AC.FT. | E — ESTIMATED NR — NO RECORO * — DISCHARGE MEASUREMENT OR DBSERVATION OF NO FLOW # — E AND * | | MEAN | $\Delta \subset$ | | MAX | IMU | M | | | | | MIN | IMI | JM | | |---|-----------|------------------|--------|------|-----|-----|-----|------|-----|-----------|------|-----|-----|-----| | | DISCHARGE | DIS | CHARGE | GAGE | HT. | MD. | DAY | TIME | П | DISCHARGE | GAGE | HT. | MO. | DAY | | ļ | 18.9 | Ц | 313 | 6. | 62 | 4 | 1 | 2200 | ĮĮ | 0.0 | | | 8 | 16 | | | | / (| | | | | | | ' ' | | | | | | TOTAL ACRE FEET 13730 Y TIME 1710 | | LOCATIO | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|---------|--------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF. | | CATTIONE | LONGITODE | M, D, B, & M, | C.F.S. | GAGE HT. | DATE | DIO GITATIOE | ONLY | FROM | то | GAGE | DATUM | | 36 08 23 | 118 48 16 | SE35 20S 29E | 4600E | 10.29 | 1-31-63 | FEB 57-DATE | | 1957 | | 0.00 | LOCAL | Station located at State Highway 190 Bridge, 0.8 mi. NE of Springville. Drainage area is 97.9 sq. mi. Altitude of gage is approx. 990 ft. (from U.S.G.S. topographic map.) # DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME C03169 TULE RIVER BELOW PORTERVILLE | DAY | ОСТ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|------|------|------|------|------|------|------|------|------|-------|--------| | 1 | 152 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0E | 45 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 52 | 199 | 0.0 | 0.0 | 0.0 | 0.0E | 37 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0 | 267 | 0.0 | 0.0* | 0.0 | 0.0E | 36 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 3 | | 4 | 0.0 | 263 * | 0.0* | 0.0 | 0.0 | 0.0* | 32 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 4 | | 5 | 0.0 | 202 | 0.0 | 0.0 | 0.0* | 0.0 | 33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 0.0 | 2 0 2 | 0.0 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 163 | 0.0 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0* | 84 | 0.0 | 0.0 | 0.0 | 0.0 | 41 # | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 50 | 2.9 | 0.0 | 0.0 | 0.0 | 36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 39 | 11 | 0.0 | 0.0 | 0.0 | 33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 21 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 18 | 5.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 67 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 65 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0* | 3.1 | 9.2* | 0.0 | 0.0# | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 31 * | 0.0 | 0.0 | 0.0E | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 28 | 0.0 | 0.0* | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 71 | 0.0 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 86 | 0.0 | 0.0 | 0.0E | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 29 | 0.0 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 28 | 0.0 | 0.0 | 0.0E | 2.8* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 26 | 0.0 | 0.0 | 0.0E | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 26 | 0.0 | 0.0 | 0.0E | 30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 19 | 0.0 | 0.0 | 0.0E | 34 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 8.2 | 0.0 | 0.0 | 0.0E | 36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0E | 38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 42 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0 | | 0.0 | 0.0 | | 45 | | 0.0 | | 0.0 | 0.0 | | 31 | | MEAN | 6.6 | 69.3 | 1.1 | 0.0 | 0.0 | 7.9 | 12.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 152 | 267 | 11.0 | 0.0 | 0.0 | 45.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MAX. | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 405 | 4121 | 70 | | | 488 | 720 | | | | | | AC.FT. | E — ESTIMATED NR — NO RECORO * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AHD * | MEAN | | MAXIMU | J M | | | | MINIM | J M | | | |--------------------|-----------|----------|-----|-----|------|-----------|----------|-----|-----|------| | DISCHARGE
8 • 1 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | TOTAL ACRE FEET 5804 | | LOCATIO | N | MAXII | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|---------|-------------|-------------|--------------|-------|---------------|-------| | | | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 1100 | ZERO | REF. | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO
 GAGE | DATUM | | 36 04 40 | 119 06 22 | NW30 21S 27E | 5170 | 8.17 | 5-19-57 | FEB 57-DATE | | 1957
1959 | 1959 | 0.00
-3.48 | LOCAL | Station located 330 ft. above Rockford Road Bridge, 5.1 mi. W of Porterville. Flows regulated by Success Reservoir and spill from Friant-Kern Canal. Altitude of gage is approx. 400 ft. (from U.S.G.S. topographic map). Flows include C.V.P. releases from Friant-Kern Canal to Tule River. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|---| | 1964 | C03970 | CAMPBELL MORELAND DITCH ABOVE PORTERVILLE | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|-------|-------|------|------|------|------|-------|------|------|-------|--------| | 1 | 20 | 6.1 | 0.0 | 9.6 | 12 | 0.0 | 0.0* | 9.4 | 29 # | 7.8 | 15 | 24 | 1 | | 2 | 20 | 6.1 | 0.0# | 9.7* | 7.8 | 0.5* | 0.0 | 10 | 29 | 7.8 | 15 | 24 | 2 | | 3 | 20 | 6.7 | 0.0 | 9.6 | 6.0 | 0.0 | 0.0 | 10 | 28 | 7.8 | 15 | 23 | 3 | | 4 | 20 | 7.0 | 0.0 | 9.6 | 2.1* | 0.0 | 0.0 | 9.8 | 15 | 8.7 | 14 | 22 | 4 | | 5 | 20 | 7.2 | 0.0 | 9.6 | 1.5 | 0.1 | 0.0 | 9.7 | 7.7 | 9•6 | 14 * | 25 | 5 | | 6 | 20 | 7.4 | 0.0 | 9 • 6 | 1.1 | 0.3 | 0.0 | 10 | 8 • 4 | 9.6 | 14 | 30 | 6 | | 7 | 19 | 7.2 | 0.0 | 9.6 | 0.9 | 0.5 | 0.0 | 19 * | 9.0 | 9.6 | 14 | 30 | 7 | | 8 | 16 | 6.5 | 0.0 | 9•6 | 0.8 | 0.2 | 0.0 | 25 | 9.9 | 9.6 | 14 | 32 | 8 | | 9 | 14 | 6.1 | 0.0 | 9•6 | 0.7 | 0.2 | 0.0 | 24 | 8 • 7 | 9.6* | 14 | 34 | 9 | | 10 | 15 | 5.6 | 0.0 | 9•6 | 0.3 | 0.1 | 0.0 | 24 | 8.3 | 9•6 | 14 | 34 | 10 | | 11 | 16 | 5.3 | - 0.0 | 9.3 | 0.0 | 2.5 | 0.0 | 23 | 7.7 | 9.3 | 14 | 33 | 11 | | 12 | 16 | 4.9 | 0.0 | 9.3 | 0.0 | 5.7 | 0.0 | 23 | 8 • 4 | 9.6 | 18 | 32 | 12 | | 13 | 15 | 2 • 7 | 0.0 | 9.3 | 0.0 | 0.0 | 0.0 | 25 | 7.8 | 9.3 | 21 * | 33 | 13 | | 14 | 15 | 0.0 | 0.0 | 15 | 0.1 | 0.0 | 0.0 | 27 | 7.6 | 9.6 | 18 | 23 | 14 | | 15 | 15 E | 0.0* | 0.0 | 19 | 0.3 | 0.0 | 0.0 | 28 * | 7.0 | 13 | 15 | 16 | 15 | | 16 | 15 E | 0.0 | 0.0 | 20 | 0.4 | 0.0 | 0.0* | 28 | 6.7* | 14 | 13 | 17 | 16 | | 17 | 15 E | 0.0 | 0.0* | 19 # | 0.4 | 0.0* | 0.0 | 28 | 8.0 | 13 | 10 | 16 | 17 | | 18 | 15 # | 0.0 | 0.0 | 19 | 0.4* | 0.0 | 0.0 | 28 | 10 | 13 | 7.2* | 16 | 18 | | 19 | 15 | 0.0 | 0.0 | 20 | 0.3 | 0.0 | 0.0 | 28 | 9.7 | 13 | 6.7 | 16 | 19 | | 20 | 15 | 0.0 | 0.0 | 20 | 0.3 | 0.0 | 0.0 | 29 | 9•3 | 13 | 6.7 | 21 | 20 | | 21 | 13 | 0.0 | 1.9 | 21 | 0.2 | 0.0 | 0.0 | 30 | 9•6 | 12 * | 6.7 | 23 | 21 | | 22 | 6 • 8 | 0.0 | 6.2 | 22 | 0.2 | 0.0 | 0.0 | 30 | 9.7 | 13 | 6.2 | 21 | 22 | | 23 | 6.4 | 0.0 | 8.6 | 22 | 0.0 | 0.0 | 0.0 | 31 | 9.7 | 13 | 6.7 | 22 | 23 | | 24 | 6.8 | 0.0 | 8.7 | 20 | 0.0 | 0.0 | 0.0 | 31 | 16 | 13 | 8.1 | 21 | 24 | | 25 | 7.4 | 0.0 | 8.7 | 19 | 0.0 | 0.0 | 0.0 | 30 | 19 | 12 | 7.4* | 20 | 25 | | 26 | 7.8 | 0.0 | 8.7 | 19 | 0.1 | 0.0 | 0.0 | 29 | 17 | 12 | 16 | 21 | 26 | | 27 | 8.6 | 0.0 | 9.0 | 19 | 0.0 | 0.0 | 0.0 | 31 | 16 | 13 | 22 | 22 | 27 | | 28 | 7.8 | 0.0 | 9.0 | 20 | 0.0 | 0.0 | 7.3* | 31 | 15 | 13 | 24 | 21 | 28 | | 29 | 6.3 | 0.0 | 9.0 | 20 | 0.0 | 0.0 | 11 | 30 | 15 | 14 | 26 | 21 | 29 | | 30 | 6.1 | 0.0 | 9.3 | 19 | | 0.0 | 9.6* | 29 | 11 | 15 | 26 | 19 | 30 | | 31 | 6.3* | | 9.6 | 19 | | 0.0 | | 29 | | 15 | 26 | | 31 | | MEAN | 13.5 | 2.6 | 2.9 | 15.4 | 1.2 | 0.3 | 0.9 | 24.2 | 12.4 | 11.3 | 14.5 | 23.7 | MEAN | | MAX. | 20.0 | 7.4 | 9.6 | 22.0 | 12.0 | 5.7 | 11.0 | 31.0 | 29.0 | 15.0 | 26.0 | 34.0 | MAX. | | MIN. | 6.1 | 0.0 | 0.0 | 9.3 | 0.0 | 0.0 | 0.0 | 9.4 | 6.7 | 7.8 | 6.2 | 16.0 | MIN. | | AC. FT. | 832 | 156 | 176 | 944 | 71 | 20 | 55 | 1485 | 740 | 697 | 888 | 1412 | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | | MAXIMU | J.M. | $\overline{}$ | | MINIM | J M | | $\overline{}$ | |-----------------|-----------|----------|---------|---------------|-----------|----------|-----|-----|---------------| | SCHARGE
10.2 | DISCHARGE | GAGE HT. | MO. DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | | | | | l / | | | | | | | | TOTAL | |---|-----------| | | ACRE FEET | | | 7476 | | 1 | , | | | LOCATION | 1 | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|-------------|-------------|--------|--------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 0018 | ZERO
ON | REF. | | CATTIONE | LUNGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | OATUM | | 36 02 48 | 118 56 54 | NW 4 22S 28E | | | | AUG 42-DATE | | Oct 62 | Oct 62 | 0.00 | LOCAL | Station located 3.9 mi. SE of Porterville approximately 2600ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. DI #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME C03182 PORTER SLOUGH AT PORTERVILLE | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|-------|------|------|------|------|------|------|------|-------|-------|-------| | 1 | 40 * | 6.6 | 20 | 0.0E | 0.0 | 0.0 | 0.0* | 0.0* | 36 | 31 | 17 | 0.0 | 1 | | 2 | 40 | 49 | 20 | 0.0# | 0.0 | 0.0* | 0.0 | 0.0 | 42 | 26 | 1.2 | 0.0 | 2 | | 3 | 39 | 57 | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33 | 27 * | 0 • 2 | 0.0 | 3 | | 4 | 38 | 60 | 18 * | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 30 * | 26 | 0.0 | 0.0 | 4 | | 5 | 39 | 72 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32 | 24 * | 0.0 | 0.0 | 5 | | 6 | 40 | 64 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | 23 | 11 | 0.0 | 6 | | 7 | 38 | 56 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 35 | 0.0 | 7 | | 8 | 24 | 44 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 23 | 30 | 0.0 | 8 | | 9 | 2.3 | 3.8 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 22 | 0.0 | 9 | | 10 | 0.3 | 1.1 | 5.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | 22 | 0.0 | 10 | | 11 | 0.1 | 0 • 4 | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 22 | 0.0 | 11 | | 12 | 0.0 | 0.1 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 23 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17 | 0.0 | 23 * | 0.0 | 13 | | 14 | 0.0 | 0.0 | 2 • 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41 | 17 | 24 | 0.0 | 14 | | 15 | 0.0 | 3.3 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 38 | 31 | 13 | 0.0 | 15 | | 16 | 0.0 | 77 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | 20 | 0.6 | 0.0 | 16 | | 17 | 0.0 | 76 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 * | 8.8* | 0.0 | 0.0 | 17 | | 18 | 0.0* | 43 | 1.3 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 27 | 0.4 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 4.2* | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 4 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 1.6 | 13 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 14 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 59 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 25 | 6.7 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 35 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | 27 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 30 * | 0.0 | 0.0 | 24 | | 25 | 0.0 | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 28 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 25 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 25 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 23 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 | 24 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 23 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 18 | 8.5 | 25 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 20 | 0.0E | 0.0 | | 0.0 | 0.0 | 25 | 33 | 25 | 0.0 | 0.0 | 30 | | 31 | 0.0* | | 0.0E | 0.0 | | 0.0 | | 27 | | 25 | 0.0 | | 31 | | MEAN | 9.7 | 30.0 | 6.8 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 | 19.0 | 18.6 | 7.9 | 0.0 | MEAN | | MAX. | 40.0 | 77.0 | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27.0 | 42.0 | 31.0 | 35.0 | 0.0 | | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | AC. FT. | 596 | 1783 | 420 | | | | | 146 | 1130 | 1144 | 484 | | AC.FT | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR DBSERVATION OF NO FLOW | MEAN | 1 | | MAX | I M U | M | | | ١ | | MINIM | U M | | | ۷ | |-----------|---|-----------|------|-------|-----|-----|------|---|-----------|----------|-----|-----|------|---| | DISCHARGE | Γ | DISCHARGE | GAGE | нт. | MO. | DAY | TIME | | DISCHARGE | GAGE HT. | MO. | DAY | TIME | 1 | | 7.9 | | | | | | | , | | (| | | | | J | TOTAL ACRE FEET 5703 | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|-------------|-------------|------|-------|------------|-------| | | | 1/4 SEC. T. & R. | | OF RECORD | | OIS CHARGE | GAGE HEIGHT | PER | 100 | ZERO
ON | REF | | LATITUDE | LONGITUOE | M. O. B. & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | OATUM | | 36 03 29 | 118 59 08 | SE31 21S 28E | | | | JAN 42-DATE | | 1957 | | 0.00 | LOCAL | Station located at "B" Lane Bridge, immediately E of Porterville. This is regulated diversion from Tule River. Altitude of gage is approx.465 ft. (from U.S.G.S. topographic map). Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME 1964 C03984 PORTER SLOUGH DITCH AT PORTERVILLE | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|------|-------|------|------|------|------|------|------
------------|------------|-------|-------|--------| | 1 | 11 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0* | 4.1* | 13 * | 15 | 0.0 | | | 2 | 12 | 5.1 | 0.0* | 0.0* | 0.0 | 0.0* | 0.0 | 0.0 | 11 * | 11 | 0.2 | 0.0 | 2 | | 3 | 12 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 12 * | 0.0 | 0.0 | 3 | | 4 | 12 | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 * | 12 | 0.0 | 0.0 | 4 | | 5 | 12 | 15 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 12 * | 11 * | 0.0 | 0.0 | 5 | | 6 | 12 | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.4 | 11 * | 0.2 | 0.0 | 6 | | 7 | 7.2 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 14 * | 0.0 | 7 | | 8 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 15 * | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 * | 15 * | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0•0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 15 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.7 | 15 | 0.0 | 11 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15 * | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 1.6 | 17 | 0.0 | 14 | | 15 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 11 | 9.0* | 11 | 0.0 | 15 | | 16 | 0.0 | 0 • 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 12 * | 8 • 5 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 9.0 | 0.0* | 0.0* | 0.0 | 0.0* | 0.0 | 0.0 | 13 | 4.7* | 0.0 | 0.0 | 17 | | 18 | 0.0 | 7.1 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 *
14 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14
15 * | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | 6.4 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | 13 *
14 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5 | 14 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 * | 0.0 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 10 | 16 | 0.0 | 0.0 | 30 | | 31 | 0.0* | | 0.0 | 0.0 | | 0.0 | | 0.0 | | 13 | 0.0 | | 31 | | MEAN | 2.5 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 8 • 6 | 4 • 8 | 0.0 | MEAN | | MAX. | 12.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 16.0 | 17.0 | 0.0 | MAX. | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 155 | 191 | | | | | | | 417 | 531 | 292 | | AC.FT. | E — ESTIMATED NR — NO RECORO * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AHD * | MEAN | 1 6 | | MAXIMU | J M | | | . / | <u> </u> | MINIM | U M | | | |-----------|-----|-----------|----------|-----|-----|------|-----|-----------|----------|-----|-----|------| | DISCHARGE | Π | DISCHARGE | GAGE HT. | MO. | DAY | TIME | П | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 2 • 2 | П | | | | | | IJ | | | | | | | , | / \ | | | | | / | | | | | | | TOTAL ACRE FEET 1586 | | LOCATIO | N | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|-------------|-------------|------|-------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.8.6M. | C.F.S. | GAGE HT. | DATE | 3.00 | ONLY | FROM | то | GAGE | DATUM | | 36 04 06 | 119 01 06 | SE26 21S 27E | | | | JAN 43-DATE | | 1943 | | 0.00 | LOCAL | Station located in Porterville 0.5 mi. W of Porterville Post Office, approximately 150 ft. below head. This is regulated diversion from Tule River via Porter Slough. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. ### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | (| WATER YEAR | STATION NO. | STATION NAME | |---|------------|-------------|--------------------------------| | | 1964 | C03187 | PORTER SLOUGH NEAR PORTERVILLE | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|------|------|------|------|------|------|------|------|------|-------|--------| | 1 | 1.0 | 0.0* | 7.8 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | 2 | 2.4 | 0.1 | 7.6 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 2 . 8 | 9.3 | 7.6 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 3 | | 4 | 3.7 | 13 | 6.9* | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 4 | | 5 | 4.0 | 25 | 3.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 5 | | 6 | 5 • 2 | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | | 7 | 7.8* | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 10 | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 | | 011 | 0.1 | 0.0 | 6.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11 | | 12 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 14 | | 15 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 2.4 | 0.1 | 0.0 | 0.0 | 15 | | 16 | 0.4 | 47 E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 66 E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0* | 26 | 0.0* | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.6 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.6 | 5.3 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20 | | 21 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21 | | 22 | 0.0 | 41 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22 | | 23 | 0.0 | 21 | 0.0 | 0.2 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 25 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 26 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26 | | 27 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 28 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 9.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29 | | 30 | 0.0 | 8.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30 | | 31 | 0.0* | | 0.0 | 0.0 | | 0.0 | | 0.0 | | 0.0 | 0.0 | | 31 | | WEAN . | 1.2 | 13.2 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 10.0 | 66.0E | 12.0 | 0.2 | 0.0 | 0.2 | 0.1 | 0.1 | 2.4 | 0.1 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 74 | 787 | 139 | | | 1 | | | 5 | | | | AC.FT. | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # — E AND * | MEAN | 1 | | MAXIM | U M | | | | MINIM | JM | | | ١ | |-------------------|---|-----------|----------|-----|-----|------|-----------|----------|-----|-----|------|---| | ISCHARGE
1 • 4 | | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | į | | 101 | TAL | | |------|------|---| | ACRE | FEET | Ī | | | 1006 | | | | | | | | | LOCATION | | | NUM DISCH | IARGE | PERIOD O | DATUM OF GAGE | | | | | |---|----------|-----------|------------------|--------|-----------|---------|-------------|---------------|----------|----|------------|-------| | Ì | LATITUOE | LONGITUOE | 1/4 SEC. T, & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD . | | ZERO
ON | REF. | | l | LATITU0E | LONGITUDE | M.O.8.8.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | I | 36 04 00 | 119 03 08 | NE28 21S 27E | 364 | 5.14 | 4- 3-58 | JAN 57-DATE | | 1957 | | 0.00 | LOCAL | Station located at Newcomb Drive Bridge, 2.0 mi. W of Porterville. Tributary to Tulare Lake Basin via Tule River. Altitude of gage is approx. 425 ft. (from U.S.G.S. topographic map). Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECONO) | 1 | WATER YEAR | STATION NO. | STATION NAME | |---|------------|-------------|---------------------------------| | | 1964 | C03965 | VANDALIA DITCH NEAR PORTERVILLE | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|------|------|------|------|------|------|-------|-------|-------------|------------|-------|-------| | 1 | 4.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0* | 3.6* | 0.0* | 3.9 | 3.1 | 1 | | 2 | 4.0 | 0.0 | 0.0* | 0.0* | 0.0 | 0.0* | 0.0 | 0.0 | 3.5 | 0.0 | 3.8 | 2.9 | 2 | | 3 | 4.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 • 4 | 0.0 | 3.8 | 2.9 | 3 | | 4 | 4.3 | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 3.3 | 0.0 | 3.8 | 2.9 | 4 | | 5 | 4.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 0.0 | 3.7* | 2.8 | 5 | | 6 | 4.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 3.6 | 0.0 | 3.7 | 2.8 | 6 | |
7 | 3.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1* | 3.9 | 0.0 | 3.7 | 2.9 | 7 | | 8 | 3.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.3 | 4 • 2 | 0.0 | 3 . 8 | 15 | 8 | | 9 | 4.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 4.5 | 0.0 | 3.8 | 0.5 | 9 | | 10 | 4 • 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 4.4 | 0.0 | 3.8 | 0.0 | 10 | | 11 | 4.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 4.4 | 0.0 | 3 . 8 | 0.0 | 11 | | 12 | 4.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 4.4 | 0.0 | 3 . 8 | 0.0 | 12 | | 13 | 4 • 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 3.9 | 0.0 | 3.8* | 0.0 | 13 | | 14 | 4.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 3.6 | 0.0 | 3.3 | 0.0 | 14 | | 15 | 4.4 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1* | 3.6 | 2.4 | 3.2 | 0.0 | 15 | | 16 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 4-1 | 3.6* | 4.1 | 3.2 | 0.0 | 16 | | 17 | 4.2 | 0.0 | 0.0* | 0.0* | 0.0 | 0.0* | 0.0 | 4.1 | 3.7 | 4.1 | 3.1 | 0.0 | 17 | | 18 | 3.7* | 0.0 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 4.0 | 4.0 | 4.1 | 3.0* | 0.0 | 18 | | 19 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 2.0 | 4.2 | 3.0 | 0.0 | 19 | | 20 | 3.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.4 | 4.2 | 3.0 | 0.0 | 20 | | 21 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.3 | 4.1*
4.1 | 3.0
3.1 | 0.0 | 21 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.2 | 4.1 | 3.2 | 0.0 | 22 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 3.2 | 0.0 | 23 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.3 | 0.1 | 4.1
4.1 | 3.2* | 0.0 | 24 | | 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.0 | 4.1 | | 0.0 | 25 | | 26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.0 | 4.1 | 3.1 | 0.0 | 26 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.3 | 0.0 | 4.1 | 3.2 | 0.0 | 27 | | 28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 • 2 | 0.0 | 3.4 | 3.3 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 3.1 | 3.4 | 0.0 | 29 | | 30 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 3.9 | 0.0 | 4.1 | 3.4 | 0.0 | 30 | | 31 | 0.0* | | 0.0 | 0.0 | | 0.0 | | 3.7 | | 4.1 | 3.4 | | 31 | | MEAN | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 2.4 | 2.1 | 3.4 | 0.7 | MEAI | | MAX. | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.3 | 4.5 | 4.2 | 3.9 | 3.1 | MA | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | MIN | | AC. FT. | 165 | | | | | | | 209 | 143 | 132 | 211 | 44 | AC.FI | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | MEAN | | MAXIMU | М | $\overline{}$ | MINIMUM | | | | | | | | |--------------------|-----------|----------|--------|---------------|-----------|----------|-------|---------|--|--|--|--| | DISCHARGE
1 • 2 | DISCHARGE | GAGE HT. | MO. DA | TIME | DISCHARGE | GAGE HT. | MO. D | AY TIME | | | | | | | | | | \perp | | <u> </u> | | | | | | | | \subset | TOTAL | |-----------|-----------| | Г | ACRE FEET | | 1 | 904 | | į. | | | | LOCATION | | | MUM DISCH | IARGE | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|------------------|--------|-----------|-------|-----------|---------------|--------|----|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC, T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | LATITODE | LONGITODE | M. D. B. B.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 36 03 00 | 118 58 18 | NE 5 225 28E | | | | 1948-DATE | | 1948 | | 0.00 | LOCAL | Station located 2.8 mi. SE of Porterville approximately 1000 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. #### **DAILY MEAN DISCHARGE** (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME POPLAR OITCH NEAR PORTERVILLE C03960 | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|------|------|------|-------|------|------|-------|-------|------|-------|--------| | 1 | 12 | 3.2 | 37 | 0.3 | 30 | 3.4 | 0.0* | 0.0* | 0.0* | 0.0 | 89 * | 18 | 1 | | 2 | 12 | 47 | 38 * | 0.5* | 9.9 | 3.8* | 0.0 | 0.0 | 0.0 | 0.0 | 87 | 18 | 2 | | 3 | 13 | 60 | 38 | 0.5 | 8.1 | 2 • 8 | 0.0 | 0.0 | 0.0 | 0.0 | 86 | 16 | 3 | | 4 | 13 | 59 # | 37 | 0.5 | 7.3* | 0.8 | 0.0 | 0.0 | 0.0 | 8.9 | 85 | 8.9 | 4 | | 5 | 6 • 1 | 57 | 38 | 0.4 | 6.9 | 0.0 | 0.0 | 0.0 | 0.0 | 46 * | 84 * | 0.0 | 5 | | 6 | 0.2 | 13 | 30 | 0.3 | 6.3 | 0.0 | 0.0 | 0.0 | 19 | 88 | 85 | 0.0 | 6 | | 7 | 0.1 | 0 • 2 | 27 | 0.1 | 6.0 | 0.0 | 0.0 | 0.0 | 61 | 114 | 8.5 | 0.0 | 7 | | 8 | 0.1 | 0.0 | 27 | 0.1 | 5.8 | 0.0 | 0.0 | 0.0 | 87 * | 122 | 86 | 0.0 | 8 | | 9 | 0.2 | 0.0 | 27 | 0.0 | 5.6 | 0.0 | 0.0 | 0.0 | 98 * | 122 * | 86 | 0.0 | 9 | | 10 | 0 • 2 | 0.0 | 27 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 | 103 | 121 | 85 | 0.0 | 10 | | 11 | 0.2 | 0.0 | 26 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 | 104 | 119 | 85 | 0.0 | 11 | | 12 | 0.2 | 0.0 | 26 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 | 104 | 119 * | 86 | 0.0 | 12 | | 13 | 0.2 | 0.0 | 26 | 0.0 | 5.2* | 0.0 | 0.0 | 0.0 | 62 | 116 * | 87 * | 0.0 | 13 | | 14 | 0.2 | 4.8 | 26 | 0.0 | 4.9 | 0.0 | 0.0 | 0.0 | 0.7 | 110 | 41 | 0.0 | 14 | | 15 | 0.2 | 9.8* | 26 | 0.0 | 4.7 | 0.0 | 0.0 | 0.0* | 0.0 | 111 | 1.4 | 0.0 | 15 | | 16 | 0.2 | 13 | 17 | 19 | 4.5 | 0.0 | 0.0* | 0.0 | 0.0* | 113 | 3.2 | 0.0 | 16 | | 17 | 0.2 | 14 | 0.5* | 29 * | 4.2 | 0.0* | 0.0 | 0.0 | 18 | 112 | 0.7 | 0.0 | 17 | | 18 | 0.2 | 19 | 0.4 | 30 | 4.1* | 0.0 | 0.0 | 0.0 | 59 | 110 | 0.0 | 0.0 | 18 | | 19 | 0.3 | 35 | 0.3 | 30 | 4.0 | 0.0 | 0.0 | 4.8* | 86 | 112 | 0.0 | 0.0 | 19 | | 20 | 0.3 | 38 | 0.2 | 34 | 3.9 | 0.0 | 0.0 | 17 | 105 | 113 | 0.0 | 0.0 | 20 | | 21 | 0 • 2 | 34 | 0.1 | 34 | 3.7 | 0.0 | 0.0 | 20 * | 106 | 112 * | 0.0 | 0.0 | 21 | | 22 | 0.3 | 35 | 0.1 | 40 | 3.7 | 0.0 | 0.0 | 20 | 107 | 112 | 0.0 | 0.0 | 22 | | 23 | 0.2 | 34 | 0.1 | 48 | 3.7 | 0.0 | 0.0 | 20 | 112 | 112 | 0.0 | 0.0 | 23 | | 24 | 0.2 | 37 | 0.1 | 52 * | 3.7 | 0.0 | 0.0 | 19 | 114 | 112 | 0.0 | 0.0 | 24 | | 25 | 0 • 3 | 37 | 0.0 | 50 | 3.6 | 0.0 | 0.0 | 20 | 115 | 112 | 0.0 | 0.0 | 25 | | 26 | 0 • 2 | 37 | 0.1 | 50 | 3.6 | 0.0 | 0.0 | 19 | 70 | 112 | 0.0 | 0.0 | 26 | | 27 | 0.2 | 37 | 0.1 | 49 # | 3.5 | 0.0 | 0.0 | 18 | 0.0 | 113 | 0.0 | 0.0 | 27 | | 28 | 0.2 | 38 | 0.1 | 44 * | 3.5 | 0.0 | 0.0 | 17 | 0.0 | 110 | 5.7 | 0.0 | 28 | | 29 | 0.3 | 37 | 0.1 | 40 | 3.5 | 0.0 | 0.0 | 9.3* | 0.0 | 98 | 20 | 0.0 | 29 | | 30 | 0.3 | 37 | 0.1 | 40 | | 0.0 | 0.0 | 0.0 | 0.0 | 91 | 17 | 0.0 | 30 | | 31 | 0.3 | | 0.1 | 40 | 1 | 0.0 | | 0.0 | | 91 | 16 | | 31 | | MEAN | 2.0 | 24.5 | 15.3 | 20.4 | 5.9 | 0.3 | 0.0 | 5.9 | 51.3 | 94.6 | 39.4 | 2.0 | MEAN | | MAX. | 13.0 | 60.0 | 38.0 | 52.0 | 30.0 | 3.8 | 0.0 | 20.0 | 115.0 | 122.0 | 89.0 | 18.0 | MAX. | | MIN. | 0 • 1 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC. FT. | 123 | 1460 | 943 | 1253 | 337 | 21 | | 365 | 3050 | 5815 | 2422 | 121 | AC.FT. | E — ESTIMATED NR — NO RECORO * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * | 4 | MEAN | | MAXIMU | M | | | | | MIN | IMI | JM | | .) | |---|-----------|-----------|----------|-----|-----|------|---|-----------|------|-----|-----|-----|------| | I | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | 1 | DISCHARGE | GAGE | HT. | MO. | DAY | TIME | | | 21.8 | | | | | | | | | | | | | TOTAL ACRE FEET 15910 | 1 | | LOCATION | | | MUM DISCH | IARGE | PERIOD O | DATUM OF GAGE | | | | | |---|----------|-------------------------------------|--------------|--------|----------------------|-------|-------------|---------------|--------|----|------------|-------| | | LATITUAE | LATITUDE LONGITUDE 1/4 SEC. T. & R. | | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | 2ERO
ON | REF. | | | CATTIONE | LONGITUDE | м.о.в.вм, | C.F.S. | C.F.S. GAGE HT. DATE | | DIO OFFICIO | ONLY | FROM | ТО | GAGE | DATUM | | | 36 03 18 | 119 00 54 | SW36 21S 27E | | | | APR 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 1.0 mi. S of Porterville approximately 4750 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. Resources. #### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME HUBBS - MINER DITCH AT PORTERVILLE a C03925 | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |---------|-------|-------|------|------|------|-------|-------|------|--------------|------|------------|----------|-------| | 1 | 17 | 0.0* | 0.0E | 0.0 | 0.0 | 0.0 | 0.0* | 0.0* | 0.0* | 7.8* | 6.4 | 0.0 | 1 | | 2 | 17 | 8.8 | 0.0# | 0.0* | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 7.3 | 0.0 | 0.0 | 2 | | 3 | 17 | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 3 | | 4 | 14 | 13 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 0.0 | 0.0 | 4 | | 5 | 9.6 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.0 | 8.0 | 0.0 | 0.0 | 5 | | 6 | 7.5 | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6 | 1.8 | 7.9 | 6.7 | 0.0 | 6 | | 7 | 4 • 1 | 9•3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0= | 5.9 | 10 | 11 * | 0.0 | 7 | | 8 | 0.0 | 4.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.7 | 9.3* | 16 | 9.4 | 0.0 | 8 | | 9 | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | 14 | 6.8* | 8.0 | 9 | | 10 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | 11 | 5.9 | 11 | 10 | | 11 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 6.4 | 5.6 | 6.5 | 11 | | 12 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 2.4 | 12 | 8.1* | 5.9 | 3.8* | | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 • 3 | 0.1 | 6.8* | 9.6 | 9.5* | 8.0* | 0.0 | 13 | | 14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 | 6.5 | 7.6 | 6.5 | 14 | 11 | 0.0
| 14 | | 15 | 0.0 | 0.0# | 0.0 | 0.0 | 0.0 | 13 | 11 | 7.2* | 7.3 | 16 * | 13 | 0.0 | 15 | | 16 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 14 | 11 * | 6.9 | 3.6* | 17 | 12 | 0.0 | 16 | | 17 | 0.0 | 0.0E | 0.0# | 0.0* | 0.0 | 17 * | 9.7* | 6.8 | 0.0E | | 6.7 | 0.0 | 17 | | 18 | 0.0 | 0.0E | 0.0* | 0.0 | 0.0* | 17 | 6.9 | 3.2 | 0.0E | | 5.2* | 0.0 | 18 | | 19 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 8.5* | 5.0 | 0.0* | 0.0E | | 5.0 | 0.0 | 19 | | 20 | 0.0 | 0.0E | 0.0 | 0.0* | 0.0 | 0.0 | 3 • 2 | 2•4 | 0.0E | 10 | 5•0 | 0.0 | 20 | | 21 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 1.9E | 12 * | 4.7 | 2.8 | 21 | | 22 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.3 | 6.1# | 12 | 4.8 | 11 * | | | 23 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 7.6
14 * | 11 | 5.2
5.1 | 13
12 | 23 | | 24 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 14 *
15 * | 11 | 5.1 | 10 * | 24 | | 25 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7•3 | 15 * | 1 13 | 201 | 10 * | 25 | | 26 | 0.0 | O.OE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 14 | 15 | 5.1 | 2.5 | 26 | | 27 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.6* | 19 * | 17 | 5.5 | 0.0 | 27 | | 28 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 19 | 18 | 8.1 | 0.0 | 28 | | 29 | 0.0 | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13 | 18 * | 16 | 0.0 | 29 | | 30 | 0.0 | 0.0E | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 7.5 | 19 | 20 | 0.0 | 30 | | 31 | 0.0* | | 0.0 | 0.0 | | 0.0 | | 0.0 | | 13 | 12 | | 31 | | MEAN | 2.8 | 2.6E | 0.0E | 0.0 | 0.0 | 2.9 | 1.8 | 3.8 | 7.0 | 11.8 | 6.9 | 2.7 | MEAN | | MAX. | 17.0 | 14.0E | 0.0E | 0.0 | 0.0 | 17.0 | 11.0 | 8.0 | 19.0 | 19.0 | 20.0 | 13.0 | MAX | | MIN. | 0.0 | 0.0E | 0.0E | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.4 | 0.0 | 0.0 | MIN. | | AC. FT. | 171 | 153 | | | | 181 | 106 | 236 | 419 | 728 | 427 | 160 | AC.FT | E — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - EAHD • a - See note (a) below. | MEAN | | MAXIMU | M | | $\overline{}$ | | | MINIM | J M | |--------------------|-----------|----------|-----|-----|---------------|---|-----|----------|-------------------| | DISCHARGE
3 · 3 | DISCHARGE | GAGE HT. | MO. | YAC | TIME | [| 0.0 | GAGE HT. | MO .
10 | TOTAL ACRE FEET 2581 DAY TIME 1600 | | LOCATION | V | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|--------------|-------------|------|-------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | don | 2ERO
ON | REF. | | LATITUDE | LONGITUDE | M. D. B. & M, | C.F.S. | GAGE HT. | DATE | oro or minor | ONLY | FROM | TO | GAGE | DATUM | | 36 03 27 | 119 02 02 | NW35 21S 27E | | | | DEC 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 1.1 mi. SW of Porterville, approximately 3400 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. (a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association. #### **DAILY MEAN DISCHARGE** (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME C03940 RHODES - FINE DITCH NEAR PORTERVILLE a | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|-------------------------------------|--------------------------------|---------------------------------|---------------------------------|--|---------------------------------|----------------------------------| | 1
2
3
4
5 | 0.0E
0.0E
0.0E
0.0E | 0.0 | 0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0
0.0 | 0.0*
0.0
0.0
0.0 | 12
12
3•6
8•1
13 * | 15 *
16 *
12
6.1* | 0.0*
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1
2
3
4
5 | | 6
7
8
9
10 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0 | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 16
15
19
18
15 | 8.8
5.7
9.4
13 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 6
7
8
9
10 | | 11
12
13
14
15 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0 | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 14
11
11
15
17 * | 12
10
8.8
7.6 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 11
12
13
14
15 | | 16
17
18
19
20 | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0 | 0.0*
0.0
0.0
0.0
0.0 | 17
19
20
19 * | 9.1*
5.0
3.6
6.8* | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0 | 16
17
18
19
20 | | 21
22
23
24
25 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E
0.0E | 0 • 0
0 • 0
0 • 0
0 • 0
0 • 0 | 0.0
0.0
0.0
0.0
1.7 | 18
17
17
17
20 * | 5.2
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.1
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 21
22
23
24
25 | | 26
27
28
29
30
31 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0
0.0 | 3.8
5.7*
9.6*
11 *
12 * | 16
14
15
20
17 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 26
27
28
29
30
31 | | MEAN
MAX.
MIN. | 0.0E
0.0E | 0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E | 1.5
12.0
0.0
87 | 15.3
20.0
3.6
942 | 6.3
16.0
0.0
374 | 0.0 | 0.1
1.1
0.0
5 | 0.0 | MEAN
MAX.
MIN.
AC.FT. | : — ESTIMATED NR — NO RECORD * — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW a - See note (a) below. | MEAN | | MAXIMU | I M | | | | | MINIMU | J M | | | |-----------|-----------|----------|-----|-----|------|---|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. | DAY | TIME | I | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 1.9 | | | | | | Ц | 0.0E | | 10 | 1 | 0000 | | | | | | | | , | | | | | | | TO | [AL | _ | |------|------|---| | ACRE | FEET | | | | 140 | В | | | | | | | LOCATION | V | MAXI | MUM DISCH | IARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|-------------|-------------|------|-------|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. 7. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 100 | 2ERO
ON | REF. | | LATITODE | LONGITODE | M.D.B.8M, | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | 70 | GAGE | DATUM | | 36 03 26 | 119 04 13 | SE32 21S 27E | | | | DEC 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 3.1 mi. SW of Porterville, approximately 3100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. (a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association. ### DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) WATER YEAR STATION NO. STATION NAME WOODS-CENTRAL DITCH NEAR PORTERVILLE a 1964 C03948 | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------------------------------|--------------------------------------|------------------------------|----------------------------------|---|------------------------------------|---|----------------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------| | 1
2
3
4
5 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 22
21 *
21
21
19 | 0.0
0.0
0.0
0.0*
0.0 | 0.0E
0.0E
0.0
0.0E | 0.0*
0.0
0.0
0.0
0.0 | 0.0*
0.0
0.0
0.0 | 0.0*
0.0
0.0
0.0
0.0 | 0.0*
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1
2
3
4
5 | | 6
7
8
9 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E |
19
19
16
18
18 | 0.0
0.0
0.0
0.0
0.0 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 6
7
8
9
10 | | 11
12
13
14
15 | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 19
20
19 *
19
7•9* | 0.0
0.0
0.0
0.0 | 0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 11
12
13
14
15 | | 16
17
18
19
20 | 0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 0.0E
17
28 *
21
16 | 3 · 1
0 · 0 *
0 · 0
0 · 0
0 · 0 | 0.0
0.0
0.0E
0.0E
0.0E | 0.0E
0.0#
0.0
0.0 | 0.0*
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0* | 0.0*
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 16
17
18
19
20 | | 21
22
23
24
25 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 24
24
24
24
22 | 0.0
0.0
0.0
0.0
0.0 | 0.0E
0.0E
0.0E
0.0E | 0.0
0.0
0.0
0.9
0.2 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 21
22
23
24
25 | | 26
27
28
29
30
31 | 0.0E
0.0E
0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E
0.0E | 21
21
21
21
21
21 | 0.0
0.0
0.0
0.0
0.0 | 0.0E
0.0E
0.0E | 0 • 1
0 • 2
0 • 0
0 • 0
0 • 0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 26
27
28
29
30
31 | | MEAN
MAX.
MIN.
AC. FT. | 0.0E
0.0E
0.0E | 0.0E
0.0E
0.0E | 10.5E
28.0E
0.0E
647 | 9.1
22.0
0.0
559 | 0.0E
0.0E
0.0E | 0.0E
0.9E
0.0E
3 | 0.0
0.0
0.0 | 0.0
0.0
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | MEA!
MAX
MIN
AC.FT | E — ESTIMATEO NR — NO RECORD * — OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW # - E AND * a - See note (a) below. | DISCHARGE DISCHARGE GAGE HT. MO. DAY TIME DISCHARGE GAGE HT. MO. DAY TIME | MEAN | | MAXIMU | M | | | | MINIM | J M | | | |---|--------------------|-----------|----------|-----|-----|------|-------------------|----------|-----------|----------|--------------| | | DISCHARGE
0 • 8 | DISCHARGE | GAGE HT. | MO. | DAY | TIME | DISCHARGE
0.0E | GAGE HT. | MO.
10 | DAY
1 | TIME
0000 | TOTAL ACRE FEET | | LOCATION | N | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | : | |-----------|-----------|------------------|--------|-----------|------|-------------|-------------|------|-------|------------|-------| | L ATITUOS | LONGITUES | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.B.M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 36 04 18 | 119 05 48 | SE30 21S 27E | | | | DEC 42-DATE | | 1942 | | 0.00 | LOCAL | Station located 4.5 mi. W of Porterville, approximately 100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. (a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association. #### IAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|-----------------------------| | 1964 | C05150 | KERN RIVER NEAR BAKERSFIELD | | AY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------| | 1 | 1574 | 624 | 432 | 344 | 369 | 397 | 473 | 443 | 855 | 1412 | 646 | 320 | 11 | | 2 | 1550 | 617 | 437 | 353 | 385 | 441 | 479 | 446 | 960 | 1305 | 655 | 260 | 2 | | 3 | 1497 | 608 | 430 | 343 | 422 | 438 | 454 | 444 | 1144 | 1225 | 655 | 188 | 3 | | 4 | 1520 | 593 | 411 | 353 | 424 | 448 | 448 | 443 | 1082 | 1221 | 653 | 170 | 4 | | 5 | 1500 | 588 | 404 | 347 | 421 | 453 | 456 | 451 | 1039 | 1234 | 642 | 160 | 5 | | 6 | 1468 | 572 | 393 | 338 | 430 | 513 | 447 | 476 | 1054 | 1237 | 654 | 164 | 6 | | 7 | 1477 | 565 | 360 | 333 | 442 | 499 | 428 | 451 | 1169 | 1263 | 625 | 176 | 7 | | 8 | 1446 | 523 | 364 | 324 | 417 | 484 | 442 | 458 | 1213 | 1304 | 608 | 198 | 8 | | 9 | 1393 | 529 | 374 | 316 | 408 | 497 | 444 | 463 | 1235 | 1321 | 594 | 154 | 9 | | 10 | 1280 | 539 | 368 | 302 | 398 | 499 | 447 | 461 | 1258 | 1377 | 601 | 215 | 10 | | 11 | 1049 | 534 | 365 | 284 | 326 | 488 | 448 | 434 | 1298 | 1402 | 625 | 218 | 111 | | 12 | 1057 | 543 | 365 | 286 | 316 | 485 | 445 | 462 | 1265 | 1413 | 598 | 173 | 12 | | 13 | 1066 | 579 | 364 | 292 | 306 | 489 | 446 | 449 | 1253 | 1415 | 583 | 221 | 13 | | 14 | 1074 | 594 | 368 | 328 | 297 | 467 | 445 | 448 | 1288 | 1445 | 537 | 228 | 14 | | 15 | 1091 | 586 | 389 | 330 | 272 | 482 | 435 | 438 | 1342 | 1439 | 458 | 220 | 15 | | 16 | 1041 | 583 | 401 | 328 | 261 | 468 | 496 | 443 | 1440 | 1379 | 460 | 235 | 16 | | 17 | 728 | 550 | 402 | 328 | 283 | 462 | 520 | 439 | 1356 | 1306 | 471 | 211 | 17 | | 18 | 783 | 446 | 403 | 312 | 310 | 443 | 547 | 443 | 1313 | 1265 | 470 | 183 | 18 | | 19 | 853 | 437 | 395 | 279 | 315 | 466 | 487 | 457 | 1518 | 1250 | 462 | 177 | 19 | | 50 | 859 | 438 | 372 | 277 | 309 | 446 | 456 | 446 | 1498 | 1176 | 459 | 160 | 20 | | 21 | 863 | 459 | 374 | 298 | 340 | 443 | 449 | 451 | 1419 | 1086 | 422 | 165 | 21 | | 12 | 867 | 490 | 382 | 330 | 387 | 468 | 449 | 451 | 1394 | 1110 | 393 | 182 | 22 | | 13 | 865 | 502 | 354 | 320 | 400 | 472 | 455 | 459 | 1394 | 1103 | 413 | 173 | 23 | | 24 | 803 | 498 | 342 | 329 | 412 | 463 | 468 | 455 | 1208 | 1008 | 410 | 162 | 24 | | 15 | 825 | 469 | 341 | 355 | 421 | 452 | 469 | 498 | 1141 | 983 | 404 | 138 | 25 | | !6 | 830 | 459 | 333 | 387 | 418 | 449 | 475 | 448 | 1418 | 937 | 406 | 144 | 26 | | 27 | 839 | 458 | 338 | 381 | 416 | 442 | 467 | 449 | 1489 | 682 | 393 | 145 | 27 | | 85 | 604 | 442 | 341 | 374 | 393 | 463 | 466 | 457 | 1535 | 639 | 361 | 158 | 28 | | 129 | 584 | 449 | 341 | 348 | 366 | 456 | 452 | 458 | 1465 | 618 | 373 | 130 | 29 | | 30 | 645 | 441 | 335 | 359 | | 458 | 464 | 470 | 1409 | 626 | 375 | 112 | 30 | | 11 | 653 | | 340 | 383 | | 454 | | 753 | | 646 | 386 | | 31 | | AN | 1054 | 524 | 375 | 331 | 368 | 464 | 462 | 463 | 1282 | 1156 | 509 | 185 | MEAN | | AX. | 1668 | 629 | 439 | 387 | 442 | 513 | 547 | 753 | 1518 | 1445 | 655 | 320 | MAX. | | IN. | 557 | 426 | 331 | 277 | 261 | 397 | 428 | 434 | 855 | 618 | 361 | 112 | MIN. | | ₹. FT. | 64828 | 31174 | 23044 | 20356 | 21152 | 28532 | 27485 | 28451 | 76268 | 71078 | 31323 | 10989 | AC.FT. | | MEAN | | MAXIMU | J M | = | | MINIM | J M | | | |-----------|-----------|----------|---------|------|-----------|----------|-----|-----|------| | DISCHARGE | DISCHARGE | GAGE HT. | MO. DAY | TIME | DISCHARGE | GAGE HT. | MO. | DAY | TIME | | 598 | | | | | - | | | | | | | <u></u> | | | | | | | | | | TOTAL | ١ | |-----------|---| | ACRE FEET | I | | 434680 | | | | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|-----------|------------------|--------|-----------|----------|--------------|-------------|------|-------|------------|-------| | ľ | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | 2ERO
ON | REF. | | l | LATITODE | LONGITUDE | M.D.B.8 M. | C.F,S. | GAGE HT. | DATE | 5.65.11.1.02 | ONLY | FROM | TO | GAGE | DATUM | | | 35 26 9 | 118 56 8 | SW 2 29S 28E | 36000 | 14.2 | 11-19-50 | 93-DATE | | | | | | Also known as "Kern River at First Point." Station located 5 mi. NE of Bakersfield. Tabulated discharge is the computed regulated flow and is computed from noon to noon beginning at noon of day shown. Records furn. by Kern County Land Company. Drainage area is 2,420 sq. mi. ⁻ ESTIMATED - NO RECORD - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW - E AND * ### TABLE B-5 WATER YEAR STATION NO. STATION NAME 1964 C03110 TULARE LAKE DAILY MEAN GAGE HEIGHT (IN FEET) | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DA | |----------------|------|------|------|------|------|------|------|-----|------|------|------|-------|----------------| | 1 2 | | | | | | | | | | | | | 1 2 | | 3 4 | | | | | | | | | | | | | 3 4 | | 5 | | | | | | | | | | | | | S | | 6 7 | | | | | | | | | | | | | 7 | | 8 9 | | | | | | | | | | | | | 9 | | 10 | | | | | | | | | | | | | 11 | | 12 | | | | | | | | | | | | | 12 | | 14
15 | | | | | | D | RY | | | | | | 14 | | 16 | | | | | | | | | | | | | 16 | | 17
18
19 | | | | | | | | | | | : | | 17
18
19 | | 20 | | | | | | | | | | | | | 20 | | 21
22 | | | | | | | | | - | | | | 21 | | 23 | | | | | | | | | | | | | 23
24 | | 25 | | | | İ | | | | | | | | | 25 | | 27
28 | | | | | | | | | | | | | 26 | | 29 | | | | | | | | | | | | | 28
29
30 | | 31 | | | | | | | | | | | | | 31 | #### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAG | |---------------|------|------|-------|------|------|-------|------
------|-------|------|------|------| | E - ESTIMATED | | | | | | | | | | | | | | NR NO RECORD | | | | | | | | | | | | | | NE NO FLOW | | | | | | | | | | | | | | | LOCATION | 1 | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|---------------------|------------------|--------|-----------|---------|-----------|-------------|--------|-------|------------|------| | LATITUOE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | LATITUDE | LONGITUDE M.D.8.8M. | | C.F,S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATU | | 30 03 10 | 119 49 35 | | | 196.8 | 6-28-41 | | FEB 37-DATE | 1937 | | 0.00 | USCG | Station located 2.2 mi. SW of Chatom Ranch, 6 mi. SW of Corcoran on south end of El Rico Bridge. Tulare Lake receives water from Kings, Kaweah, and Tule Rivers during high-water periods and occasionally from Kern River, Deer Creek, and several small intermittent streams. Elevation at lowest point of lake bed is now about 180 ft. U.S.G.S. datum. Records furn. by Tulare Lake Basin Water Storage District. # DAILY MEAN GAGE HEIGHT WATER YEAR STATION NO. STATION NAME 1964 807885 SAN JOAQUEN RIVER BELOW FRIANT | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|------|------|------|------|--------|--------|--------|--------|---------|--------|--------|---------|-----| | 1 | 2.11 | 1.95 | 1.89 | 1.91 | 1.89 | 2.24 | 2.12 | 2.34 | 2.35 | 2.52 | 2.54 | 2.42 | 1 | | 2 | 2.11 | 1.95 | 1.89 | 1.91 | 1.89 | 2.24 | 2.07 | 2.36 | 2.33 | 2.56 | 2.54 | 2.42 | 2 | | 3 | 2.11 | 1.95 | 1.90 | 1.91 | 1.90 | 2.22 | 2.09 | 2.37 | 2.32 | 2.56 | 2.54 | 2.42 | 3 | | 4 | 2.11 | 1.95 | 1.90 | 1.91 | 1.90 | 2.20 | 2 • 14 | 2.36 | 2 • 32 | 2.56 | 2.60 | 2 • 4 1 | 4 | | 5 | 2.11 | 1.96 | 1.90 | 1.91 | 1.90 | 2.20 | 2 • 14 | 2.36 | 2.32 | 2.55 | 2.59 | 2.38 | 5 | | 6 | 2.11 | 1.96 | 1.90 | 1.91 | 1.94 | 2.20 | 2.12 | 2.34 | 2.33 | 2.56 | 2.58 | 2.35 | 6 | | 7 | 2.10 | 1.96 | 1.90 | 1.91 | 1.99 | 2.20 | 2 • 09 | 2.32 | 2.33 | 2.54 | 2.58 | 2.35 | 7 | | 8 | 2.09 | 1.96 | 1.90 | 1.91 | 1.99 | 2.20 | 2.09 | 2.32 | 2.35 | 2.56 | 2.57 | 2.35 | 8 | | 9 | 2.07 | 1.96 | 1.90 | 1.92 | 2.00 | 2.20 | 2 • 15 | 2.32 | 2.38 | 2.59 | 2.57 | 2.35 | 9 | | 10 | 2.07 | 1.96 | 1.90 | 1.92 | 2.00 | 2.18 | 2.20 | 2.32 | 2.35 | 2.62 | 2.59 | 2.35 | 10 | | 11 | 2.05 | 1.96 | 1.90 | 1.92 | 2.00 | 2.15 | 2.23 | 2.32 | 2.33 | 2.64 | 2.60 | 2.35 | 11 | | 12 | 1.99 | 1.96 | 1.90 | 1.92 | 2.00 | 2.13 | 2 • 23 | 2.32 | 2.33 | 2 • 64 | 2.60 | 2.36 | 12 | | 13 | 1.99 | 1.96 | 1.90 | 1.92 | 2.00 | 2.10 | 2.23 | 2.32 | 2 • 3 2 | 2.63 | 2.58 | 2.36 | 13 | | 14 | 1.99 | 1.97 | 1.90 | 1.92 | 2.03 | 2.10 | 2 • 24 | 2.33 | 2.32 | 2 • 63 | 2.56 | 2.36 | 14 | | 15 | 1.99 | 1.98 | 1.90 | 1.92 | 2.07 | 2.10 | 2 • 27 | 2.34 | 2.32 | 2.63 | 2.56 | 2.37 | 15 | | 16 | 2.00 | 1.97 | 1.90 | 1.92 | 2.08 | 2.10 | 2 • 36 | 2.35 | 2.32 | 2.63 | 2.56 | 2.37 | 16 | | 17 | 2.00 | 1.97 | 1.90 | 1.91 | 2.10 | 2.10 | 2.37 | 2.35 | 2 • 35 | 2.63 | 2.56 | 2.37 | 17 | | 18 | 1.99 | 1.97 | 1.90 | 1.93 | 2.13 | 2.10 | 2.37 | 2.35 | 2.37 | 2.61 | 2.55 | 2.37 | 18 | | 19 | 1.99 | 1.97 | 1.90 | 1.95 | 2.14 | 2.11 | 2.38 | 2.35 | 2.37 | 2.60 | 2.54 | 2.37 | 19 | | 20 | 1.99 | 1.96 | 1.91 | 1.95 | 2+14 | 2 • 12 | 2.38 | 2.35 | 2 • 36 | 2 • 60 | 2.54 | 2.37 | 20 | | 21 | 2.01 | 1.90 | 1.91 | 1.97 | 2.14 | 2.12 | 2 • 38 | 2.35 | 2.36 | 2.60 | 2.54 | 2.37 | 21 | | 22 | 2.00 | 1.90 | 1.90 | 1.95 | 2 - 14 | 2 • 14 | 2 . 38 | 2.35 | 2 • 40 | 2.60 | 2.54 | 2.33 | 22 | | 23 | 2.00 | 1.90 | 1.90 | 1.90 | 2.13 | 2.10 | 2.37 | 2.35 | 2.43 | 2.62 | 2.54 | 2.29 | 23 | | 24 | 2.00 | 1.90 | 1.90 | 1.90 | 2.15 | 2.05 | 2.35 | 2.35 | 2 • 4 2 | 2.65 | 2.54 | 2.29 | 24 | | 25 | 2.00 | 1.90 | 1.90 | 1.90 | 2.14 | 2.01 | 2.33 | 2.34 | 2 • 44 | 2.65 | 2.54 | 2.29 | 25 | | 26 | 2.00 | 1.89 | 1.91 | 1.90 | 2.13 | 2.00 | 2.28 | 2.34 | 2.49 | 2.64 | 2.54 | 2.29 | 26 | | 27 | 1.99 | 1.88 | 1.91 | 1.90 | 2.23 | 2.02 | 2.28 | 2.34 | 2 • 49 | 2 • 64 | 2.54 | 2 • 30 | 27 | | 28 | 2.00 | 1.88 | 1.91 | 1.90 | 2.25 | 2.05 | 2.28 | 2.34 | 2 • 49 | 2.63 | 2.46 | 2.30 | 28 | | 29 | 2.00 | 1.89 | 1.91 | 1.90 | 2 • 24 | 2.05 | 2 • 28 | 2 • 34 | 2.49 | 2.63 | 2.41 | 2.30 | 29 | | 30 | 2.00 | 1.89 | 1.91 | 1.90 | | 2.05 | 2 • 32 | 2.34 | 2 • 49 | 2.59 | 2 • 41 | 2.30 | 30 | | 31 | 1.97 | | 1.91 | 1.90 | | 2.11 | | 2.34 | | 2.54 | 2.42 | | 31 | #### CREST STAGES E -- ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE \ | |-----------|------|-------|------|------|-------|------|------|-------|------|------|---------| | | | | | | | | | | | | | | 7-24-64 | 0900 | 2.67 | | | | | | | | | | | ' - ' - ' | | | | | | | | | | | | | (| | | | | | | | | | | | | | LOCATION | V | MAXII | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|----------|-------------|-------------|------|-------|------------|-------| | | | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.&M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 36 59 0 | 119 43 24 | SW7 11S 21E | 77,200 | 23.8 | 12/11/37 | OCT 07-DATE | | 1938 | | 294.00 | USGS | Station located 1 mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi. DAILY MEAN GAGE HEIGHT WATER YEAR STATION NO. STATION NAME 864200 CHOWCHILLA RIVER NEAR RAYMOND (IN FEET) | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|------|--------|------|--------|------|-------|-------|-----|------|------|------|-------|-----| | 1 | NR | NR | NR | NR | NR | NR | 69.90 | NR | NR | NR | NR | NR | 1 | | 2 | NR | NR I | NR | NR | NR | NR | 70.68 | NR | NR | NR | NR | NR | 2 | | 3 | NR | NR | NR | NR | NR | NR | 70.13 | NR | NR | NR | NR | NR | 3 | | 4 | NR | NR | NR | NR | NR | NR | 69.88 | NR | NR | NR | NR | NR | 4 | | 5 | NR | NR | NR | NR | NR | NR | 69.74 | NR | NR | NR | NR | NR | 5 | | 6 | NR | NR | NR | NR | NR | NR | 69.68 | NR | NR | NR | NR | NR | 6 | | 7 | NR 7 | | 8 | NR 8 | | 9 | NR 9 | | 10 | NR 10 | | 11 | NR 11 | | 12 | NR 12 | | 13 | NR 13 | | 14 | NR 14 | | 15 | NR | 70.27 | NR 15 | | 16 | NR | 70.01 | NR 16 | | 17 | NR | 69.32E | NR · | NR | 17 | | 18 | NR | 69.52E | NR : | NR | 18 | | 19 | NR 19 | | 20 | NR | 71.42 | NR | NR | NR | NR NR | 20 | | 21 | NR | 70.88 | NR | NR . | NR 21 | | 22 | NR | 69.84E | NR | 70.50 | NR 22 | | 23 | NR | 69.43E | NR | 70.31 | NR 23 | | 24 | NR | 69.88E | NR | 69.88E | NR | 70.23 | NR | NR | NR | NR | NR | NR | 24 | | 25 | NR | 69.90 | NR | NR | NR | 70.09 | NR | NR | NR | NR | NR | NR | 25 | | 26 | NR | 69.53E | NR | NR | NR | 69.89 | NR | NR | NR | NR | NR | NR | 26 | | 27 | NR | 69.44 | NR | NR | NR | 70.13 | NR | NR | NR | NR | NR | NR | 27 | | 28 | NR | NR | NR | NR | NR | 70.07 | NR | NR | NR | NR | NR | NR | 28 | | 29 | NR | NR | NR | NR | NR | 69.89 | NR | NR | NR | NR | NR | NR | 29 | | 30 | NR | NR | NR | NR | | 69.77 | NR | NR | NR | NR | NR | NR | 30 | | 31 | NR | | NR | NR | | 69.65 | | NR | | NR | NR | | 31 | #### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 11-20-64 | 1130 | 73.30 | | | | Ü | | | | | | | | LOCATION | N | MAXI | MUM DISCH | ARGE | PERIOD O | F RECORD | D DATUM OF GAG | | | | |----------|-----------|------------------|--------|-----------|---------|---------------|-------------|----------------|------|------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD |) | OIS CHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF. | | CATITODE | LONGITUDE | M. O. S. S. M. | C.F.S. | GAGE HT. | DATE | 0.00.000 | ONLY | FROM | то | GAGE | OATUM | | 37 15 36 | 119 56 42 | SE 1 8S 22E | 8497E | 83.9 | 2- 1-63 | NOV 59-SEP 62 | OCT 62-DATE | 1959 | | 0.00 | usces | Station located 6.0 mi. NW of Raymond on Raymond Road. Elevation of station is approximately 600 ft. USCGS datum. This station was installed in cooperation with Madera County and Chowchilla Water District. It is a flood control warning station, equipped with a Stevens Surface Detector and Telemark. Low flows are not recorded. Prior to 1962, high flow records were insufficient for publication. Discharge measurements and partial flow records are available in DWR files. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 500 feet to all of the above gage heights. # DAILY MEAN GAGE HEIGHT (IN FEET) | WATER YEAR | STATION NO. | STATION NAME | |------------|-------------|-------------------------------------| | 1964 | 807575 | SAN JOAQUIN RIVER ABOVE SAND SLOUGH | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |----------------------------------|------------------|---|-------------------------------|------------------|------------------|------------------|------------------
--|------------------|------------------|------------------|------------------|----------------------------------| | 1
2
3
4
5 | | NF
NF
NF
NF | 10.93
10.72
10.54
NF | | | | | | | | | | 1
2
3
4
5 | | 6
7
8
9 | | NF
NF
NF
NF | NF
NF
NF
NF | | | | | | | | | į | 6
7
8
9 | | 11
12
13
14
15 | N
O | NF
NF
NF
NF | NF
NF
NF
NF | N
O | N
0 | N
O 11
12
13
14
15 | | 16
17
18
19
20 | F
L
O
W | NF
NF
NF
NF | NF
NF
NF
NF | F
L
O
W 16
17
18
19
2D | | 21
22
23
24
25 | | NF
NF
10.73
11.59
11.55 | NF
NF
NF
NF | | | | | | | | | | 21
22
23
24
25 | | 26
27
28
29
3D
31 | | 11.44
11.59
11.57
11.39
11.16 | NF
NF
NF
NF
NF | | | | | Acceptance of the control con | | | | | 26
27
28
29
30
31 | #### CREST STAGES E - ESTIMATEO NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 11-27-63 | 1850 | 11.65 | ٢ | | LOCATION | I | | MAXII | NUM DISCH | IARGE | PERIO | F RECORD | DATUM OF GAGE | | | | | |---|------------|------------------------------|------|------------|--------|-----------|---------|---------------------|----------|---------------|--------|----|------------|-------| | t | | ATITUDE LONGITUDE 1/4 SEC. T | | C. T. & R. | | OF RECORD | | DISCHARGE GAGE HEIG | | GAGE HEIGHT | PERIO0 | | ZERO
ON | REF. | | 1 | LATITUDE I | LONGITUDE | м. С |).8.8.M. | C.F.S. | GAGE HT. | OATE | | _ | ONLY | FROM | то | GAGE | DATUM | | r | 37 06 36 | 120 35 24 | NE31 | 9S 13E | 2110 | 6.55 | 2/12/62 | OCT 61-SEP | 62 | OCT 62-DATE | 1961 | | 0.00 | USCGS | Station located 5 mi. NW of Santa Rita Bridge and 5 mi. W of El Nido. Flows sometimes affected by operation of control structures below station. During this period flows are not computed. Partial flow records and discharge measurement are available in the office of the San Joaquin Valley Branch of the Department of Water Resources. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 90 feet to all of the above gage heights. # DAILY MEAN GAGE HEIGHT (IN FEET) | (| WATER YEAR | STATION NO. | STATION NAME | |-----|------------|-------------|----------------------------------| | r (| 1964 | 807400 | SAN JOAQUIN RIVER NEAR STEVINSON | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 1 | 61.28 | 60.72 | 60.87 | 60.79 | 60.96 | 60.82 | 61.10 | 61.12 | 61.82 | 61.02 | 60.94 | 61.18 | 1 | | 2 | 61.21 | 60.69 | 60.81 | 60.82 | 60.96 | 60.83 | 61.15 | 61.10 | 61.82 | 60.85 | 60.95 | 61.14 | 2 | | 3 | 61.13 | 60.67 | 60-82 | 60.96 | 60.92 | 60.80 | 61.14 | 61.08 | 61.56 | 60.92 | 61.04 | 61.13 | 3 | | 4 | 61.10 | 60.64 | 60.84 | 61.08 | 60.93 | 60.77 | 61.18 | 61.11 | 61.19 | 60.91 | 61.12 | 61.09 | 4 | | 5 | 61+17 | 60.66 | 60.81 | 61.60 | 60.85 | 60.76 | 61.06 | 61.16 | 61.02 | 60.87 | 61.10 | 61.00 | 5 | | 6 | 61.17 | 60.67 | 60.78 | 61.63 | 60.83 | 60.81 | 60.96 | 61.29 | 61.03 | 60.83 | 61.05 | 60.91 | 6 | | 7 | 61.16 | 60.66 | 60.84 | 62.08 | 60.82 | 60.81 | 60.98 | 51.28 | 60.98 | 60.80 | 60.97 | 60.93 | 7 | | 8 | 61.27 | 60.66 | 60.87 | 61.55 | 60.70 | 60.84 | 61.00 | 61.17 | 60.98 | 60.83 | 60.85 | 60.96 | 8 | | 9 | 61.37 | 60.62 | 60.84 | 61.21 | 60.70 | 60.87 | 60.95 | 61.22 | 61.05 | 60.87 | 60.85 | 60.89 | 9 | | 10 | 61.29 | 60.61 | 60.84 | 61.17 | 60.70 | 60.91 | 60.86 | 61.21 | 61.25 | 60.90 | 60.90 | 60.85 | 10 | | 1 11 | 61.13 | 60.64 | 60.81 | 61.14 | 60.61 | 60.90 | 60.84 | 61.19 | 61.59 | 60.87 | 60.85 | 60.83 | 11 | | 12 | 61.26 | 60.77 | 60.69 | 61.09 | 60.61 | 60.93 | 60.79 | 61.31 | 62.14 | 60.87 | 60.84 | 60.80 | 12 | | 13 | 61.32 | 60.78 | 60.65 | 61.26 | 60.61 | 60.97 | 60.86 | 61.35 | 62.43 | 60.93 | 60.87 | 60.79 | 13 | | 14 | 61.32 | 60.70 | 60+65 | 61.26 | 60.62 | 61.02 | 60.96 | 61.32 | 62.07 | 60.91 | 60.87 | 60.76 | 14 | | 15 | 61.55 | 60.74 | 60.70 | 61.26 | 60.94 | 61.09 | 60.99 | 61.20 | 61.63 | 61.00 | 60.88 | 60.75 | 15 | | '3 | 01.00 | 00014 | 00010 | 01.20 | 00.0 | 01007 | 004// | 01.20 | 01.00 | 01.00 | 00,00 | | '' | | 16 | 61.58 | 60.88 | 60.79 | 61.17 | 61.14 | 61.12 | 60.95 | 61.16 | 61.38 | 61.02 | 60.93 | 60.74 | 16 | | 17 | 61.26 | 60.92 | 60.78 | 61.06 | 60.83 | 61.10 | 61.00 | 61.12 | 61.24 | 60.94 | 60.94 | 60.73 | 17 | | 18 | 61.26 | 60.95 | 60.78 | 60.98 | 60.85 | 61.01 | 61.02 | 61.11 | 61.19 | 60.88 | 60.91 | 60.71 | 18 | | 19 | 61.36 | 60.96 | 60.77 | 60.94 | 60.77 | 61.12 | 61.06 | 61.14 | 61.08 | 60.90 | 60.85 | 60.69 | 19 | | 20 | 61.38 | 61•12 | 60.86 | 60.91 | 60.78 | 60.99 | 61+24 | 61.33 | 61.00 | 60.93 | 60.95 | 60.70 | 20 | | 21 | 61.31 | 61+20 | 60.87 | 60.89 | 60.78 | 60.93 | 61.54 | 61.53 | 60.97 | 60.95 | 60.96 | 60.68 | 21 | | 22 | 61.31 | 61.22 | 60.82 | 61.38 | 60.76 | 60.93 | 61.20 | 61.50 | 61.00 | 61.01 | 61.01 | 60.73 | 22 | | 23 | 61.17 | 61.25 | 60.77 | 61.97 | 60.76 | 60.94 | 61.04 | 61.51 | 61.11 | 61.00 | 61.06 | 60.79 | 23 | | 24 | 61.11 | 61.21 | 60.77 | 62.09 | 60.76 | 60.99 | 61.09 | 61.63 | 61.22 | 60.99 | 61.07 | 60.72 | 24 | | 25 | 61.11 | 61 • 17 | 60.80 | 62.08 | 60.73 | 61.14 | 61.16 | 61.75 | 61.18 | 60.99 | 61.11 | 60.71 | 25 | | 26 | 61.17 | 61.11 | 60.84 | 61.89 | 60.75 | 61.17 | 61.18 | 61.72 | 61.06 | 60.97 | 61.21 | 60.72 | 26 | | 27 | 61.12 | 61.03 | 60.82 | 61.68 | 60.83 | 61.11 | 61.16 | 61.71 | 60.98 | 60.92 | 61.21 | 60.73 | 27 | | 28 | 61.07 | 60.98 | 60.77 | 61.27 | 60.85 | 61.13 | 61.16 | 61.70 | 61.02 | 60.87 | 61.14 | 60.76 | 28 | | 29 | 61.03 | 60.95 | 60.75 | 60.94 | 60.80 | 61.13 | 61.14 | 61.72 | 61.01 | 60.90 | 61.10 | 60.80 | 29 | | 30 | 60.90 | 60.92 | 60.77 | 60.82 | | 61.05 | 61.11 | 61.70 | 61.05 | 60.95 | 61.13 | 60.81 | 30 | | 31 | 60.77 | | 60.75 | 60.90 | | 61.05 | | 61.67 | | 60.93 | 61.14 | | 31 | | | | | | 1 | | | | | | | | | l ") | ### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |-----------------|------|----------------|------|------|-------|------|------|-------|------|------|-------| | 1-24-64 6-12-64 | | 62.38
62.48 | | | | | | | | | | | ſ | | LOCATION | ı | | | MAXI | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |---|----------|--------------|-----|--------|----------|--------|-----------|---------|-------------|---------------|------|-------|------------|-------| | Ì | | . 5116171155 | 1/4 | SEC. | T. B. R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO
DN | REF | | ļ | LATITUDE | LONGITUDE | | M.D.B. | BM. | C.F.S. | GAGE HT. | DATE | DISCHARGE | ONLY | FROM | TO | GAGE | DATUM | | | 37 17 42 | 120 51 00 | 26 | 78 | 10E | 6060 | 73.04 | 2-17-62 | OCT 61-DATE | MAY 61-SEP 61 | 1961 | | 0.00 | USCGS | Station located on bridge 2.3 miles south of Stevinson on Lander Avenue. DAILY MEAN GAGE HEIGHT (IN FEET) WATER YEAR STATION NO. STATION NAME 1964 807375 SAN JOAQUIN RIVER AT FREMONT FORO BRIDGE | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|---------|---------|-------|-------|---------|---------|-------|-------|-------|---------|-----| | 1 | 54.95 | 54.82 | 55.33 | 54.93 | 55.48 | 54.88 | 55.22 | 55.20 | 55.75 | 55.11 | 54.50 | 54.97 | 1 | | 2 | 54.81 | 54.83 | 55.20 | 54.96 | 55.49 | 54.88 | 55.28 | 55.12 | 55.80 | 55.05 | 54.55 | 55.16 | 2 | | 3 | 54.73 | 54.84 | 55.12 | 54.97 | 55.48 | 54.93 | 55.36 | 55.20 | 55.71 | 55.01 | 54.60 | 55.13 | 3 | | 4 |
54.86 | 54.83 | 55.07 | 55.03 | 55.44 | 54.94 | 55.27 | 55 - 34 | 55.55 | 54.95 | 54.80 | 55 • 10 | 4 | | 5 | 54.92 | 54.79 | 55.02 | 55.21 | 55.38 | 54.99 | 55.21 | 55.36 | 55.38 | 54.87 | 54.84 | 55.07 | 5 | | 6 | 55.00 | NR | 54.95 | 55.36 | 55.32 | 55.03 | 55.14 | 55.49 | 55.31 | 54.81 | 54.83 | 54.96 | 6 | | 7 | 54.99 | NR | 54.96 | 55 • 88 | 55.28 | 55.01 | 55.12 | 55.52 | 55.21 | 54.79 | 54.78 | 54.97 | 7 | | 8 | 54.86 | 54.60 | 55.03 | 56.04 | 55.13 | 54.99 | 55.06 | 55.46 | 55.05 | 54.74 | 54.65 | 54.91 | 8 | | 9 | 55.00 | 54.59 | 55.05 | 55.87 | 55.10 | 55.09 | 54.96 | 55.33 | 55.26 | 54.64 | 54.59 | 54.84 | 9 | | 10 | 54.93 | 54.52 | 55.08 | 55.78 | 55.10 | 55.19 | 54.78 | 55.37 | 55.42 | NR | 54.68 | 54.67 | 10 | | 11 | 54.85 | 54.54 | 55 • 15 | 55.73 | 55.11 | 55.16 | 54.64 | 55.45 | 55.77 | 54.67 | 54.67 | 54.68 | 11 | | 12 | 54.88 | 54 - 61 | 55.24 | 55.66 | 55.01 | 55.22 | 54.73 | 55 • 45 | 56.05 | 54.71 | 54.78 | 54.63 | 12 | | 13 | 55.13 | 54.73 | 55.31 | 55 • 64 | 54.98 | 55.29 | 54.85 | 55.52 | 56.26 | 54.68 | 54.64 | 54.50 | 13 | | 14 | 55.20 | 54.82 | 55.33 | 55.65 | 54.94 | 55.33 | 55.08 | 55.46 | 56.16 | 54.81 | 54.46 | 54.54 | 14 | | 15 | 54.97 | 54.82 | 55.34 | 55.63 | 55.01 | 55.40 | 55 • 18 | 55 • 22 | 55.89 | 54.84 | 54.55 | 54.66 | 15 | | 16 | 55.05 | 54.87 | 55.30 | 55.59 | 55.31 | 55.47 | 55.16 | 55.07 | 55.62 | 54.78 | 54.75 | 54.62 | 16 | | 17 | 54.92 | 55 • 13 | 55.23 | 55.50 | 55.18 | 55.44 | 55.12 | 55.05 | 55.41 | 54.68 | 54.77 | 54.53 | 17 | | 18 | NR | 55 • 29 | 55.21 | 55.42 | 55.13 | 55.30 | 55.12 | 55.11 | 55.24 | 54.58 | 54.74 | 54.63 | 18 | | 19 | NR | 55.31 | 55.26 | 55.39 | 55.07 | 55.15 | 55.21 | 55.24 | 55.12 | 54.45 | 54.65 | 54.59 | 19 | | 2D | 54.80 | 55.32 | 55.25 | 55.36 | 55.03 | 54.90 | 55.36 | 55.42 | 54.99 | 54.48 | 54.47 | 54.42 | 2D | | 21 | 54.82 | 55.42 | 55.20 | 55.38 | 55.03 | 54.79 | 55.48 | 55.49 | 55.05 | 54.61 | 54.48 | 54.46 | 21 | | 22 | NR | 55.52 | 55.06 | 55.35 | 55.02 | 54.71 | 55.38 | 55.49 | 55.02 | 54.62 | 54.46 | 54.44 | 22 | | 23 | 54.77 | 55.57 | 55.04 | 55.69 | 54.98 | 54.69 | 55.31 | 55.51 | 55.06 | 54.59 | 54.66 | 54.45 | 23 | | 24 | 54.73 | 55.51 | 55.06 | 55.74 | 54.98 | 54.78 | 55.28 | 55.52 | 55.09 | 54.66 | 54.85 | 54.37 | 24 | | 25 | NR | 55.50 | 55.03 | 55.93 | 54.86 | 54.93 | 55.40 | 55.66 | 55.01 | 54.64 | 54.88 | 54.47 | 25 | | 26 | NR | 55.46 | 55.05 | 55.77 | 54.78 | 54.98 | 55.43 | 55.79 | 54.90 | 54.66 | 54.89 | 54.57 | 26 | | 27 | NR | 55.42 | 55.05 | 55.70 | 54.82 | 54.98 | 55.34 | 55.76 | 54.86 | 54.72 | 54.96 | 54.64 | 27 | | 28 | 54.73 | 55.38 | 55.00 | 55.52 | 54.83 | 55.09 | 55.32 | 55.78 | 54.91 | NR | 54.92 | 54.64 | 28 | | 29 | 54.80 | 55.40 | 54.98 | 55.42 | 54.87 | 55.22 | 55.35 | 55.80 | 55.05 | NR | 54.72 | 54.59 | 29 | | 30 | 54.80 | 55.41 | 54.97 | 55.38 | | 55.24 | 55.27 | 55.71 | 55.14 | NR | 54.75 | 54.58 | 30 | | 31 | 54.80 | | 54.94 | 55.41 | | 55.20 | | 55.67 | | 54.54 | 54.83 | | 31 | #### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 6-13-64 | 1000 | 56.33 | LOCATION | ı | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------------------------------|-----------|--------|-----------|---------|-------------|-------------|--------------|--------------|----------------|----------------| | | ATITUDE LONGITUDE 1/4 SEC. T. & R | | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.O.B.&M. | C.F.S. | GAGE HT. | DATE | DIO GIIANOE | ONLY | FROM | TO | GAGE | DATUM | | 37 18 35 | 120 55 45 | | 5910 | 71.14 | 4- 6-58 | MAR 37-DATE | | 1944
1957 | 1957
1959 | -3.73
-3.77 | USCGS
USCGS | | | ' | | | | ' | • | | 1959 | | 0.00 | USCGS | Station located 30 ft. below Fremont Ford Bridge, 4.5 mi. W of Stevinson, 6.7 mi. above the Merced River. During periods of high flow, some water bypasses station through Mud Slough. Maximum discharge of record is for period 1944 to date. Records furn. by U.S.G.S. Drainage area is approx. 8,090 sq. mi. Flow records are published in U.S.G.S. report "Surface Water Records of California." # DAILY MEAN GAGE HEIGHT (IN FEET) WATER YEAR STATION NO. STATION NAME 1964 805170 MERCED RIVER BELOW SNELLING | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|------|--------|--------|------|------|--------|--------|--------|--------|------|------|--------|-----| | 1 | 5.46 | 5 • 25 | 5.31 | 5.25 | 5.33 | 5.29 | 5.44 | 5.80 | 5.64 | 5.83 | 5.91 | 5.84 | 1 | | 2 | 5.59 | 5 • 25 | 5.30 | 5.24 | 5.33 | 5.27 | 5.42 | 5.83 | 5.63 | 5.81 | 5.91 | 5.83 | 2 | | 3 | 5.88 | 5 • 27 | 5.31 | 5.24 | 5.33 | 5.25 | 5.42 | 5.92 | 5.66 | 5.83 | 5.90 | 5.83 | 3 | | 4 | 5.35 | 5.28 | 5.31 | 5.27 | 5.32 | 5.26 | 5.36 | 5.95 | 5.65 | 5.87 | 5.90 | 5.76 | 4 | | 5 | 5.25 | 5.33 | 5.32 | 5.32 | 5.31 | 5.24 | 5.27 | 6.02 | 5.62 | 5.85 | 5.89 | 5.77 | 5 | | 6 | 5.15 | 5.40 | 5.32 | 5.33 | 5.31 | 5.27 | 5.24 | 6.03 | 5.66 | 5.84 | 5.84 | 5.65 | 6 | | 7 | 5.11 | 5.34 | 5.31 | 5.34 | 5.31 | 5.29 | 5.27 | 6.03 | 5.69 | 5.85 | 5.84 | 5.67 | 7 | | 8 | 5.03 | 5.31 | 5.30 | 5.34 | 5.35 | 5.28 | 5.18 | 5.91 | 5.71 | 5.86 | 5.82 | 5.60 | 8 | | 9 | 5.00 | 5.30 | 5.32 | 5.32 | 5.35 | 5.27 | 5.20 | 5.88 | 5.88 | 5.85 | 5.84 | 5.41 | 9 | | 10 | 5.01 | 5 • 32 | 5.30 | 5.34 | 5.42 | 5.27 | 5 • 27 | 5.84 | 6.02 | 5.86 | 5.86 | 5.25 | 10 | | 11 | 5.22 | 5.33 | 5.29 | 5.34 | 5.41 | 5.29 | 5.45 | 5.75 | 5.95 | 5.91 | 5.87 | 5.03 | 11 | | 12 | 5.16 | 5.33 | 5.26 | 5.32 | 5.41 | 5.36 | 5.44 | 5.73 | 5.93 | 5.93 | 5.90 | 5 . 25 | 12 | | 13 | 5.10 | 5.31 | 5.26 | 5.32 | 5.41 | 5.33 | 5 • 40 | 5.71 | 5.88 | 5.94 | 5.88 | 5.22 | 13 | | 14 | 5.08 | 5.36 | 5.25 | 5.32 | 5.39 | 5.31 | 5.36 | 5.86 | 5.77 | 6.68 | 5.87 | 5.03 | 14 | | 15 | 5.09 | 5.48 | 5.27 | 5.32 | 5.34 | 5.29 | 5.55 | 5.85 | 5.73 | 5.84 | 5.89 | 4.99 | 15 | | 16 | 5.12 | 5 • 38 | 5.26 | 5.31 | 5.37 | 5.30 | 5.73 | 5.77 | 5.84 | 5.79 | 5.88 | 4.92 | 16 | | 17 | 5.17 | 5.37 | 5 • 25 | 5.31 | 5.34 | 5.30 | 5.81 | 5.76 | 5.86 | 5.75 | 5.93 | 4.85 | 17 | | 18 | 5.18 | 5.37 | 5.25 | 5.33 | 5.36 | 5.30 | 5.72 | 5.74 | 5.68 | 5.71 | 5.93 | 4.83 | 18 | | 19 | 5.16 | 5.44 | 5.27 | 5.33 | 5.35 | 5.30 | 5.79 | 5.72 | 5.75 | 5.74 | 5.88 | 4.81 | 19 | | 20 | 5.16 | 5 • 57 | 5.27 | 5.33 | 5.35 | 5.28 | 5 • 86 | 5.67 | 5.82 | 5.71 | 5.93 | 4.80 | 2D | | 21 | 5.15 | 5.48 | 5.26 | 5.45 | 5.34 | 5.26 | 5.86 | 5.68 | 5.83 | 5.69 | 6.05 | 4.78 | 21 | | 22 | 5.13 | 5 • 42 | 5.27 | 5.57 | 5.33 | 5.27 | 5.86 | 5.73 | 5.87 | 5.68 | 5.88 | 4.78 | 22 | | 23 | 5.16 | 5.45 | 5.26 | 5.54 | 5.33 | 5.32 | 5.91 | 5.73 | 5.86 | 5.76 | 5.68 | 4.78 | 23 | | 24 | 5.16 | 5.47 | 5.26 | 5.42 | 5.33 | 5.36 | 5.94 | 5.76 | 5.83 | 5.94 | 5.25 | 4.76 | 24 | | 25 | 5.17 | 5 • 40 | 5.28 | 5.37 | 5.31 | 5.36 | 5 • 86 | 5.79 | 5 - 84 | 5.87 | 5.58 | 4.75 | 25 | | 26 | 5.16 | 5.40 | 5.26 | 5.37 | 5.24 | 5.36 | 5 • 84 | 5.83 | 5.89 | 5.83 | 5.71 | 4.74 | 26 | | 27 | 5.18 | 5.39 | 5.27 | 5.35 | 5.23 | 5.33 | 5 • 85 | 5 . 86 | 5.88 | 5.81 | 5.72 | 4.74 | 27 | | 28 | 5.18 | 5.33 | 5.27 | 5.34 | 5.25 | 5.30 | 5 • 83 | 5.78 | 5.83 | 5.90 | 5.80 | 4.74 | 28 | | 29 | 5.22 | 5.31 | 5.27 | 5.34 | 5.27 | 5.29 | 5.80 | 5.75 | 5.86 | 5.89 | 5.78 | 4.75 | 29 | | 3D | 5.27 | 5.31 | 5.26 | 5.34 | | 5.25 | - 5.79 | 5.65 | 5.85 | 5.93 | 5.79 | 4.74 | 30 | | 31 | 5.20 | | 5.26 | 5.35 | | 5 • 22 | | 5 • 63 | | 5.94 | 5.80 | | 31 | # CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | 5TAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |---------------------|--------------|--------------|------|------|-------|------|------|-------|------|------|-------| | 10- 3-63
7-14-64 | 0630
1440 | 6.59
9.35 | | | | | | | | | | | | LOCATION | V | MAXII | NUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|---------|-------------|-------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO | REF. | | LATITOOE | LONGITODE | M.O.B.8 M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 30 06 | 120 27 03 | NE17 58 14E | 4910 | 12.51 | 5-10-63 | NOV 58-DATE | | 1958 | | 0.00 | LOCAL | Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream. # DAILY MEAN GAGE HEIGHT (IN FEET) | | WATER YEAR | STATION NO. | STATION NAME | | |---|------------|-------------|-------------------------|--| | Ţ | 1964 | 805155 | MERCED RIVER AT CRESSEY | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | 1 | 10.62 | 10.55 | 10.76 | 10.56 | 10.60 | 10.25 | 10.30 | 10.30 | 10.54 | 10.43 | 10.51 | 10.85 | 1 | | 2 | 10.62 | 10.57 | 10.75 | 10.57 | 10.58 | 10.26 | 10.30 | 10.31 | 10.57 | 10.42 | 10.60 | 10.82 | 2 | | 3 | 10.66 | 10.58 | 10.74 | 10.57 | 10.58 | 10.29 | 10.29 | 10.39 | 10.48 | 10.35 | 10.62 | 10.89 | 3 | | 4 | 10.84 | 10.59 | 10.74 | 10.58 | 10.57 | 10.29 | 10.26 | 10.45 | 10.49 | 10.36 | 10.64 | 10.87 | 4 | | 5 | 10.80 | 10.59 | 10.74 | 10.58 | 10.56 | 10.29 | 10.24 | 10.51 | 10.46 | 10.42 | 10.54 | 10.90 | S | | 6 | 10.65 | 10.59 | 10.74 | 10.57 | 10.54 | 10.32 | 10.25 | 10.59 | 10.43 | 10.55 | 10.63 | 10.87 | 6 | | 7 | 10.59 | 10.65 | 10.74 | 10.57 | 10.53 | 10.38 | 10.23 | 10.70 | 10.48 | 10.59 | 10.64 | 10.82 | 7 | | 8 | 10.52 | 10.66 | 10.73 | 10.58 | 10.52 | 10.37 | 10.21 | 10.80 | 10.55 | 10.55 | 10.64 | 10.82 | 8 | | 9 |
10.48 | 10.64 | 10.72 | 10.57 | 10.51 | 10.34 | 10.19 | 10.71 | 10.62 | 10.54 | 10.62 | 10.85 | 9 | | 10 | 10.44 | 10.63 | 10.72 | 10.57 | 10.52 | 10.31 | 10.17 | 10.69 | 10.77 | 10.52 | 10.67 | 10.83 | 10 | | 11.5 | 10.56 | 10.63 | 10.70 | 10.56 | 10.51 | 10.33 | 10.18 | 10.66 | 10.85 | 10.55 | 10.63 | 10.75 | 11 | | 12 | 10.64 | 10.63 | 10.70 | 10.56 | 10.49 | 10.38 | 10.19 | 10.59 | 10.85 | 10.44 | 10.57 | 10.69 | 12 | | 13 | 10.66 | 10.63 | 10.69 | 10.55 | 10.47 | 10.39 | 10.21 | 10.49 | 10.78 | 10.45 | 10.55 | 10.65 | 13 | | 14 | 10.62 | 10.65 | 10.68 | 10.57 | 10.46 | 10.40 | 10.27 | 10.41 | 10.68 | 10.43 | 10.73 | 10.66 | 14 | | 15 | 10.58 | 10.72 | 10.67 | 10.58 | 10.47 | 10.40 | 12.27 | 10.34 | 10.68 | 11.56 | 10.76 | 10.59 | 15 | | 16 | 10.59 | 10.79 | 10.65 | 10.56 | 10.49 | 10.37 | 10.27 | 10.28 | 10.60 | 11.07 | 10.78 | 10.62 | 16 | | 17 | 10.61 | 10.79 | 10.66 | 10.57 | 10.48 | 10.34 | 10.41 | 10.26 | 10.60 | 10.71 | 10.82 | 10.64 | 17 | | 18 | 10.63 | 10.77 | 10.66 | 10.58 | 10.47 | 10.33 | 10.47 | 10.32 | 10.59 | 10.61 | 10.82 | 10.67 | 18 | | 19 | 10.64 | 10.78 | 10.64 | 10.57 | 10.46 | 10.34 | 10.57 | 10.28 | 10.55 | 10.51 | 10.81 | 10.71 | 19 | | 20 | 10.63 | 10.84 | 10.64 | 10.57 | 10.46 | 10.34 | 10.69 | 10.22 | 10.46 | 10.40 | 10.87 | 10.70 | 2D | | 21 | 10.61 | 10.88 | 10.64 | 10.62 | 10.46 | 10.32 | 10.66 | 10.22 | 10.39 | 10.41 | 10.88 | 10.63 | 21 | | 22 | 10.59 | 10.88 | 10.63 | 10.81 | 10.45 | 10.30 | 10.69 | 10.30 | 10.38 | 10.41 | 10.95 | 10.59 | 22 | | 23 | 10.59 | 10.84 | 10.61 | 11.73 | 10.45 | 10.33 | 10.67 | 10.38 | 10.40 | 10.44 | 11.13 | 10.53 | 23 | | 24 | 10.58 | 10.84 | 10.61 | 11.20 | 10.46 | 10.35 | 10.61 | 10.41 | 10.43 | 10.38 | 11.09 | 10.58 | 24 | | 25 | 10.58 | 10.84 | 10.62 | 10.92 | 10.40 | 10.35 | 10.62 | 10.41 | 10.46 | 10.37 | 10.06 | 10.61 | 25 | | 26 | 10.57 | 10.83 | 10.61 | 10.78 | 10.32 | 10.35 | 10.60 | 10.44 | 10.44 | 10.46 | 10.73 | 10.58 | 26 | | 27 | 10.58 | 10.81 | 10.62 | 10.69 | 10.30 | 10.36 | 10.56 | 10.52 | 10.37 | 10.50 | 10.74 | 10.54 | 27 | | 28 | 10.59 | 10.80 | 10.60 | 10.65 | 10.28 | 10.35 | 10.46 | 10.51 | 10.33 | 10.47 | 10.87 | 10.50 | 28 | | 29 | 10.58 | 10.79 | 10.59 | 10.62 | 10.27 | 10.33 | 10.35 | 10.59 | 10.33 | 10.43 | 10.87 | 10.38 | 29 | | 30 | 10.55 | 10.78 | 10.58 | 10.60 | | 10.32 | 10.34 | 10.59 | 10.35 | 10-40 | 10.95 | 10.44 | 30 | | 31 | 10.55 | | 10.57 | 10.61 | | 10.31 | | 10.57 | | 10.43 | 10.96 | | 31 | ### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |------|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | 1210 | 11.92 | | | | | | | | | | | 1220 | 12.40 |] | 1210 | 1210 11.92 | 1210 11.92 | 1210 11.92 | 1210 11.92 | 1210 11.92 | 1210 11.92 | 1210 11.92 | 1210 11.92 | 1210 11.92 | | | LOCATION | ٧ | MAXII | NUM DISCH | IARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|-----------|-----------|----------|-------------|---------------|---------------|-----|------------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. & R. | OF RECORO | | | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO
ON | REF | | CATITODE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | то | GAGE | DATUM | | 37 25 28 | 120 39 47 | SW 9 6S 12E | 34400 | 22.67 | 12- 4-50 | JUL 41-DATE | APR 41-JUL 41 | 1950 | | 96.24 | USCGS | Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream. # DAILY MEAN GAGE HEIGHT (IN FEET) | WATER YEAR | STATION NO. | STATION NAME | | |------------|-------------|------------------------------|--| | 1964 | B05138 | MERCED RIVER NEAR LIVINGSTON | | | DAY | ОСТ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | 1 | 11.58 | 11.07 | 11.28 | 11.13 | 11.21 | 10.95 | 11.00 | 11.08 | 11.17 | 10.98 | 10.82 | 11.24 | 1 | | 2 | 11.43 | 11.07 | 11.25 | 11.13 | 11.16 | 10.90 | 10.94 | 11.04 | 11.22 | 10.92 | 11.10 | 11.09 | 2 | | 3 | 11.34 | 11.08 | 11.24 | 11.15 | 11.18 | 10.92 | 10.92 | 11.09 | 11.07 | 10.92 | 11.06 | 11.10 | 3 | | 4 | 11.32 | 11.08 | 11.22 | 11.15 | 11.16 | 10.93 | 10.89 | 11.29 | 10.97 | 10.88 | 11.07 | 11.12 | 4 | | 5 | 11.58 | 11.10 | 11.21 | 11.14 | 11.17 | 10.90 | 10.92 | 11.24 | 11.09 | 10.94 | 11.00 | 11.12 | 5 | | 6 | 11.38 | 11.10 | 11.20 | 11.13 | 11.16 | 10.91 | 11.03 | 11.48 | 11.15 | 11.07 | 10.92 | 11.10 | 6 | | 7 | 11.29 | 11.13 | 11 • 19 | 11.14 | 11.14 | 10.98 | 10.99 | 11.43 | 11.18 | 11.04 | 10.90 | 11.04 | 7 | | 8 | 11.27 | 11.16 | 11.21 | 11.14 | 11.13 | 11.05 | 10.90 | 11.45 | 11.21 | 10.96 | 11.00 | 11.03 | 8 | | 9 | 11.33 | 11 • 15 | 11.22 | 11.14 | 11.12 | 10.99 | 10.88 | 11.53 | 11.61 | 10.96 | 11.04 | 11.04 | 9 | | 10 | 11.12 | 11.13 | 11.22 | 11.13 | 11.12 | 10.97 | 10.84 | 11.43 | 11.54 | 10.98 | 11.15 | 11.02 | 10 | | 11 | 11.22 | 11 • 12 | 11.22 | 11.12 | 11.12 | 11.00 | 10.88 | 11.48 | 11.46 | 10.99 | 11.03 | 11.02 | 11 | | 12 | 11.23 | 11.13 | 11.21 | 11.12 | 11.14 | 11.13 | 10.86 | 11.22 | 11.51 | 11.00 | 11.23 | 10.97 | 12 | | 13 | 11.25 | 11.12 | 11.20 | 11.12 | 11.13 | 11.06 | 10.86 | 11.15 | 11.52 | 10.95 | 11.14 | 10.94 | 13 | | 14 | 11.23 | 11.14 | 11.19 | 11.12 | 11.11 | 11.02 | 10.77 | 11.12 | 11.39 | 10.86 | 10.98 | 10.92 | 14 | | 15 | 11.20 | 11.18 | 11.18 | 11.12 | 11.10 | 11.06 | 10.82 | 11.05 | 11.30 | 11.15 | 11.19 | 10.89 | 15 | | 16 | 11.21 | 11.23 | 11.17 | 11.13 | 11.11 | 11.05 | 10.90 | 10.88 | 11.28 | 11.99 | 11.14 | 10.87 | 16 | | 17 | 11.15 | 11.27 | 11.19 | 11.13 | 11.10 | 11.05 | 10.90 | 11.03 | 11.30 | 11.48 | 11.17 | 10.86 | 17 | | 18 | 11.15 | 11.25 | 11.19 | 11.13 | 11.10 | 11.03 | 11.08 | 11.08 | 11.24 | 11.22 | 11.18 | 10.87 | 18 | | 19 | 11.16 | 11.25 | 11 • 17 | 11.12 | 11.10 | 10.95 | 11.29 | 11.01 | 11.19 | 11.22 | 11.14 | 10.96 | 19 | | 20 | 11.14 | 11.31 | 11.15 | 11.12 | 11.08 | 10.92 | 11.35 | 10.90 | 11.12 | 11.16 | 11.13 | 10.97 | 20 | | 21 | 11.13 | 11.34 | 11.15 | 11.18 | 11.08 | 10.91 | 11.31 | 10.67 | 11.17 | 10.92 | 11.15 | 10.94 | 21 | | 22 | 11.12 | 11.37 | 11.15 | 11.25 | 11.07 | 10.96 | 11.39 | 10.99 | 11.27 | 10.95 | 11.17 | 10.84 | 22 | | 23 | 11.12 | 11.35 | 11.14 | 11.91 | 11.06 | 10.94 | 11.54 | 10.98 | 10.95 | 10.93 | 11.24 | 10.86 | 23 | | 24 | 11.10 | 11.33 | 11.14 | 12.12 | 11.07 | 10.98 | 11.49 | 11.16 | 10.84 | 10.80 | 11.36 | 10.84 | 24 | | 25 | 11.08 | 11.34 | 11.15 | 11.71 | 11.02 | 10.97 | 11.34 | 11.07 | 10.89 | 10.75 | 11.24 | 10.85 | 25 | | 26 | 11.08 | 11.33 | 11.14 | 11.50 | 10.98 | 10.97 | 11.78 | 10.98 | 10.87 | 10.95 | 11.07 | 10.77 | 26 | | 27 | 11.07 | 11.33 | 11.14 | 11.39 | 10.91 | 10.97 | 11.73 | 11.30 | 10.87 | 11.03 | 10.91 | 10.73 | 27 | | 28 | 11.07 | 11.31 | 11.14 | 11.30 | 10.86 | 10.99 | 11.54 | 11.26 | 10.91 | 10.94 | 11.01 | 10.75 | 28 | | 29 | 11.06 | 11.30 | 11.13 | 11.26 | 10.90 | 11.06 | 11.10 | 11.22 | 10.97 | 10.82 | 11.08 | 10.74 | 29 | | 30 | 11.06 | 11.29 | 11.13 | 11.23 | | 10.99 | 11.16 | 11.22 | 11.08 | 10.79 | 11.14 | 10.69 | 30 | | 31 | 11.05 | | 11.12 | 11.21 | | 10.96 | | 11.20 | | 10.71 | 11.28 | | 31 | | | | | | | | | | | | | | | | ### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | 5TAGE | DATE | TIME | 5TAGE | DATE | TIME | STAGE | |----------------|---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | E — ESTIMATED | 1-23-64 | 2200 | 12.43 | | | | | | | | | | | NR - NO RECORD | 7-16-64 | 0200 | 12.41 | | | | | | | | | | | NE NO FLOW | | | | | | | | | | | | | | | LOCATION | V | MAXII | MUM DISCH | IARGE | PERIOD | F RECORD | | DATUM | OF GAGE | | |----------|----------------------------------|-------------|-----------|-----------|---------|--------------------------------|------------------------------|----------|-------|---------|-------| | LATITUDE | TITUDE LONGITUDE 1/4 SEC. T. & R | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD . | | ZERO | REF. | | CATHODE | LONGITUDE | M.D.B.&M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 23 18 | 120 47 35 | NW29 6S 11E | 11100 | 21.44 | 2-12-38 | MAR 22-SEP 24
OCT 25-FEB 44 | JAN 51-JAN 60
APR 62-DATE | | DATE | 79.5 | USGS | Station located 4.5 mi. W of Livingston and 9.5 mi. upstream from mouth. Early discharge records, 1922-44, available in U.S.G.S. Water Supply Papers. Stage records from 1951-1960 were not published, available from D.W.R., State of California. Station reactivated April 1, 1962 for stage only. Drainage area, 1,259 sq. mi. In order to machine process this station, the recorder datum was changed. To obtain recorder gage heights subtract 10.00 feet from all of the above gage heights. #### DAILY MEAN GAGE HEIGHT (IN FEET) | (| WATER YEAR | STATION NO. | STATION NAME | | |---|------------|-------------|-------------------------------|--| | | 1964 | 807300 | SAN JOAQUIN RIVER NEAR NEWMAN | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|---------|-------|---------|---------|---------|-------|-----| | 1 | 49.40 | 49.07 | 49.79 | 49.20 | 49.60 | 48.98 | 49.13 | 49.04 | 49.27 | 48 - 82 | 48.24 | 48.94 | 1 | | 2 | 49.31 | 49.09 | 49.64 | 49.24 | 49.60 | 49.02 | 49.18 | 48.98 | 49.31 | 48.72 | 48.39 | 48.97 | 2 | | 3 | 49.23 | 49.09 | 49.52 | 49.28 | 49.59 | 48.99 | 49.09 | 48.98 | 49.26 | 48.64 | 48.42 | 48.88 | 3 | | 4 | 49.23 | 49.11 | 49.45 | 49.30 | 49.57 | 48.98 | 49.01 | 49.18 | 49.11 | 48.58 | 48 • 43 | 48.92 | 4 | | 5 | 49.32 | 49.13 | 49.42 | 49.39 | 49.53 | 48.98 | 48.97 | 49.20 | 49.03 | 48.58 | 48 • 45 | 48.87 | 5 | | 6 | 51.02 | 49.13 | 49.38 | 49.64 | 49.49 | 48.97 | 48.97 | 49.32 | 49.04 | 48.64 | 48.45 | 48.85 | 6 | | 7 | 51.40 |
49.11 | 49.36 | 49.95 | 49.45 | 48.97 | 48.99 | 49.40 | 49.03 | 48.58 | 48.42 | 48.83 | 7 | | 8 | 49.55 | 49.16 | 49.41 | 50.16 | 49.38 | 48.98 | 48.85 | 49.36 | 49.01 | 48.54 | 48.31 | 48.76 | 8 | | 9 | 49.44 | 49.13 | 49.45 | 50.12 | 49.32 | 49.04 | 48.77 | 49.29 | 49.18 | 48 • 45 | 48.28 | 48.75 | 9 | | 10 | 49.37 | 49.07 | 49.48 | 50.05 | 49.30 | 49.05 | 48 • 68 | 49.32 | 49.44 | 48.40 | 48.33 | 48.71 | 10 | | 11 | 49.26 | 49.04 | 49.52 | 49.98 | 49.32 | 49.00 | 48.52 | 49.40 | 49.64 | 48.40 | 48.37 | 48.63 | 11 | | 12 | 50.27 | 49.02 | 49.54 | 49.92 | 49.24 | 49.19 | 48.59 | 49.28 | 49.74 | 48.47 | 48.40 | 48.52 | 12 | | 13 | 51.95 | 49.05 | 49.53 | 49.89 | 49.22 | 49.22 | 48.68 | 49.20 | 49.81 | 48.51 | 48.43 | 48.42 | 13 | | 14 | 51.99 | 49.09 | 49.52 | 49.89 | 49.17 | 49.19 | 48.73 | 49.09 | 49.70 | 48.44 | 48.32 | 48.47 | 14 | | 15 | 50.08 | 49.14 | 49.52 | 49.86 | 49.14 | 49.26 | 48 . 85 | 48.98 | 49.56 | 48.48 | 48.35 | 48.56 | 15 | | 16 | 50.32 | 49.17 | 49.49 | 49.82 | 49.27 | 49.29 | 48 . 80 | 48.92 | 49.32 | 48.58 | 48.54 | 48.55 | 16 | | 17 | 50.30 | 49.32 | 49.44 | 49.75 | 49.26 | 49.27 | 48.86 | 48.89 | 49.27 | 48.76 | 48.60 | 48.45 | 17 | | 18 | 50.19 | 49.43 | 49.42 | 49.68 | 49.16 | 49.24 | 48.95 | 48.95 | 49.08 | 48-61 | 48.53 | 48.46 | 18 | | 19 | 50.18 | 49.52 | 49.42 | 49.66 | 49.14 | 49.07 | 49.02 | 49.01 | 49.01 | 48.49 | 48.48 | 48.48 | 19 | | 20 | 51.77 | 49+63 | 49.38 | 49.64 | 49.09 | 48.87 | 49.23 | 49.10 | 48.89 | 48.53 | 48 - 47 | 48.48 | 20 | | 21 | 51.92 | 49.69 | 49.35 | 49.69 | 49.09 | 48.80 | 49.29 | 49.10 | 48.89 | 48.60 | 48.48 | 48.60 | 21 | | 22 | 50.57 | 49.79 | 49.29 | 49.72 | 49.09 | 48.76 | 49.20 | 49.10 | 48.90 | 48.53 | 48.45 | 48.48 | 22 | | 23 | 49.94 | 49.96 | 49.26 | 49.88 | 49.07 | 48.93 | 49.24 | 49.11 | 48 • 85 | 48.37 | 48.58 | 49.12 | 23 | | 24 | 49.47 | 49.92 | 49.27 | 50.18 | 49.07 | 48.96 | 49.28 | 49.12 | 48.73 | 48.37 | 48.69 | 49.91 | 24 | | 25 | 49.42 | 49.93 | 49.25 | 50.21 | 49.03 | 48.95 | 49.24 | 49.26 | 48.66 | 48.30 | 48.76 | 49.97 | 25 | | 26 | 49.29 | 49.89 | 49.24 | 50.02 | 48.98 | 48.94 | 49.23 | 49.39 | 48.59 | 48 • 25 | 48.71 | 50.02 | 26 | | 27 | 49.08 | 49.87 | 49.23 | 49.90 | 48.96 | 48.94 | 49.33 | 49.31 | 48.57 | 48.46 | 48.64 | 50.02 | 27 | | 28 | 49.04 | 49.85 | 49.20 | 49.78 | 48.93 | 49.02 | 49.28 | 49.38 | 48.63 | 48.41 | 48.74 | 50.04 | 28 | | 29 | 49.06 | 49.85 | 49+19 | 49.68 | 48.94 | 49.12 | 49.24 | 49.37 | 48.73 | 48.39 | 48.65 | 50.07 | 29 | | 30 | 49.07 | 49.85 | 49.19 | 49.60 | | 49.13 | 49.07 | 49.26 | 48.88 | 48.32 | 48.62 | 50.10 | 30 | | 31 | 49.07 | | 49.19 | 49.58 | | 49.06 | | 49.20 | | 48.24 | 48.75 | | 31 | ### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | 5TAGE | DATE | TIME | STAGE | |----------------|----------|------|-------|------|------|-------|------|------|-------|------|------|-------| | E — ESTIMATED | 10-14-63 | 0900 | 52.70 | | | | | | | | | | | NR - NO RECORD | | | | | | | | | | | | | | NF - NO FLOW | | | | | | | | | | | | | | | LOCATION | V | MAXIMUM DISCHARGE OF RECORD | | | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|------------------|------------------------------|----------|---------|-------------|---------------|--------|------|------------|-------------------------| | | | 1/4 SEC. T. 8 R. | | | | DISCHARGE | GAGE HEIGHT | PERIO0 | | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | 70 | GAGE | DATUM | | 37 21 02 | 120 58 34 | SW 3 7S 9E | 33000 | 18.50 | 3- 7-38 | APR 12-DATE | | 1912 | 1959 | - / | USCGS
USCGS
USCGS | Station located at bridge on Hills Ferry Road, 300 ft. below the Merced River, 3.5 mi. NE of Newman. Records furn. by U.S.G.S. Drainage area is 9,990 sq. mi. Flow records are published in the U.S.G.S. report "Surface Water Records of California". # DAILY MEAN GAGE HEIGHT (IN FEET) WATER YEAR STATION NO. STATION NAME 1964 807250 SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|---------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-----| | 1 | 39.05 | 38.53 | 39.30 | 38.69 | 39.10 | 38.31 | 38.63 | 38.54 | 38.84 | 38.34 | 37.73 | 38.36 | 1 | | 2 | 38.90 | 38.56 | 39.18 | 38.72 | 39.11 | 38.41 | 38 • 80 | 38.52 | 38.86 | 38.25 | 37.85 | 38.48 | 2 | | 3 | 38.91 | 38.58 | 39.05 | 38.77 | 39.10 | 38.40 | 38.63 | 38.48 | 38.78 | 38.11 | 37.89 | 38.43 | 3 | | 4 | 38.92 | 38.63 | 38.98 | 38.81 | 39.08 | 38.37 | 38.50 | 38.70 | 38.72 | 38.03 | 37.88 | 38.33 | 4 | | S | 38.96 | 38.69 | 38.93 | 38.86 | 39.06 | 38.43 | 38 • 44 | 38 • 81 | 38.58 | 38.08 | 37.91 | 38.32 | 5 | | 6 | 39.83 | 38.67 | 38.89 | 39.06 | 39.02 | 38.38 | 38.42 | 38.79 | 38.53 | 38.02 | 37.87 | 38.33 | 6 | | 7 | 41.39 | 38.57 | 38 • 84 | 39.33 | 38.96 | 38.38 | 38.40 | 38.90 | 38.52 | 37.97 | 37.95 | 38.30 | 7 | | 8 | 39.75 | 38.67 | 38.88 | 39.60 | 38.89 | 38.35 | 38 • 42 | 38.92 | 38.50 | 37.97 | 37.88 | 38.28 | 8 | | 9 | 39.14 | 38.65 | 38.93 | 39.65 | 38.80 | 38.39 | 38.27 | 38.81 | 38.63 | 37.90 | 37.86 | 38.16 | 9 | | 10 | 39.05 | 38.56 | 38.96 | 39.61 | 38.76 | 38.44 | 38 • 16 | 38.81 | 38.91 | 37.84 | 37.82 | 38.07 | 10 | | 11 | 39.03 | 38.49 | 38.99 | 39.52 | 38.79 | 38.37 | 38.02 | 38.90 | 39.23 | 37.88 | 37.80 | 38.03 | 11 | | 12 | 39.53 | 38 • 46 | 39.03 | 39.48 | 38.70 | 38.46 | 37.98 | 38.79 | 39.33 | 37.89 | 37.83 | 38.08 | 12 | | 13 | 40.79 | 38 • 51 | 39.02 | 39.41 | 38.69 | 38.71 | 38.12 | 38.74 | 39.32 | 37.98 | 37.89 | 37.90 | 13 | | 14 | 42.01 | 38.55 | 39.01 | 39.44 | 38.62 | 38.61 | 38.12 | 38.64 | 39.26 | 37.81 | 37.87 | 37.85 | 14 | | 15 | 40.24 | 38.60 | 39.01 | 39.38 | 38.58 | 38.76 | 38 • 35 | 38.44 | 39.07 | 37.94 | 37.79 | 37.98 | 15 | | 16 | 40.01 | 38.60 | 38.98 | 39.35 | 38.65 | 38.79 | 38.28 | 38.38 | 38.88 | 37.90 | 37.94 | 38.00 | 16 | | 17 | 39.94 | 38.67 | 38.94 | 39.29 | 38.71 | 38.74 | 38.29 | 38.41 | 38.75 | 38.14 | 38.11 | 37.92 | 17 | | 16 | 39.84 | 38.83 | 38.92 | 39.22 | 38.60 | 38.75 | 38.35 | 38.57 | 38.65 | 38.13 | 38.08 | 37.84 | 18 | | 19 | 39.66 | 38.91 | 38.93 | 39.16 | 38.60 | 38.60 | 38.50 | 38.59 | 38.55 | 38.01 | 37.99 | 37.93 | 19 | | 2D | 40.59 | 39.07 | 38.90 | 39.15 | 38.53 | 38.43 | 38.68 | 38.64 | 38.44 | 38.05 | 37.94 | 37.91 | 20 | | 21 | 41.70 | 39.15 | 38.86 | 39.21 | 38.49 | 38.29 | 38 . 86 | 38.68 | 38.44 | 38.06 | 37.92 | 38.12 | 21 | | 22 | 40.43 | 39.19 | 38.81 | 39.25 | 38.52 | 38.27 | 38.86 | 38.65 | 38.44 | 38.08 | 37.92 | 38.05 | 22 | | 23 | 39.83 | 39.39 | 38.76 | 39.34 | 38.43 | 38.49 | 38 • 72 | 38.58 | 38.33 | 37.86 | 38.05 | 38.07 | 23 | | 24 | 39.12 | 39.42 | 38.76 | 39.60 | 38.46 | 38.69 | 38.77 | 38.61 | 38.24 | 37.83 | 38.26 | 38.93 | 24 | | 25 | 38.98 | 39.40 | 38.75 | 39.74 | 38.46 | 38.76 | 38.81 | 38.70 | 38.15 | 37.77 | 38.26 | 39.28 | 25 | | 26 | 38.88 | 39.38 | 38.73 | 39.61 | 38.40 | 38.79 | 38.72 | 38.80 | 38.07 | 37.72 | 38.17 | 39.39 | 26 | | 27 | 38.65 | 39.36 | 38.72 | 39.45 | 38.34 | 38.81 | 38.77 | 38 . 82 | 37.98 | 37.93 | 38.11 | 39.41 | 27 | | 28 | 38.56 | 39.34 | 38.70 | 39.36 | 38.30 | 38.69 | 38.70 | 38.89 | 38.04 | 37.97 | 38.15 | 39.46 | 28 | | 29 | 38.55 | 39.32 | 38.67 | 39.24 | 38.28 | 38.75 | 38.74 | 38.91 | 38.20 | 37.85 | 38.19 | 39.48 | 29 | | 30 | 38.55 | 39.33 | 38.68 | 39.16 | | 38.83 | 38.65 | 38.80 | 38.30 | 37.79 | 38.09 | 39.48 | 3D | | 31 | 38.53 | | 38.68 | 39.10 | | 38.61 | | 38.73 | | 37.86 | 38.07 | | 31 | | | | | 1 | | | | | | | | | | " | ### CREST STAGES E — ESTIMATED NR — NO RECORD NF - NO FLOW | DATE | TIME | 5TAGE | DATE | TIME | 5TAGE | DATE | TIME | 5TAGE | DATE | TIME | STAGE | |-----------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 1,0,14,60 | 1450 | | | | | | | | | | | | 10-14-63 | 1450 | 42.20 | | | | | | | | | | | 1 | LOCATION | | | MAXII | MUM DISCH | IARGE | PERIOD O | DATUM OF GAGE | | | | | |----------|-----------|------------------|-----------------|-----------|---------|-----------|---------------|--------------|------|----------------------|----------------------| | LATITUOE | , and the | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO | REF. | | | LONGITUDE | M. D. B. & M. | C.F.S. GAGE HT. | | DATE | | ONLY | FROM | то | GAGE | DATUM | | 37 26 52 | 121 00 44 | NW 8 6S 9E | | 61.9 | 4- 7-58 | | 41-DATE | 1959
1959 | 1959 | 0.00
0.00
3.51 | USED
USGS
USED | Station located at Crows Landing Road Bridge, 4.3 mi. NE of Crows Landing. DAILY MEAN GAGE HEIGHT (IN FEET) WATER YEAR STATION NO. STATION NAME 1964 B07200 SAN JOAQUIN RIVER AT PATTERSON BRIDGE | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | 1 | 32.99 | 32.33 | 33.02 | 32.39 | 32.74 | 31.78 | 32.21 | 31.46 | 31.99 | 32.69 | 32.08 | 33,20 | 1 | | 2 | 32.81 | 32.32 | 32.93 | 32.40 | 32.74 | 31.78 | 32.48 | 31.46 | 32.00 | 33.17 | 32.18 | 33.31 | 2 | | 3 | 32.77 | 32.34 | 32.79 | 32.45 | 32.76 | 31.61 | 32.31 | 31.48 | 32.02 | 33.03 | 32.55 | 33.23 | 3 | | 4 | 32.88 | 32.36 | 32.72 | 32.48 | 32.72 | 31.50 | 32.15 | 31.83 | 31.91 | 32.91 | 32.46 | 33.09 | 4 | | 5 | 32.86 | 32.42 | 32.67 | 32.49 | 32.69 | 31.42 | 32.03 | 32.05 | 31.81 | 33.01 | 32.54 | 33.05 | 5 | | 6 | 33.25 | 32.46 | 32.63 | 32.60 | 32.65 | 31.41 | 31.95 | 32.05 | 31.62 | 32.93 | 32.25 | 33.16 | 6 | | 7 | 34.98 | 32.38 | 32.59 | 32.85 | 32.60 | 31.57 | 31.81 | 32.18 | 31.61 | 32.8c | 32.28 | 33.09 | 7 | | 8 | 34.14 | 32.38 | 32.56 | 33.16 | 32.54 | 31.56 | 31.72 | 32.26 | 31.69 | 32.74 | 32.23 | 33.00 | 8 | | 9 | 33.15 | 32.42 | 32.61 | 33.26 | 32.47 | 31.64 | 31.51 | 32.00 | 31.94 | 32.56 | 32.37 | 32.85 | 9 | | 10 | 33.08 | 32.35 | 32.63 | 33.23 | 32.41 | 31.60 | 31.23 | 32.01 | 32.34 | 32.49 | 32.33 | 32.73 |
10 | | -11 | 33.16 | 32.26 | 32.66 | 33.17 | 32.39 | 31.43 | 30.99 | 32.20 | 32.63 | 32.48 | 32.15 | 32.60 | 11 | | 12 | 33.43 | 32.24 | 32.68 | 33.13 | 32.33 | 31.81 | 30.71 | 31.95 | 32.63 | 32.47 | 32.22 | 32.68 | 12 | | 13 | 34.35 | 32.23 | 32.71 | 33.09 | 32.28 | 32.08 | 31.01 | 31.84 | 32.52 | 32.54 | 32.16 | 32.75 | 13 | | 14 | 35.81 | 32.28 | 32.73 | 33.10 | 32.21 | 31.96 | 31.03 | 31.83 | 32.60 | 32.40 | 32.22 | 32.62 | 14 | | 15 | 34.62 | 32.35 | 32.72 | 33.05 | 32.17 | 31.95 | 31.35 | 31.49 | 32.36 | 32.34 | 32.18 | 32.58 | 15 | | 16 | 33.85 | 32.37 | 32.71 | 33.00 | 32.16 | 31.98 | 31.29 | 31.34 | 32.07 | 32.46 | 32.34 | 32.72 | 16 | | 17 | 33.76 | 32.39 | 32.69 | 32.97 | 32.24 | 31.85 | 31.18 | 31.45 | 31.78 | 32.73 | 32.61 | 32.69 | 17 | | 18 | 33.65 | 32.51 | 32.66 | 32.91 | 32.17 | 31.78 | 31.25 | 31.78 | 31.71 | 32.90 | 32.69 | 32.57 | 18 | | 19 | 33.44 | 32.65 | 32.64 | 32.88 | 32.14 | 31.67 | 31.83 | 31.79 | 31.33 | 32.81 | 32.55 | 32.62 | 19 | | 20 | 33.88 | 32.79 | 32.64 | 32.88 | 32.08 | 31.43 | 32.10 | 31.85 | 31.32 | 32.79 | 32.39 | 32.66 | 20 | | 21 | 35.19 | 32.84 | 32.60 | 32.91 | 31.97 | 30.97 | 32.15 | 31.93 | 31.40 | 32.66 | 32,31 | 32.75 | 21 | | 22 | 34.49 | 32.89 | 32.56 | 32.97 | 31.96 | 31.66 | 32.14 | 31.93 | 31.53 | 32.60 | 32.48 | 32.74 | 22 | | 23 | 33.75 | 33.05 | 32.50 | 33.03 | 31.97 | 32.15 | 31.86 | 31.81 | 30.83 | 32.28 | 32.89 | 31.90 | 23 | | 24 | 33.02 | 33.12 | 32.49 | 33.16 | 31.93 | 32.33 | 31.79 | 31.92 | 30.77 | 32.11 | 33.17 | 32,54 | 24 | | 25 | 32.83 | 33.10 | 32.47 | 33.34 | 31.98 | 32.56 | 32.08 | 32.02 | 30.92 | 32.14 | 33.13 | 32.97 | 25 | | 26 | 32.75 | 33.11 | 32.44 | 33.28 | 31.91 | 32.50 | 31.97 | 31.97 | 31.00 | 32.18 | 32.76 | 33.03 | 26 | | 27 | 32.56 | 33.08 | 32.43 | 33.11 | 31.81 | 32.46 | 31.95 | 31.98 | 30.90 | 32.58 | 32.73 | 33.09 | 27 | | 28 | 32.41 | 33.05 | 32.41 | 33.00 | 31.70 | 32.38 | 31.77 | 32.01 | 30.91 | 32.56 | 32.80 | 33.08 | 28 | | 29 | 32.35 | 33.04 | 32.38 | 32.89 | 31.70 | 32.34 | 31.63 | 32.14 | 31.51 | 32.44 | 32.82 | 33.03 | 29 | | 30 | 32.33 | 33.03 | 32.36 | 32.82 | | 32.48 | 31.48 | 32.09 | 31.35 | 32.06 | 32.99 | 33.07 | 3D | | 31 | 32.33 | | 32.38 | 32.76 | | 32.22 | | 32.02 | | 32.21 | 32.94 | | 31 | #### CREST STAGES E -- ESTIMATED NR -- NO RECORD MK - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 10-14-63 | 1810 | 36.07 | LOCATIO | N | MAXI | MUM DISCH | IARGE | PERIOD (| F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|---------|-----------|-------------|----------------------|-------|----------------------|-----------------------| | LATITUDE | LONGITUOE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | 2008 | ZERO
ON | REF | | LATTIONE | LONGITUDE | M. D. B. B. M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | то | GAGE | DATUM | | 37 29 52 | 121 04 52 | SW15 5S 8E | | 54.0 | 6-13-38 | | APR 38-DATE | 1938
1959
1959 | 1959 | 0.00
0.00
3.53 | USED
USCGS
USED | Station located at Patterson-Turlock Highway Bridge, 3.1 mi. NE of Patterson ## DAILY MEAN GAGE HEIGHT WATER YEAR STATION NO. STATION NAME 1964 B07080 SAN JOAQUIN RIVER AT GRAYSON # (IN FEET) | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-----| | 1 | 24.61 | 24.09 | 24.65 | 24.17 | 24.35 | 23.45 | 23.92 | 23.46 | 23.83 | 23.21 | 22.89 | 23.67 | 1 | | 2 | 24.41 | 24.02 | 24.65 | 24.17 | 24.30 | 23.40 | 24.12 | 23.47 | 23.79 | 23.25 | 22.83 | 23.81 | 2 | | 3 | 24.28 | 24.05 | 24.65 | 24.22 | 24.30 | 23.34 | 23.97 | 23.52 | 23.88 | 23.28 | 23.04 | 23.84 | 3 | | 4 | 24.44 | 24.06 | 24.85 | 24.18 | 24.28 | 23.37 | 23.96 | 23.77 | 23.79 | 23.20 | 23.02 | 23.69 | 4 | | 5 | 24.82 | 24.12 | 24.85 | 24.20 | 24.28 | 23.27 | 23.72 | 23.85 | 23.70 | 23.32 | 23.05 | 23.64 | 5 | | 6 | 25.12 | 24.18 | 24.85 | 24.28 | 24.22 | 23.25 | 23.73 | 23.88 | 23.64 | 23.33 | 22.97 | 23.74 | 6 | | 7 | 25.55 | 24 • 11 | 24.85 | 24.49 | 24.17 | 23.34 | 23.59 | 23.91 | 23.61 | 23.14 | 22.92 | 23.78 | 7 | | 6 | 26.42 | 24.09 | 24.85 | 24.77 | 24.13 | 23.31 | 23.54 | 23.97 | 23.62 | 23.17 | 22.91 | 23.61 | 8 | | 9 | 25.38 | 24.13 | 24.85 | 24.91 | 24.05 | 23.35 | 23.40 | 23.87 | 23.68 | 23.07 | 23.01 | 23.44 | 9 | | 10 | 25.18 | 24.08 | 24.85 | 24.84 | 23.97 | 23.35 | 23 • 24 | 23.75 | 24.07 | 22.99 | 23.02 | 23.37 | 10 | | 11 | 25.30 | 24.01 | 24.85 | 24.79 | 23.93 | 23.24 | 23.18 | 23.84 | 24.32 | 22.96 | 22.86 | 23.24 | 11 | | 12 | 25.62 | 23.97 | 24.71 | 24.72 | 23.93 | 23.40 | 23.07 | 23.77 | 24.37 | 22.94 | 22.91 | 23.31 | 12 | | 13 | 26.30 | 23.97 | 24.72 | 24.67 | 23.88 | 23.74 | 23.07 | 23.63 | 24.32 | 22.91 | 22.87 | 23.42 | 13 | | 14 | 27.43 | 24.00 | 24.73 | 24.65 | 23.85 | 23.69 | 23.07 | 23.63 | 24.39 | 22.89 | 22.91 | 23.38 | 14 | | 15 | 27.23 | 24.08 | 24.68 | 24.63 | 23.83 | 23.59 | 23.17 | 23.54 | 24.32 | 22.82 | 22.91 | 23.25 | 15 | | 16 | 27.12 | 24.12 | 24.63 | 24.59 | 23.77 | 23.65 | 23.28 | 23.37 | 24.12 | 22.89 | 22.94 | 23.35 | 16 | | 17 | 25.87 | 24.17 | 24.63 | 24.56 | 23.85 | 23.57 | 23.26 | 23.48 | 23.88 | 23.07 | 23.12 | 23.37 | 17 | | 16 | 25.79 | 24.29 | 24.62 | 24.48 | 23.77 | 23.52 | 23.27 | 23.51 | 23.80 | 23.19 | 23.34 | 23.31 | 18 | | 19 | 25.64 | 24.43 | 24.57 | 24.41 | 23.72 | 23.41 | 23.55 | 23.65 | 23.64 | 23.21 | 23.25 | 23.34 | 19 | | 20 | 25.72 | 24.70 | 24.52 | 24.40 | 23.68 | 23.38 | 23.80 | 23.76 | 23.62 | 23.19 | 23.04 | 23.38 | 20 | | 21 | 25.92 | 24.83 | 24.48 | 24.48 | 23.63 | 23.15 | 23.86 | 23.71 | 23.69 | 23.15 | 23.08 | 23.40 | 21 | | 22 | 27.00 | 24.83 | 24.43 | 24.61 | 23.57 | 23.23 | 23.90 | 23.75 | 23.72 | 23.08 | 23.02 | 23.55 | 22 | | 23 | 26.29 | 24.98 | 24.38 | 24.68 | 23.58 | 23.88 | 23.81 | 23.66 | 23.50 | 22.95 | 23.32 | 23.58 | 23 | | 24 | 25.77 | 25.17 | 24.37 | 24.76 | 23.54 | 24.06 | 23.69 | 23.69 | 23.27 | 27.78 | 23.57 | 24.06 | 24 | | 25 | 25.34 | 25.15 | 24.53 | 24.89 | 23.55 | 24.26 | 23.87 | 23.81 | 23.25 | 22.81 | 23.55 | 24.65 | 25 | | 26 | 24.86 | 25.15 | 24.56 | 24.88 | 23.52 | 24.18 | 23.84 | 23.80 | 23.25 | 22.88 | 23.40 | 24.72 | 26 | | 27 | 24.54 | 25.15 | 24.61 | 24.72 | 23.44 | 24.11 | 23.85 | 23.85 | 23.20 | 23.07 | 23.31 | 24.85 | 27 | | 28 | 24.34 | 25 • 15 | 24.33 | 24.62 | 23.37 | 24.14 | 23.76 | 23.88 | 23.15 | 23.09 | 23.34 | 24.80 | 28 | | 29 | 24.23 | 25.20 | 24.26 | 24.51 | 23.35 | 24.02 | 23.59 | 24.19 | 23.40 | 23.05 | 23.27 | 24.75 | 29 | | 30 | 24.22 | 25.22 | 24.18 | 24.40 | | 24.17 | 23.51 | 23.97 | 23.30 | 22.82 | 23.47 | 24.75 | 30 | | 31 | 24.22 | | 24.17 | 24.40 | | 24.02 | | 23.88 | | 22.83 | 23.50 | | 31 | ### CREST STAGES | | OATE | TIME | STAGE D | DATE | TIME | STAGE | DATE | TIME | STAGE | OATE | TIME | STAGE | |----------------|----------|--------------|-----------------------|------|--------------|----------------|------|------|-------|------|------|-------| | E - ESTIMATEO | 10- 7-63 | 2350
2400 | 26.98 5-1
27.72 7- | | 0530
1945 | 24.17
22.63 | | | | | | | | NR - NO RECORO | 12-27-63 | 1100 | 24.65 9- | | 1300 | 24.95 | | | | | | | | NF - NO FLOW | | | | | | | | | | | | | | | LOCATION | V | MAXII | MUM DISCH | ARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|-----------------|--------|-----------|---------|-------------|-------------|--------------|-------|----------------------|-----------------------| | | | 1/4 SEC. 7.8 R. | | OF RECORD |) | OISCHARGE | GAGE HEIGHT | PEF | 8100 | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. | OATE | O D O TANGE | ONLY | FROM | TO | GAGE | DATUM | | 37 33 47 | 121 09 06 | NW25 4S 7E | 23900 | 45.15 | 3- 8-41 | JUL 28-DATE | | 1960
1960 | 1959 | 0.00
0.00
3.81 | USED
USCGS
USED | Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn. by City of San Francisco. ### DAILY MEAN GAGE HEIGHT WATER YEAR STATION NO. STATION NAME 1964 807070 SAN JOAQUIN RIVER AT WEST STANISLAUS 1. D. INTAKE (IN FEET) | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | 1 | 19.96 | 22.07 | 24.23 | 22.54 | 21.02 | 16.54 | 19.05 | 18.73 | 18.33 | 18.14 | 18.46 | 19.59 | 1 | | 2 | 19.82 | 22.09 | 24.23 | 22.50 | 20.90 | 18.53 | 19.22 | 18.67 | 18.15 | 18.22 | 18.40 | 19.67 | 2 | | 3 | 19.92 | 22.23 | 24.20 | 22.58 | 20.82 | 18.42 | 18.94 | 19.04 | 18.07 | 18.24 | 18.57 | 19.56 | 3 | | 4 | 20.19 | 22.26 | 23.85 | 22.18 | 20.74 | 18.31 | 16.84 | 19.23 | 17.84 | 18.15 | 18.47 | 19.34 | 4 | | 5 | 20.65 | 22.32 | 23.68 | 22.26 | 20.77 | 17.63 | 16.82 | 19.30 | 17.97 | 18.38 | 18.32 | 19.19 | 5 | | 6 | 21.15 | 22.40 | 23.66 | 22.26 | 20.74 | 17.30 | 18.73 | 19.38 | 17.67 | 18.52 | 18.12 | 19.27 | 6 | | 7 | 21.94 | 22.37 | 23.70 | 22.34 | 20.72 | 18.43 | 18.38 | 19.23 | 17.91 | 18.20 | 18.31 | 19.32 | 7 | | 8 | 21.98 | 22.33 | 23.66 | 22.43 | 20.68 | 18.36 | 18.33 | 19.18 | 18.45 | 17.78 | 18.33 | 19.20 | 8 | | 9 | 21.37 | 22.36 | 23.65 | 22.32 | 20.63 | 18.30 | 18.17 | 19.02 | 19.02 | 17.11 | 18.59 | 19.07 | 9 | | 10 | 21.26 | 22.36 | 23.67 | 21.83 | 20,49 | 18.37 | 18.83 | 18.86 | 19.27 | 16.80 | 18.59 | 18.92 | 10 | | 11 | 21.57 | 22.32 | 23.50 | 21.68 | 20.32 | 18.32 | 18.47 | 18.82 | 19.33 | 17.44 | 18.16 | 18.95 | 11 | | 12 | 22.19 | 22.30 | 23 • 44 | 21.52 | 20.47 | 18.58 | 18.22 | 18.60 | 19.37 | 17.99 | 18.46 | 18.96 | 12 | | 13 | 22.71 | 22.35 | 23.47 | 21.30 | 20.45 | 18.96 | 18.20 | 18.33 | 19.19 | 17.87 | 18.36 | 19.11 | 13 | | 14 |
23.31 | 22.39 | 23.52 | 21.26 | 20.50 | 18.87 | 18.20 | 17.94 | 19.29 | 17.36 | 18.30 | 19.07 | 14 | | 15 | 23.20 | 22.48 | 23.31 | 21.36 | 20.55 | 18.87 | 18.29 | 17.91 | 19.08 | 16.63 | 18.44 | 18.86 | 15 | | 16 | 22.44 | 22.56 | 23.21 | 21.31 | 20.43 | 18.74 | 18.44 | 17.56 | 18.78 | 17.44 | 18.74 | 18.86 | 16 | | 17 | 22.38 | 22.75 | 23.28 | 21.27 | 20.31 | 18.54 | 18.48 | 17.91 | 18.39 | 18.33 | 18.97 | 18.85 | 17 | | 18 | 22.71 | 22.85 | 23.28 | 21.17 | 20.19 | 18.67 | 18.42 | 18.27 | 18.20 | 18.27 | 18.97 | 18.87 | 18 | | 19 | 22.74 | 23.01 | 23.15 | 21.09 | 20.23 | 18.89 | 18.62 | 18.51 | 18.07 | 18.33 | 18.96 | 18.90 | 19 | | 2D | 22.93 | 23.42 | 23.01 | 21.02 | 19.94 | 18.93 | 18.99 | 18.53 | 17.24 | 18.29 | 18.70 | 19.07 | 20 | | 21 | 23.98 | 23.59 | 22.97 | 21.15 | 19.74 | 18.77 | 18.93 | 18.75 | 18.27 | 18.19 | 18.64 | 19.03 | 21 | | 22 | 24.50 | 23.51 | 22.96 | 21.32 | 19.56 | 19.12 | 18.84 | 18.75 | 18.44 | 18.12 | 18.62 | 19.26 | 22 | | 23 | 24.24 | 23.74 | 22.90 | 22.08 | 19.56 | 19.52 | 18.66 | 18.60 | 17.99 | 17.99 | 18.93 | 19.55 | 23 | | 24 | 23.90 | 23.91 | 23.02 | 22.10 | 19.42 | 19.57 | 18.53 | 18.51 | 16.63 | 17.53 | 19.16 | 20.00 | 24 | | 25 | 23.64 | 23.90 | 23.47 | 21.65 | 19.16 | 19.64 | 18.77 | 18.77 | 17.42 | 18.05 | 19.13 | 20.39 | 25 | | 26 | 22.79 | 23.89 | 23.54 | 21.45 | 19.29 | 19.52 | 18.92 | 18.81 | 17.99 | 18.34 | 18.99 | 20.44 | 26 | | 27 | 22.42 | 23.94 | 23.59 | 21.25 | 19.28 | 19.39 | 19.03 | 18.73 | 18.15 | 18.57 | 18.91 | 20.55 | 27 | | 28 | 22.16 | 23.98 | 22.88 | 21.05 | 18.04 | 19.39 | 18.95 | 18.71 | 18.30 | 18.34 | 19.04 | 20.49 | 28 | | 29 | 22.11 | 24.13 | 22.67 | 21.06 | 17.52 | 19.21 | 18.70 | 18.86 | 18.46 | 18.05 | 19.06 | 20.30 | 29 | | 30 | 22.22 | 24.17 | 22.48 | 21.01 | | 19.14 | 18.66 | 18.83 | 18.47 | 18.06 | 19.31 | 20.36 | 30 | | 31 | 22.21 | | 22.39 | 20.98 | | 18.97 | | 18.60 | 100., | 18.25 | 19.45 | | 31 | | | | | | | 1 | | L | L | | L | | | | #### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 10-22-63 | 1200 | 24.54 | | | | | | | | | | | 12- 1-63 | 2400 | 24.25 | | | | | | | | | | | | | 21101 | , | | | LOCATIO | N | MAXI | MUM DISCH | ARGE | PERIOD C | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|------|-----------|-------------|------|-------|----------------------|-----------------------| | | | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | COD | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.&M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 37 36 07 | 121 10 51 | SE10 4S 7E | | | | | DEC 50-DATE | 1959 | 1959 | 0.00
0.00
3.67 | USED
USCGS
USED | Station located at intake gates for W.S.I.D. Canal, 2.6 mi. N of Grayson. | · · · · · · | WATER YEAR | STATION NO. | STATION NAME | |------------------------|------------|-------------|-----------------------------------| | DAILY MEAN GAGE HEIGHT | 1964 | 804175 | TUDLUMNE RIVER AT LAGRANGE BRIDGE | | (IN FEFT) | | | | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-----| | 1 | 68.38 | 70.86 | 72.23 | 70.89 | 69.11 | 67.48 | 67.33 | 67.29 | 67.02 | 66.94 | 66.91 | 67.05 | 1 | | 2 | 68.47 | 70.94 | 72.18 | 70.97 | 68.92 | 67.45 | 67.35 | 67.28 | 67.02 | 66.98 | 67.19 | 67.04 | 2 | | 3 | 68.52 | 70.91 | 71.85 | 70.31 | 69.01 | 67.39 | 67.36 | 67.30 | 67.00 | 66.97 | 67.18 | 67.05 | 3 | | 4 | 68.52 | 70.96 | 71.84 | 70.62 | 69.14 | 67.38 | 67.29 | 67.30 | 67.02 | 66.95 | 67.21 | 67.04 | 4 | | 5 | 68.53 | 70.97 | 71.86 | 70.69 | 69.12 | 67.37 | 67.29 | 67.26 | 67.02 | 67.05 | 67.22 | 67.06 | 5 | | 6 | 67.53 | 70.96 | 71.89 | 70.69 | 69.16 | 67.35 | 67.28 | 67.28 | 67.03 | 67.05 | 67.22 | 67.05 | 6 | | 7 | 68.45 | 70.95 | 71.83 | 70.60 | 69.16 | 67.37 | 67.28 | 67.26 | 66.96 | 66.96 | 67.21 | 67.06 | 7 | | 8 | 68.51 | 70.96 | 71.84 | 69.98 | 69.14 | 67.34 | 67.28 | 67.20 | 66.99 | 66.98 | 67.21 | 67.07 | 8 | | 9 | 68.51 | 70.97 | 71.83 | 69.54 | 68.70 | 67.34 | 67.29 | 67.11 | 67.00 | 67.04 | 67.21 | 67.14 | 9 | | 10 | 68.52 | 70.95 | 71.64 | 69.55 | 68.97 | 67.35 | 67.34 | 67.09 | 66.97 | 67.04 | 67.21 | 67.24 | 10 | | `ii | 68.53 | 70.99 | 71.67 | 69.20 | 69.15 | 67.34 | 67.30 | 67.02 | 66 • 93 | 67.02 | 67.21 | 67.07 | 11 | | 12 | 68.54 | 71.02 | 71.66 | 69.14 | 69.18 | 67.37 | 67.29 | 67.02 | 67.12 | 67.01 | 67.21 | 67.03 | 12 | | 13 | 67.50 | 71.03 | 71.73 | 69.38 | 69.41 | 67.35 | 67.29 | 67.04 | 67.17 | 66.95 | 67.21 | 67.01 | 13 | | 14 | 68.45 | 71.05 | 71.45 | 69.38 | 69.20 | 67.35 | 67.29 | 67.01 | 67.09 | 66.94 | 67.21 | 67.00 | 14 | | 15 | 68.71 | 71.15 | 71-47 | 69.43 | 69.15 | 67.34 | 67.35 | 67.03 | 66.96 | 66.99 | 67.21 | 67.05 | 15 | | 16 | 69.63 | 71.38 | 71.59 | 69.26 | 68.77 | 67.33 | 67.31 | 67.05 | 66.92 | 67.12 | 67.25 | 67.11 | 16 | | 17 | 70.09 | 71.37 | 71.50 | 69.27 | 69.00 | 67.34 | 67.30 | 67.05 | 67.30 | 66.97 | 67.23 | 67.09 | 17 | | 18 | 70.10 | 71.53 | 71.39 | 69.15 | 68.91 | 67.37 | 67.42 | 67.04 | 67.04 | 66.99 | 67.23 | 67.02 | 18 | | 19 | 70.57 | 71.72 | 71.24 | 69.12 | 68.49 | 67.33 | 67.31 | 67.23 | 66.96 | 66.88 | 67.22 | 67.02 | 19 | | 20 | 70.82 | 71.80 | 71.25 | 69.04 | 68.48 | 67.34 | 67.29 | 67.09 | 66.97 | 66.86 | 67.43 | 67.00 | 20 | | 21 | 71.26 | 71.67 | 71.21 | 69.51 | 68.50 | 67.34 | 67.34 | 67.04 | 66.95 | 66.85 | 67.20 | 67.00 | 21 | | 22 | 71.29 | 71.85 | 71.23 | 69.40 | 68.49 | 67.36 | 67.33 | 67.01 | 66.95 | 66.91 | 67.12 | 67.02 | 22 | | 23 | 71.27 | 71.91 | 71.45 | 69.22 | 68.37 | 67.34 | 67.30 | 67.01 | 67.00 | 66.93 | 67.05 | 67.10 | 23 | | 24 | 71.08 | 71.90 | 71.83 | 69.15 | 68.51 | 67.35 | 67.29 | 67.01 | 67.08 | 67.11 | 67.04 | 67.15 | 24 | | 25 | 70.48 | 71.87 | 71.75 | 69.12 | 68.71 | 67.34 | 67.29 | 67.01 | 67.01 | 67.15 | 67.30 | 67.13 | 25 | | 26 | 70.51 | 71.92 | 71.76 | 68.94 | 68.13 | 67.42 | 67.29 | 67.05 | 66 • 94 | 66.91 | 67.10 | 67.05 | 26 | | 27 | 70.30 | 72.01 | 70.96 | 69.03 | 67.54 | 67.34 | 67.29 | 67.05 | 66.93 | 66.86 | 67.04 | 67.04 | 27 | | 28 | 70.55 | 72.18 | 70.94 | 69.16 | 67.65 | 67.40 | 67.29 | 67.03 | 66.93 | NF | 67.03 | 67.02 | 28 | | 29 | 70.60 | 72.16 | 70.82 | 69.16 | 67.56 | 67.34 | 67.29 | 67.03 | 66.93 | 66.89 | 67.03 | 67.03 | 29 | | 30 | 70.62 | 72.22 | 70.71 | 69.41 | | 67.32 | 67.30 | 67.03 | 66.93 | 66.95 | 67.03 | 66.98 | 30 | | 31 | 70.62 | | 71.05 | 69.15 | | 67.34 | | 67.03 | | NF | 67.02 | | 31 | #### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | E — ESTIMATED | 12-8-63 | 2020 | 72.31 | | | | | | | | | | | NR - NO RECORD | | | | | | | | | | | | | | NE - NO FLOW | | | | | | | | | 1 | | | | | | LOCATION | V | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|--------|-----------|-------|------------------------------|-------------|------|-------|------------|-------| | LATITUDE | LONGITUOE | 1/4 SEC. T. & R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PEF | 3100 | ZERO
ON | REE | | CATTIONE | LONGITODE | M. O. B. B. M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | ТО | GAGE | DATUM | | 37 39 59 | 120 27 40 | NW20 35 14E | 48200 | 88.0 | | OCT 36-SEP 60
OCT 61-DATE | | 1937 | | 0.00 | uses | Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights. DAILY MEAN GAGE HEIGHT WATER YEAR STATION NO. STATION NAME 1964 804165 TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE (IN FEET) | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|--------|--------|---------|---------|---------|------|--------|-----| | 1 | 8.89 | 11.58 | 13.09 | 11.73 | 9.95 | 8.44 | 8.40 | 8.46 | 8.53 | 8.65 | 0.69 | 8.71 | 1 | | 2 | 9.61 | 11.71 | 13.11 | 11.77 | 9.83 | 8.40 | 8.38 | 8 - 46 | 8.58 | 8.65 | 8.70 | 8.68 | 2 | | 3 | 9.68 | 11.71 | 12.72 | 11.22 | 9.78 | 8 • 35 | 8.36 | 8.49 | 8.57 | 8.64 | 8.70 | 8.68 | 3 | | 4 | 9.68 | 11.73 | 12.68 | 11.43 | 9.91 | 0.31 | 8.39 | 8.51 | 8.60 | 8.64 | 8.70 | 8.70 | 4 | | 5 | 9.68 | 11.76 | 12.70 | 11.32 | 9.90 | 8.31 | 8.39 | 8.51 | 8.62 | 8.67 | 8.70 | 8.68 | 5 | | 6 | 9.36 | 11.77 | 12.72 | 11.31 | 9.91 | 8.32 | 8.37 | 8.54 | 8 . 62 | 8.68 | 8.71 | 8.70 | 6 | | 7 | 9.14 | 11.76 | 12.68 | 11.22 | 9.92 | 8.32 | 8.34 | 8.52 | 8.63 | 8.68 | 8.75 | 8.71 | 7 | | 8 | 9.64 | 11.76 | 12.68 | 11.02 | 9.90 | 8.30 | 8.34 | 8.52 | 8 . 65 | 8.67 | 8.76 | 8.69 | 8 | | 9 | 9.66 | 11.77 | 12.68 | 10.41 | 9.70 | 8.29 | 8 • 34 | 8.53 | 8.67 | 8.67 | 8.77 | 8.68 | 9 | | 10 | 9.67 | 11.76 | 12.43 | 10.40 | 9.68 | 8 • 29 | 8.35 | 8.51 | 8.65 | 8.67 | 8.75 | 8.66 | 10 | | 11 | 9.73 | 11.80 | 12.42 | 10.26 | 9.86 | 8.28 | 8 • 36 | 8.49 | 0.67 | 8.65 | 8.75 | 8.67 | 11 | | 12 | 9.68 | 11.84 | 12.44 | 10.06 | 9.86 | 6.33 | 8.38 | 8.46 | 8 • 69 | 8.65 | 8.74 | 8.67 | 12 | | 13 | 9.36 | 11.86 | 12.53 | 10.05 | 9.97 | 8.34 | 8.40 | 8 • 45 | 8 • 68 | 8.65 | 8.72 | 8.67 | 13 | | 14 | 9.15 | 11.88 | 12.24 | 10.24 | 10.02 | 8.31 | 8.40 | 8.43 | 8 . 68 | 8.67 | 8.76 | 8.67 | 14 | | 15 | 9.71 | 11.97 | 12.25 | 10.23 | 9.91 | 8.31 | 8 • 38 | 8 • 45 | 8.69 | 8.67 | 8.78 | 8.64 | 15 | | 16 | 10.37 | 12.23 | 12.33 | 10.16 | 9.66 | 8.31 | 8.40 | 8.46 | 8.69 | 8.67 | 8.79 | 6.65 | 16 | | 17 | 11.03 | 12.22 | 12.29 | 10.12 | 9.68 | 8.30 | 8.40 | 8.47 | 8.68 | 8.66 | 8.79 | 8 • 65 | 17 | | 18 | 11.03 | 12.28 | 12.16
| 10.10 | 9.77 | 8.30 | 8.41 | 8.47 | 8 . 69 | 8.65 | 8.77 | 8.67 | 18 | | 19 | 11.28 | 12.56 | 12.04 | 9.99 | 9.41 | 8.31 | 8.48 | 8 - 46 | 8.71 | 8 • 65 | 8.77 | 8.68 | 19 | | 2D | 11.60 | 12.69 | 12.04 | 9.95 | 9.34 | 8.30 | 8 • 43 | 8.47 | 6.70 | 8 • 6 9 | 8.80 | 8.67 | 20 | | 21 | 12.00 | 12.52 | 12.06 | 10.02 | 9.35 | 8.30 | 8.40 | 8.49 | 6.70 | 8.68 | 8.92 | 8.65 | 21 | | 22 | 12.09 | 12.73 | 12.03 | 10.34 | 9.34 | 8.33 | 8.39 | 8.52 | 8 - 65 | 8,68 | 8.82 | 8.65 | 22 | | 23 | 12.09 | 12.78 | 12-15 | 10.15 | 9.26 | 8.36 | 8.40 | 8.54 | 8 • 65 | 8.67 | 8.80 | 8.64 | 23 | | 24 | 12.05 | 12.77 | 12.59 | 10.05 | 9.23 | 8.35 | 8.40 | 6.53 | 8.66 | 8.68 | 8.78 | 8.64 | 24 | | 25 | 11.36 | 12.74 | 12.52 | 9.98 | 9.46 | 8.35 | 8.39 | 8.54 | 8 • 6 4 | 8 • 69 | 8.75 | 8.66 | 25 | | 26 | 11.37 | 12.78 | 12.65 | 9.92 | 9.36 | 8.35 | 8.38 | 8 • 5 4 | 8+64 | 8.70 | 8.73 | 8.70 | 26 | | 27 | 11.18 | 12.85 | 11.75 | 9.78 | 8.60 | 8.38 | 8.39 | 8 • 5 4 | 8.65 | 8.70 | 6.73 | 8.69 | 27 | | 28 | 11.34 | 13.05 | 11.73 | 9.94 | 8.48 | 8.36 | 8 • 42 | 8 • 53 | 8 • 66 | 8.70 | 8.73 | 8.66 | 28 | | 29 | 11.42 | 13.02 | 11.62 | 9.97 | 8.56 | 8.39 | 8.39 | 8.52 | 8 • 64 | 8.69 | 8.72 | 8.67 | 29 | | 30 | 11.41 | 13.09 | 11.52 | 10.03 | | 8.37 | 8.41 | 8.52 | 8 • 65 | 8.70 | 8.72 | 8.65 | 3D | | 31 | 11.43 | | 11.75 | 10.09 | | 8.36 | | 8.53 | | 8.69 | 8.73 | | 31 | #### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 12-2-63 | 2030 | 13.12 | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|--------------------|------------------|-----------|-----------|-----------|---|----------|--------------|------------|---------|----------------| | LATITUOE | LATITUDE LONGITUDE | 1/4 SEC. T. & R. | OF RECORO | | DISCHARGE | GAGE HEIGHT | PER | RIOD | 2ERO
ON | REF. | | | LATITODE | LONGITODE | M. O. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 38 08 | 120 37 03 | NW35 3S 12E | 49800 | 28.2 | 12- 8-50 | JUL 28-OCT 36
JAN 37-FEB 38
JUN 38-DATE | | 1930
1940 | 1940 | 106.20 | USCGS
USCGS | Station located at highway bridge, 7.5 mi. E of Waterford. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights. DAILY MEAN GAGE HEIGHT WATER YEAR STATION NO. STATION NAME 1964 804150 TUOLUMNE RIVER AT HICKMAN BRIDGE # (IN FEET) | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|---------|-------|-------|-------|-------|-------|---------|-------|--------|-------|-----| | 1 | 71.58 | 74.66 | 76.14 | 74.93 | 73.21 | 71.80 | 71.71 | 71.63 | 71.36 | 71.40 | 71.52 | 71.24 | 1 | | 2 | 72.37 | 74.80 | 76.17 | 74.98 | 73.08 | 71.76 | 71.70 | 71.66 | 71.38 | 71.42 | 71.53 | 71.21 | 2 | | 3 | 72.52 | 74.80 | 75.86 | 74.48 | 72.99 | 71.73 | 71.69 | 71.69 | 71.43 | 71.43 | 71.50 | 71.21 | 3 | | 4 | 72.55 | 74.79 | 75.80 | 74.72 | 73.21 | 71.70 | 71.72 | 71.68 | 71.42 | 71.42 | 71.43 | 71.25 | 4 | | s | 72.59 | 74.82 | 75.82 | 74.57 | 73.21 | 71.66 | 71.71 | 71.67 | 71.43 | 71.44 | 71.45 | 71.23 | 5 | | 6 | 72.50 | 74.84 | 75.86 | 74.53 | 73.21 | 71.69 | 71.69 | 71.71 | 71.43 | 71.46 | 71.45 | 71.24 | 6 | | 7 | 71.91 | 74.81 | 75.85 | 74.54 | 73.22 | 71.68 | 71.64 | 71.72 | 71.43 | 71.44 | 71.49 | 71.27 | 7 | | 8 | 72.52 | 74.82 | 75.82 | 74.47 | 73.21 | 71.68 | 71.63 | 71.70 | 71.46 | 71.45 | 71.52 | 71.28 | 8 | | 9 | 72.59 | 74.82 | 75.83 | 73.72 | 73.09 | 71.66 | 71.64 | 71.69 | 71.55 | 71.46 | 71.49 | 71.25 | 9 | | 10 | 72.59 | 74.80 | 75.60 | 73.68 | 72.83 | 71.64 | 71.61 | 71.67 | 71.48 | 71.47 | 71.44 | 71.27 | 10 | | -11 | 73.04 | 74.83 | 75.56 | 73.58 | 73.17 | 71.66 | 71.62 | 71.66 | 71.46 | 71.46 | 71.42 | 71.27 | 11 | | 12 | 73.06 | 74.88 | 75.60 | 73.30 | 73.16 | 71.66 | 71.62 | 71.61 | 71.47 | 71.44 | 71.41 | 71.29 | 12 | | 13 | 72.92 | 74.89 | 75.67 | 73.27 | 73.28 | 71.68 | 71.65 | 71.59 | 71.46 | 71.44 | 71.42 | 71.29 | 13 | | 14 | 72.10 | 74.90 | 75.44 | 73.54 | 73.42 | 71.68 | 71.64 | 71.56 | 71 • 45 | 71.43 | 71.44 | 71.30 | 14 | | 15 | 72.69 | 75.00 | 75.40 | 73.50 | 73.25 | 71.66 | 71.60 | 71.53 | 71.46 | 71.47 | 71.46 | 71.29 | 15 | | 16 | 73.15 | 75.19 | 75.48 | 73.46 | 73.04 | 71.66 | 71.60 | 71.54 | 71.49 | 71.49 | 71.50 | 71.28 | 16 | | 17 | 74.01 | 75 • 21 | 75.43 | 73.39 | 72.93 | 71.66 | 71.61 | 71.54 | 71.50 | 71.47 | 71.53 | 71.28 | 17 | | 18 | 74.06 | 75.23 | 75 • 34 | 73.37 | 73.14 | 71.64 | 71.61 | 71.50 | 71.50 | 71.45 | 71.49 | 71.28 | 18 | | 19 | 74.23 | 75+57 | 75.16 | 73.25 | 72.75 | 71.65 | 71.66 | 71.48 | 71.54 | 71.43 | 71.45 | 71.32 | 19 | | 20 | 74.66 | 75.74 | 75.16 | 73.22 | 72.62 | 71.66 | 71.66 | 71.48 | 71.50 | 71.48 | 71.49E | 71.33 | 20 | | 21 | 74.99 | 75.58 | 75.19 | 73.26 | 72.60 | 71.67 | 71.62 | 71.50 | 71.50 | 71.51 | 71.49E | 71.30 | 21 | | 22 | 75.12 | 75.77 | 75 - 15 | 73.72 | 72.60 | 71.69 | 71.60 | 71.51 | 71.47 | 71.47 | 71.52E | 71.29 | 22 | | 23 | 75.07 | 75.85 | 75.24 | 73.49 | 72.54 | 71.71 | 71.62 | 71.51 | 71.42 | 71.46 | 71.55E | 71.30 | 23 | | 24 | 75.08 | 75.87 | 75.75 | 73.34 | 72.48 | 71.70 | 71.60 | 71.53 | 71.39 | 71.49 | 71.58E | 71.27 | 24 | | 25 | 74.48 | 75.83 | 75.71 | 73.26 | 72.74 | 71.69 | 71.61 | 71.56 | 71.41 | 71.47 | 71.66E | 71.29 | 25 | | 26 | 74.50 | 75.86 | 75.65 | 73.20 | 72.80 | 71.69 | 71.59 | 71.56 | 71.38 | 71.50 | 71.19 | 71.32 | 26 | | 27 | 74.32 | 75.89 | 74.97 | 72.99 | 72.14 | 71.71 | 71.59 | 71.53 | 71.37 | 71.53 | 71.19 | 71.34 | 27 | | 28 | 74.34 | 76 - 10 | 74.96 | 73.21 | 72.18 | 71.70 | 71.59 | 71.53 | 71.38 | 71.52 | 71.23 | 71.35 | 28 | | 29 | 74.53 | 76.08 | 74.78 | 73.24 | 72.09 | 71.68 | 71.58 | 71.53 | 71.39 | 71.49 | 71.21 | 71.34 | 29 | | 30 | 74.50 | 76.14 | 74 • 69 | 73.24 | | 71.67 | 71.60 | 71.47 | 71.41 | 71.50 | 71.21 | 71.33 | 30 | | 31 | 74.51 | | 74.92 | 73.41 | | 71.66 | | 71.39 | | 71.54 | 71.24 | | 31 | #### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | E - ESTIMATED | 12-2-63 | 2100 | 76.18 | NR - NO RECORD | , | | NF - NO FLOW | | | | | | | | | | | | | | | LOCATION | | | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-------------------|------------------|--------|-----------|----------|---|-------------|------|-------|------------|-------| | LATITUOS | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | IOD | ZERO
ON | REF. | | LATITUDE | ATITUOE LONGITUDE | M. D. B. & M. | C.F,S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 37 38 10 | 120 45 14 | NW34 3S 11E | 59000 | 96.2 | 12~ 8-50 | JUL 32-OCT 36
JAN 37-MAR 37
JUL 37-FEB 38
JUL 38-DEC 38
MAR 39-DATE | | 1932 | | 0.00 | USCGS | Station located at Hickman-Waterford Road Bridge, immediately S of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 8D feet, USC & GS datum. In August 1964 this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford Road Bridge. ### DAILY MEAN GAGE HEIGHT WATER YEAR STATION NO. STATION NAME 1964 804130 DRY CREEK NEAR MODESTO (IN FEET) | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-----| | 1 | 68.40 | 67.73 | 67.73 | 67.64 | 67.96 | 67.64 | 68.38 | 68.82 | 68.13 | 68.13 | 67.98 | 68.64 | 1 | | 2 | 68.42 | 67.73 | 67.73 | 67.64 | 67.91 | 67.67 | 69.63 | 68.91 | 68.21 | 68.11 | 68.00 | 68.57 | 2 | | 3 | 68.48 | 67.73 | 67.71 | 67.63 | 67.84 | 67.70 | 68.37 | 68.94 | 68.15 | 67.99 | 68.07 | 68.48 | 3 | | 4 | 68.55 | 67.72 | 67.71 | 67.64 | 67.81 | 67.69 | 67.99 | 69.05 | 68.13 | 67.90 | 67.94 | 68.50 | 4 | | 5 | 68.76 | 67.74 | 67.71 | 67.64 | 67.77 | 67.78 | 67.94 | 68.89 | 68.10 | 67.90 | 67.93 | 68.28 | 5 | | 6 | 68.81 | 67.78 | 67.70 | 67.64 | 67.74 | 60.05 | 67.88 | 69.01 | 68.25 | 68.05 | 67.93 | 68.32 | 6 | | 7 | 68.72 | 67.77 | 67.71 | 67.64 | 67.72 | 68.46 | 67.89 | 68.93 | 68.19 | 67.98 | 67.87 | 68.31 | 7 | | 8 | 68.63 | 67.76 | 67.71 | 67.65 | 67.71 | 68.45 | 67.95 | 68.50 | 68.21 | 67.81 | 67.91 | 68.39 | 8 | | 9 | 68.64 | 67.77 | 67.70 | 67.63 | 67.73 | 68.62 | 68.21 | 68.27 | 68.33 | 67.85 | 68.07 | 68.46 | 9 | | 10 | 68.79 | 67.76 | 67.70 | 67.64 | 67.70 | 68.61 | 68.18 | 68.15 | 68.57 | 67.86 | 68.17 | 68.47 | 10 | | 11 | 69.30 | 67.75 | 67.70 | 67.62 | 67.67 | 68.45 | 68.23 | 68.17 | 68.26 | 68.00 | 68.06 | 68.52 | 11 | | 12 | 70.69 | 67.74 | 67.70 | 67.64 | 67.64 | 68.43 | 68.32 | 68.15 | 68.06 | 67.96 | 68.00 | 68.48 | 12 | | 13 | 69.56 | 67.74 | 67.70 | 67.64 | 67.66 | 68.34 | 68.30 | 68.19 | 68.15 | 67.93 | 67.92 | 68.32 | 13 | | 14 | 68.76 | 67.80 | 67.70 | 67.56 | 67.66 | 68.12 | 68.27 | 68.33 | 68.13 | 67.89 | 67.99 | 68.42 | 14 | | 15 | 68.47 | 67.96 | 67.70 | 67.64 | 67.69 | 67.96 | 68.52 | 68.21 | 68.15 | 67.R9 | 68.00 | 68.32 | 15 | | 16 | 68.39 | 67.97 | 67.69 | 67.64 | 67.69 | 67.76 | 66.55 | 68.04 | 68.30 | 67.82 | 67.93 | 68.41 | 16 | | 17 | 68.35 | 67.97 | 67.68 | 67.65 | 67.70 | 67.91 | 68.39 | 67.98 | 68.31 | 67.95 | 68.12 | 68.35 | 17 | | 16 | 68.19 | 67.95 | 67.68 | 67.65 | 67.72 | 67.90 | 68.51 | 68.C7 | 68.35 | 67.94 | 68.18 | 68.33 | 18 | | 19 | 68.08 | 67.96 | 67.68 | 67.64 | 67.71 | 67.89 |
68.54 | 68.09 | 68.35 | 67.92 | 68.07 | 68.44 | 19 | | 20 | 67.96 | 68.07 | 67.68 | 67.73 | 67.69 | 67.95 | 68.76 | 68.12 | 68.48 | 68.03 | 68.16 | 68.39 | 20 | | 21 | 67.68 | 68.28 | 67.66 | 67.97 | 67.68 | 68.11 | 68.64 | 68.14 | 68.40 | 67.95 | 68.28 | 68.35 | 21 | | 22 | 67.82 | 68 - 22 | 67.66 | 70.15 | 67.71 | 68.45 | 68.70 | 66.12 | 68.30 | 68.10 | 68.17 | 68.41 | 22 | | 23 | 67.79 | 68.00 | 67.66 | 74.11 | 67.69 | 69.06 | 68.73 | 68.16 | 68.15 | 67.94 | 68.21 | 68.36 | 23 | | 24 | 67.79 | 68.01 | 67.66 | 70.57 | 67.68 | 68.53 | 68.79 | 68.22 | 68.11 | 67.94 | 68.22 | 68.44 | 24 | | 25 | 67.79 | 68.15 | 67.67 | 69.43 | 67.66 | 68.21 | 68 • 82 | 68.19 | 68.15 | 67.97 | 68.04 | 68.45 | 25 | | 26 | 67.75 | 67.97 | 67.67 | 68.84 | 67.64 | 67.97 | 68.87 | 68.17 | 68.07 | 67.94 | 67.97 | 68.44 | 26 | | 27 | 67.71 | 67.86 | 67.66 | 68.51 | 67.60 | 67.86 | 68.99 | 68-15 | 68.03 | 67.96 | 68.10 | 68.39 | 27 | | 28 | 67.72 | 67.78 | 67.66 | 68.32 | 67.59 | 67.83 | 68.72 | 68.23 | 67.93 | 68.09 | 68.17 | 68.53 | 28 | | 29 | 67.73 | 67.75 | 67.65 | 68.18 | 67.67 | 67.82 | 68.48 | 68.21 | 68.02 | 68.05 | 68.17 | 68.65 | 29 | | 30 | 67.74 | 67.74 | 67.66 | 68.10 | | 67.75 | 68.49 | 68.22 | 68.96 | 68.11 | 68.31 | 68.67 | 30 | | 31 | 67.74 | | 67.66 | 68.04 | | 67.83 | | 68.20 | | 68.04 | 68.48 | | 31 | #### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 1. | | | | | | | | | | | | | 1-23-64 | 0700 | 75.53 | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|---------------------------|--------|-----------|----------|-------------|-------------|------|-------|------------|-------| | LATITUDE | , and the | ONGITUDE 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO
ON | REF. | | CATITOOE | LONGITUDE | M.O.B.&M. | C.F.S. | GAGE HT. | DATE | 0.00. | ONLY | FROM | TO | GAGE | DATUM | | 37 39 26 | 120 55 19 | SE24 3S 9E | 7710 | 88.04 | 12-23-55 | MAR 41-DATE | | 1941 | | 0.00 | USCGS | Station located 0.1 mi. below Claus Road bridge, 4 mi. E. of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. Station is operated under a cooperative agreement between the Department of Water Resources and the Modesto Irrigation District. WATER YEAR STATION NO. STATION NAME 1964 804120 TUOLUMNE RIVER AT MODESTO | DAILY | MEAN | GAGE | HEIGHT | |-------|-------------|-------|--------| | | (IN | FEET) | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | 1 | 41.32 | 42.56 | 43.97 | 42.73 | 41.95 | 41.32 | 41.34 | 41.26 | 41.20 | 41.20 | 41.13 | 41.25 | 1 | | 2 | 41.44 | 42.65 | 43.99 | 42.70 | 41.91 | 41.28 | 41.33 | 41.28 | 41.20 | 41.20 | 41.12 | 41.23 | 2 | | 3 | 41.59 | 42.68 | 43.84 | 42.67 | 41.84 | 41.26 | 41.28 | 41.31 | 41.20 | 41.17 | 41.14 | 41.20 | 3 | | 4 | 41.64 | 42.67 | 43.52 | 42.50 | 41.88 | 41.25 | 41.27 | 41.34 | 41.20 | 41.19 | 41.11 | 41.21 | 4 | | 5 | 41.68 | 42.71 | 43.48 | 42.56 | 41.91 | 41.23 | 41.27 | 41.31 | 41.20 | 41.21 | 41.12 | 41.20 | 5 | | 6 | 41.71 | 42.71 | 43.52 | 42.53 | 41.91 | 41.26 | 41.26 | 41.34 | 41.23 | 41.21 | 41.12 | 41.18 | 6 | | 7 | 41.54 | 42.71 | 43.55 | 42.54 | 41.91 | 41.28 | 41.22 | 41.32 | 41.25 | 41.19 | 41.13 | 41.19 | 7 | | 8 | 41.52 | 42.70 | 43.50 | 42.50 | 41.91 | 41.29 | 41.24 | 41.28 | 41.25 | 41.14 | 41.15 | 41.20 | 8 | | 9 | 41.66 | 42.71 | 43.51 | 42.26 | 41.91 | 41.30 | 41.25 | 41.23 | 41.30 | 41.15 | 41.16 | 41.21 | 9 | | 10 | 41.67 | 42.71 | 43.42 | 42.12 | 41.76 | 41.30 | 41.23 | 41.22 | 41.28 | 41.15 | 41.16 | 41.24 | 10 | | 11 | 41.85 | 42.71 | 43.24 | 42.08 | 41.86 | 41.29 | 41.23 | 41.22 | 41.24 | 41.18 | 41.16 | 41.27 | 11 | | 12 | 42.07 | 42.73 | 43.26 | 41.96 | 41.90 | 41.36 | 41.25 | 41-20 | 41.20 | 41.16 | 41.13 | 41.27 | 12 | | 13 | 41.97 | 42.76 | 43.25 | 41.92 | 41.92 | 41.32 | 41.26 | 41.19 | 41.21 | 41.15 | 41.11 | 41.24 | 13 | | 14 | 41.72 | 42.78 | 43.26 | 42.00 | 42.00 | 41.28 | 41.26 | 41.20 | 41.21 | 41.15 | 41.13 | 41.25 | 14 | | 15 | 41.66 | 42.84 | 43.04 | 42.00 | 41.95 | 41.28 | 41.27 | 41.20 | 41.22 | 41.14 | 41.14 | 41.25 | 15 | | 16 | 41.80 | 42.92 | 43.06 | 42.02 | 41.90 | 41.27 | 41.27 | 41.19 | 41.24 | 41.14 | 41.14 | 41.22 | 16 | | 17 | 42.07 | 43.05 | 43.17 | 41.97 | 41.79 | 41.25 | 41.25 | 41.17 | 41.26 | 41.15 | 41.16 | 41.20 | 17 | | 18 | 42.24 | 43.05 | 43.09 | 41.96 | 41.87 | 41.24 | 41.25 | 41.18 | 41.26 | 41.16 | 41.17 | 41.20 | 18 | | 19 | 42.25 | 43.20 | 42.96 | 41.92 | 41.81 | 41.26 | 41.26 | 41.16 | 41.26 | 41.17 | 41.15 | 41.21 | 19 | | 20 | 42.49 | 43.47 | 42.91 | 41.90 | 41.67 | 41.25 | 41.30 | 41.17 | 41.27 | 41.18 | 41.15 | 41.23 | 20 | | 21 | 42.60 | 43.40 | 42.92 | 41.93 | 41.66 | 41.27 | 41.27 | 41.19 | 41.27 | 41.16 | 41.18 | 41.21 | 21 | | 22 | 42.82 | 43.42 | 42.90 | 42.17 | 41.65 | 41.33 | 41.26 | 41.19 | 41.25 | 41.20 | 41.20 | 41.22 | 22 | | 23 | 42.86 | 43.60 | 42.89 | 42.63 | 41.63 | 41.39 | 41.26 | 41.20 | 41.22 | 41.19 | 41.19 | 41.23 | 23 | | 24 | 42.87 | 43.63 | 43.21 | 42.21 | 41.58 | 41.36 | 41.28 | 41.21 | 41.22 | 41.16 | 41.18 | 41.23 | 24 | | 25 | 42.73 | 43.60 | 43.44 | 42.05 | 41.61 | 41.32 | 41.27 | 41.22 | 41.20 | 41.17 | 41.15 | 41.23 | 25 | | 26 | 42.49 | 43.59 | 43.49 | 41.98 | 41.70 | 41.29 | 41.28 | 41.19 | 41.19 | 41.19 | 41.14 | 41.25 | 26 | | 27 | 42.48 | 43 • 62 | 43.16 | 41.89 | 41.57 | 41.28 | 41.30 | 41.19 | 41.20 | 41.18 | 41.17 | 41.24 | 27 | | 28 | 42.37 | 43.76 | 42.77 | 41.91 | 41.33 | 41.27 | 41.26 | 41.22 | 41.21 | 41.20 | 41.17 | 41.31 | 28 | | 29 | 42.47 | 43.89 | 42.70 | 41.94 | 41.28 | 41.25 | 41.24 | 41.20 | 41.22 | NR | 41.17 | 41.34 | 29 | | 30 | 42.53 | 43.94 | 42.65 | 41.94 | | 41.25 | 41.23 | 41.20 | 41.20 | NR | 41.17 | 41.34 | 30 | | 31 | 42.53 | | 42.65 | 42.02 | | 41.27 | | 41.21 | | NR | 41.22 | | 31 | #### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 12-2-63 | 2400 | 44.02 | | | | | | | | | | | Į. | | | | | | | | | | | | | | LOCATIO | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|--------------------|----------------|-----------|-----------|-----------|------------------------------|------------------|------|-------|---------|-------| | | LATITUDE LONGITUDE | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO | REF. | | | LATITUDE | LONGITUDE | M, D, B, B, M, | UISCHARGE | τo | GAGE | DATUM | | | | | | | 37 37 38 | 120 59 20 | SW33 3S 9E | 57000 | 69.19 | 12- 9-50 | JAN 95-DEC 96
MAR 40-DATE | 78- 84
91- 94 | 1940 | | 0.00 | USCGS | Station located at U.S. Highway 99 Bridge. Records furn. by U.S.G.S. Flow records are published by the U.S.G.S. report "Surface Water Records of California." # DAILY MEAN GAGE HEIGHT (IN FEET) WATER YEAR STATION NO. STATION NAME 1964 804105 TUOLUMNE RIVER AT TUOLUMNE CITY | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|---------|---------|-------|---------|---------|-------|-------|---------|-------|-------|-------|-------|-----| | 1 | 24.09 | 27.53 | 29.79 | 28.00 | 25.66 | 23.98 | 23.73 | 23.56 | 23.37 | 23.32 | 23.11 | 23.51 | 1 | | 2 | 24.11 | 27.72 | 29.80 | 27.94 | 25.50 | 23.93 | 23.63 | 23.60 | 23.30 | 23.30 | 23.13 | 23.47 | 2 | | 3 | 24.54 | 27.86 | 29.82 | 26.00 | 25.36 | 23.88 | 23.75 | 23.63 | 23.34 | 23.31 | 23.10 | 23.38 | 3 | | 4 | 24.76 | 27.89 | 29.40 | 27.39 | 25.30 | 23.85 | 23.71 | 23.59 | 23.31 | 23.30 | 23.06 | 23.33 | 4 | | 5 | 24.85 | 27.92 | 29.32 | 27.56 | 25.46 | 23.81 | 23.72 | 23.68 | 23.33 | 23.29 | 23.08 | 23.39 | 5 | | 6 | 24.99 | 27.95 | 29.35 | 27.46 | 25.46 | 23.79 | 23.73 | 23.71 | 23.30 | 23.29 | 23.02 | 23.37 | 6 | | 7 | 24.85 | 27.96 | 29.40 | 27.56 | 25.46 | 23.85 | 23.67 | 23.71 | 23.41 | 23.30 | 23.00 | 23.32 | 7 | | 8 | 24.43 | 27.93 | 29.35 | 27.40 | 25 • 47 | 23.87 | 23.64 | 23.66 | 23.45 | 23.25 | 23.07 | 23.27 | 8 | | 9 | 24.82 | 27.94 | 29.34 | 27.01 | 25.42 | 23.86 | 23.59 | 23.56 | 23.54 | 23.14 | 23.15 | 23.30 | 9 | | 10 | 24.95 | 27.95 | 29.31 | 26.38 | 25.24 | 23.88 | 23.55 | 23.49 | 23.51 | 23.15 | 23.12 | 23.35 | 10 | | 11 | 25.34 | 27.94 | 29.05 | 26 • 24 | 25.17 | 23.85 | 23.52 | 23.46 | 23.48 | 23.16 | 23.11 | 23.38 | 11 | | 12 | 25.94 | 27.96 | 29.00 | 26.00 | 25.40 | 23.94 | 23.55 | 23.44 | 23.38 | 23.16 | 23.12 | 23.37 | 12 | | 13 | 26.02 | 26.01 | 29.00 | 25.79 | 25.42 | 23.94 | 23.53 | 23.41 | 23.36 | 23.13 | 23.11 | 23.42 | 13 | | 14 | 25 • 68 | 28.05 | 29.07 | 25.82 | 25.58 | 23.80 | 23.52 | 23.34 | 23.40 | 23.13 | 23.14 | 23.35 | 14 | | 15 | 25.13 | 28 • 15 | 26.76 | 25.94 | 25.60 | 23.81 | 23.51 | 23.35 | 23.38 | 23.07 | 23.22 | 23.42 | 15 | | 16 | 25.37 | 28.23 | 28.70 | 25.93 | 25.47 | 23.73 | 23.52 | 23.36 | 23.42 | 23.02 | 23.28 | 23.48 | 16 | | 17 | 25.82 | 28.47 | 28.82 | 25.86 | 25.20 | 23.68 | 23.51 | 23.40 | 23.44 | 23.02 | 23.17 | 23.44 | 17 | | 18 | 26.50 | 28.51 | 26.72 | 25.79 | 25.20 | 23.58 | 23.50 | 23.40 | 23.43 | 23.05 | 23.13 | 23.48 | 18 | | 19 | 26.70 | 28.67 | 28.60 | 25.72 | 25.28 | 23.59 | 23.51 | 23.39 | 23.42 | 23.13 | 23.13 | 23.38 | 19 | | 20 | 27.10 | 29.12 | 26.43 | 25.63 | 24.80 | 23.69 | 23.54 | 23.36 | 23.42 | 23.14 | 23.12 | 23.43 | 2D | | 21 | 27.62 | 29.23 | 28.41 | 25.74 | 24.79 | 23.67 | 23.59 | 23.34 | 23.44 | 23.12 | 23.17 | 23.38 | 21 | | 22 | 28.20 | 29.07 | 28.41 | 25.00 | 24.75 | 23.78 | 23.58 | 23.31 | 23.41 | 23.09 | 23.25 | 23.33 | 22 | | 23 | 28.39 | 29.35 | 28.38 | 27.16 |
24.74 | 23.89 | 23.58 | 23.34 | 23.37 | 23.17 | 23.27 | 23.34 | 23 | | 24 | 28.40 | 29.42 | 28.62 | 26.75 | 24.64 | 23.89 | 23.58 | 23.35 | 23.28 | 23.11 | 23.24 | 23.31 | 24 | | 25 | 28.30 | 29.40 | 29.14 | 26.02 | 24.51 | 23.82 | 23.53 | 23 • 35 | 23.27 | 23.09 | 23.20 | 23.35 | 25 | | 26 | 27.53 | 29.37 | 29.17 | 25.78 | 24.81 | 23.78 | 23.52 | 23.30 | 23.27 | 23.12 | 23.17 | 23.37 | 26 | | 27 | 27.43 | 29.41 | 29.14 | 25.58 | 24.76 | 23.75 | 23.62 | 23.28 | 23.30 | 23.10 | 23.18 | 23.38 | 27 | | 28 | 27.19 | 29.47 | 28.22 | 25 • 42 | 24.21 | 23.73 | 23.59 | 23.30 | 23.30 | 23.04 | 23.23 | 23.35 | 28 | | 29 | 27.32 | 29.70 | 28.06 | 25.55 | 23,99 | 23.72 | 23.55 | 23.31 | 23.29 | 22.98 | 23.20 | 23.48 | 29 | | 30 | 27.47 | 29.72 | 27.65 | 25.57 | | 23.69 | 23.52 | 23.36 | 23.34 | 23.02 | 23.24 | 23.63 | 3D | | 31 | 27.49 | | 27.75 | 25.62 | | 23.64 | | 23.38 | | 23.06 | 23.36 | | 31 | #### CREST STAGES | | DATE | TIME | STAGE DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|----------|------|---------------|------|-------|---------|------|-------|------|------|-------| | E - ESTIMATED | 10-24-63 | 1700 | 28.60 1-23-64 | 1800 | 27.64 | 7-30-64 | 1400 | 22.99 | | | | | | 12- 1-63 | 0800 | 29.86 2-27-64 | 0700 | 24.90 | | | ļ | | | | | NR - NO RECORD | 12-27-63 | 0300 | 28.50 5- 7-64 | 0600 | 23.76 | NF - NO FLOW | | | | | | | | | | | | | | LOCATIO | N | MAXI | MUM DISCH | HARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |----------|------------------------------------|------------|-----------|-----------|----------|-----------|-------------|---------------|------|----------------------|-----------------------| | ATITURE | ATITUDE LONGITUDE 1/4 SEC. T. & R. | | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.B.M. | C.F.S, | GAGE HT. | OATE | | ONLY | FROM | то | GAGE | DATUM | | 37 36 12 | 121 07 50 | NW 7 45 8E | | 46.65 | 12- 9-50 | 30-DATE | | 1960
1960 | 1959 | 0.00
0.00
3.50 | USED
USCGS
USED | Station located at highway bridge, 3.35 mi. above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Records furn. by City of San Francisco. #### TARLE R-5 (Cont.) | TABLE B-5 (Cont.) | WATER YEAR | STATION NO. | STATION NAME | |------------------------|------------|-------------|---------------------------------------| | DAILY MEAN GAGE HEIGHT | 1964 | B07040 | SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE | | HAT CECTA | | | | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----| | 1 | 15.20 | 17.36 | 19.14 | 17.88 | 16.56 | 14.00 | 14.42 | 13.91 | 13.93 | 13.47 | 12.97 | 14.36 | 1 | | 2 | 15.11 | 17.31 | 19.17 | 17.89 | 16.45 | 14.00 | 14.53 | 14.04 | 13.77 | 13.47 | 13.02 | 14.33 | 2 | | 3 | 15.18 | 17.42 | 19.16 | 17.93 | 16.38 | 13.87 | 14.44 | 14.11 | 13.77 | 13.51 | 13.08 | 14.28 | 3 | | 4 | 15.44 | 17.45 | 18.93 | 17.70 | 16.29 | 13.79 | 14.20 | 14.25 | 13.65 | 13.52 | 13.14 | 14.12 | 4 | | 5 | 15.76 | 17.50 | 18.74 | 17.65 | 16.36 | 13.68 | 14.19 | 14.32 | 13.62 | 13.53 | 13.02 | 13.98 | 5 | | 6 | 16.28 | 17.58 | 18.68 | 17.65 | 16.37 | 13.66 | 14.11 | 14.46 | 13.55 | 13.62 | 12.97 | 14.06 | 6 | | 7 | 16.82 | 17-58 | 18.68 | 17.72 | 16.34 | 13.84 | 13.92 | 14.35 | 13.60 | 13.44 | 12.88 | 14.13 | 7 | | 8 | 17.15 | 17.54 | 18.66 | 17.80 | 16.29 | 13.86 | 13.92 | 14.27 | 13.75 | 13.30 | 12.90 | 14.01 | 8 | | 9 | 16.67 | 17.56 | 18.66 | 17.81 | 16.06 | 13.88 | 13.87 | 14.11 | 14.16 | 13.22 | 13.01 | 13.92 | 9 | | 10 | 16.48 | 17.56 | 18.69 | 17.49 | 15.88 | 13.90 | 13.70 | 13.99 | 14.40 | 13.16 | 13.14 | 13.80 | 10 | | 111 | 16.72 | 17.53 | 18.53 | 17.16 | 15.66 | 13.86 | 13.67 | 13.94 | 14.42 | 13.14 | 12.97 | 13.79 | 31 | | 12 | 17.44 | 17.53 | 18.44 | 17.02 | 15.75 | 13.97 | 13.77 | 13.81 | 14.43 | 13.14 | 12.99 | 13.83 | 12 | | 13 | 17.96 | 17.54 | 18.45 | 16.80 | 15.75 | 14.22 | 13.71 | 13.69 | 14.26 | 13.18 | 13.03 | 13.92 | 13 | | 14 | 18.42 | 17.59 | 18.48 | 16.72 | 15.76 | 14.18 | 13.65 | 13.61 | 14.22 | 13.03 | 12.96 | 13.96 | 34 | | 15 | 18.54 | 17.66 | 18.38 | 16.80 | 15.83 | 14.09 | 13.64 | 13.55 | 14.20 | 12.89 | 13.10 | 13.80 | 15 | | 16 | 17.98 | 17.72 | 18.24 | 16.77 | 15.72 | 14.06 | 13.74 | 13.53 | 13.99 | 12.73 | 13.24 | 13.75 | 16 | | 17 | 17.77 | 17.86 | 18.27 | 16.72 | 15.61 | 13.94 | 13.75 | 13.57 | 13.82 | 12.97 | 13.50 | 13.74 | 17 | | 18 | 18.02 | 17.96 | 18.27 | 16.48 | 15.45 | 13.96 | 13.74 | 13.63 | 13.67 | 13.10 | 13.57 | 13.80 | 18 | | 19 | 18.07 | 18.10 | 18.17 | 16.39 | 15.48 | 14.06 | 13.81 | 13.80 | 13.60 | 13.25 | 13.59 | 13.77 | 19 | | 20 | 18.02 | 18.44 | 18.06 | 16.32 | 15.24 | 14.11 | 14.08 | 13.83 | 13.49 | 13.26 | 13.43 | 13.92 | 20 | | 21 | 18.65 | 18.63 | 18.16 | 16.45 | 15.00 | 13.98 | 14.06 | 13.93 | 13.52 | 13.22 | 13.31 | 13.95 | 21 | | 22 | 19.18 | 18.58 | 18.24 | 16.66 | 14.90 | 14.16 | 14.04 | 13.91 | 13.61 | 13.17 | 13.38 | 14.12 | 22 | | 23 | 19.07 | 18.73 | 18.23 | 17.44 | 14.86 | 14.64 | 14.04 | 13.85 | 13.48 | 13.20 | 13.59 | 14.33 | 23 | | 24 | 18.88 | 18.90 | 18.28 | 17.73 | 14.76 | 14.77 | 13.96 | 13.78 | 13.30 | 13.03 | 13.79 | 14.66 | 24 | | 25 | 18.65 | 18.91 | 18.66 | 17.24 | 14.63 | 14.80 | 14.00 | 13.96 | 13.31 | 12.97 | 13.79 | 15.04 | 25 | | 26 | 18.09 | 18.89 | 18.79 | 16.97 | 14.66 | 14.73 | 14.13 | 13.98 | 13.27 | 13.12 | 13.70 | 15.09 | 26 | | 27 | 17.70 | 18.92 | 18.88 | 16.76 | 14.66 | 14.63 | 14.19 | 13.97 | 13.32 | 13.15 | 13.62 | 15.25 | 27 | | 28 | 17.49 | 18.93 | 18.33 | 16.56 | 14.33 | 14.54 | 14.14 | 13.89 | 13.49 | 13.14 | 13.74 | 15.31 | 28 | | 29 | 17.34 | 19.06 | 18.07 | 16.55 | 13.97 | 14.46 | 13.98 | 13.98 | 13.52 | 12.95 | 13.75 | 15.10 | 29 | | 30 | 17.44 | 19.12 | 17.91 | 16.51 | | 14.46 | 13.90 | 14.06 | 13.56 | 12.81 | 13.91 | 15.13 | 30 | | 31 | 17.45 | | 17.80 | 16.52 | | 14.33 | | 13.96 | | 12.75 | 14.13 | | 31 | #### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|----------|------|-------|------|------|-------|------|------|-------|------|------|-------| | E - ESTIMATED | 10-22-63 | 1950 | 19.25 | | | | | | | | | | | NR - NO RECORD | 12- 3-63 | 1400 | 19.18 | | | | | | | | | | | NR - NO RECORD | | | | | | | | | | | | | | NF - NO FLOW | | | | | | | | | | | | | | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD C | F RECORD | DATUM OF GAGE | | | | |----------|------------------------------------|------------|-----------|-----------|-----------|---------------|------------------------------|----------------------|------------|----------------------|-----------------------| | | ATTITUDE LONGITUDE 1/4 SEC. T. & R | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIOD | | ZERO
ON | REF. | | | LATITUDE | ATITUDE LONGITUDE M.D.B.B.M. | | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | то | GAGE | DATUM | | 37 38 28 | 121 13 37 | SW29 3S 7E | | 39.8 | 12-9-50 | JAN 50-MAR 52 | SEP 43-DEC 49
APR 52-DATE | 1943
1959
1959 | 1959 | 0.00
0.00
3.41 | USED
USCGS
USED | Station located at State Highway 132 Bridge, 13 mi. W of Modesto. # DAILY MEAN GAGE HEIGHT (IN FEET) WATER YEAR STATION NO. STATION NAME 1964 B03175 STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|------|--------|---------|------|------|------|------|------|------|------|------|-------|-----| | 1 | 1.85 | 2.01 | 2.07 | 3.60 | 3.67 | 1.81 | 2.15 | 1.44 | 1.26 | 1.24 | 1.25 | 1.51 | 1 | | 2 | 1.85 | 2.00 | 2.29 | 3.61 | 3.67 | 1.75 | 2.11 | 1.43 | 1.25 | 1.21 | 1.27 | 1.47 | 2 | | 3 | 1.84 | 1.99 | 2.10 | 3.63 | 3.66 | 1.74 | 1.97 | 1.46 | 1.27 | 1.20 | 1.30 | 1.48 | 3 | | 4 | 1.85 | 2.00 | 2.11 | 3.64 | 3.67 | 1.75 | 1.95 | 1.46 | 1.23 | 1.22 | 1.31 | 1.40 | 4 | | 5 | 1.86 | 2.03 | 2 • 1 1 | 3.64 | 3.68 | 1.76 | 1.94 | 1.40 | 1.19 | 1.34 | 1.36 | 1.44 | 5 | | 6 | 1.64 | 2.04 | 2.11 | 3.67 | 3.67 | 1.79 | 1.95 | 1.47 | 1.20 | 1.29 | 1.39 | 1.37 | 6 | | 7 | 1.84 | 2.07 | 2.10 | 3.66 | 3.18 | 1.82 | 1.99 | 1.46 | 1.27 | 1.23 | 1.48 | 1.32 | 7 | | s l | 1.87 | 2.08 | 2.11 | 3.66 | 2.18 | 1.81 | 2.05 | 1.34 | 1.29 | 1.23 | 1.37 | 1.32 | 8 | | 9 | 1.86 | 2.05 | 2.13 | 3.66 | 2.16 | 1.81 | 1.98 | 1.34 | 1.34 | 1.20 | 1.35 | 1.33 | 9 | | 10 | 1.65 | 2.06 | 2.11 | 3.65 | 2.11 | 1.82 | 1.78 | 1.32 | 1.28 | 1.20 | 1.34 | 1.36 | 10 | | 11 | 2.03 | 2.04 | 2.08 | 3.64 | 2.09 | 1.82 | 1.75 | 1.27 | 1.22 | 1.24 | 1.38 | 1.37 | 11 | | 12 | 3.30 | 2.05 | 2.05 | 3.64 | 2.13 | 1.80 | 1.80 | 1.34 | 1.21 | 1.28 | 1.40 | 1.36 | 12 | | 13 | 3.17 | 2.05 | 2.09 | 3.63 | 2.09 | 1.79 | 1.82 | 1.27 | 1.22 | 1.22 | 1.42 | 1.40 | 13 | | 14 | 3.09 | 2.06 | 2.10 | 3.61 | 1.99 | 1.77 | 1.69 | 1.29 | 1.29 | 1.20 | 1.47 | 1.36 | 14 | | 15 | 3.13 | 2.07 | 2.03 | 3.62 | 1.87 | 1.77 | 1.51 | 1.30 | 1.26 | 1.24 | 1.44 | 1.35 | 15 | | 16 | 3.11 | 2.12 | 2.06 | 3.33 | 1.84 | 1.78 | 1.52 | 1.26 | 1.25 | 1.34 | 1.41 | 1.48 | 16 | | 17 | 3.12 | 2 • 05 | 2.09 | 2.60 | 1.62 | 1.79 | 1.44 | 1.28 | 1.24 | 1.27 | 1.42 | 1.36 | 17 | | 18 | 2.13 | 2 • 11 | 2.03 | 3.02 | 1.81 | 1.79 | 1.50 | 1.23 | 1.26 | 1.27 | 1.47 | 1.34 | 18 | | 19 | 1.84 | 2.06 | 2.99 | 3.01 | 1.81 | 1.79 | 1.50 | 1.21 | 1.31 | 1.24 | 1.40 | 1.34 | 19 | | 20 | 1.92 | 2 • 22 | 3.51 | 3.01 | 1.80 | 1.79 | 1.45 | 1.22 | 1.29 | 1.28 | 1.39 | 1.37 | 20 | | 21 | 1.96 | 2.09 | 3.51 | 3.53 | 1.80 | 1.80 | 1.46 | 1.26 | 1.30 | 1.24 | 1.39 | 1.37 | 21 | | 22 | 2.01 | 2.17 | 3.52 | 4.46 | 1.79 | 1.61 | 1.50 | 1.26 | 1.30 | 1.23 | 1.41 | 1.40 | 22 | | 23 | 2.04 | 2 • 14 | 3.53 | 3.78 | 1.80 | 1.79 | 1.45 | 1.28 | 1.32 | 1.25 | 1.46 | 1.43 | 23 | | 24 | 2.03 | 2 • 18 | 3.54 | 3.73 | 1.60 | 1.78 | 1.48 | 1.25 | 1.35 | 1.22 | 1.47 | 1.36 | 24 | | 25 | 2.01 | 2 • 12 | 3 • 5 4 | 3.71 | 1.79 | 1.78 | 1.49 | 1.21 | 1.29 | 1.27 | 1.44 | 1.32
| 25 | | 26 | 2.04 | 2.11 | 3.55 | 3.69 | 1.79 | 1.78 | 1.45 | 1.24 | 1.25 | 1.26 | 1.38 | 1.38 | 26 | | 27 | 2.04 | 2.05 | 3.54 | 3.68 | 1.77 | 1.79 | 1.47 | 1.35 | 1.23 | 1.33 | 1.43 | 1.39 | 27 | | 28 | 1.98 | 2.08 | 3.50 | 3.67 | 1.79 | 1.79 | 1.53 | 1.31 | 1.26 | 1.30 | 1.42 | 1.40 | 28 | | 29 | 1.98 | 2.09 | 3.58 | 3.67 | 1.79 | 1.81 | 1.50 | 1.26 | 1.22 | 1.29 | 1.48 | 1.43 | 29 | | 3D | 2.02 | 2.09 | 3 • 60 | 3.66 | | 1.81 | 1.44 | 1.23 | 1.26 | 1.29 | 1.42 | 1.38 | 30 | | 31 | 2.01 | | 3.50 | 3.67 | | 1.87 | | 1.23 | | 1.26 | 1.45 | | 31 | #### CREST STAGES E - ESTIMATED NR - NO RECORD NF - NO FLOW | DATE | TIME | STAGE | DATE | TIME | 5TAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | 1-22-64 | 0650 | 5.28 | | , | , | | | LOCATION | N | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | DATUM OF GAGE | | | | |------------|-----------|-------------------|-----------|-----------|----------|------------------------------|-------------|---------------|------|------------|-------| | | | 1/4 SEC. T. 8. R. | OF RECORD | | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | ZERO
ON | REF. | | LATITUDE L | LONGITUDE | M, D, 8, 8, M, | C.F.S. | GAGE HT. | DATE | | ONLY | | | GAGE | DATUM | | 37 47 18 | 120 45 41 | SW 4 2S 11E | 52000 | 30.05 | 11-21-50 | JUN 28-DEC 39
APR 40-DATE | | | | 0.00 | LOCAL | Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants. #### DAILY MEAN GAGE HEIGHT (IN FEET) WATER YEAR STATION NO. STATION NAME 803145 1964 STANISLAUS RIVER AT RIVERBANK | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|---------|-------|-------|---------|-------|-------|-------|-------|----------| | 3 | 73.43 | 73.56 | 73.65 | 75.94 | 76.07 | 73.00 | 73.50 | 72.75 | 72.54 | 72.43 | 72.50 | 72.72 | 1 | | 2 | 73.41 | 73.58 | 73.68 | 76.05 | 76.06 | 72.99 | 73.30 | 72.74 | 72.57 | 72.39 | 72.44 | 72.70 | 2 | | 3 | 73.38 | 73.55 | 74.18 | 76.05 | 76.06 | 72.93 | 73.01 | 72.74 | 72.51 | 72.41 | 72.49 | 72.67 | 3 | | 4 | 73.41 | 73.53 | 73.73 | 76.04 | 76.05 | 72.92 | 72.93 | 72.74 | 72.50 | 72.41 | 72.41 | 72.70 | 4 | | 5 | 73.44 | 73.58 | 73.74 | 76.02 | 76.06 | 72.97 | 72.92 | 72.74 | 72.47 | 72.46 | 72.43 | 72.66 | 5 | | 6 | 73.39 | 73.62 | 73.74 | 76.02 | 76.05 | 73.03 | 72.91 | 72.76 | 72.43 | 72.48 | 72.44 | 72.69 | 6 | | 7 | 73.43 | 73.60 | 73.70 | 76.03 | 76.00 | 73.11 | 72.94 | 72.76 | 72.47 | 72.46 | 72.44 | 72.66 | 7 | | 8 | 73.42 | 73.67 | 73.71 | 76.03 | 74.37 | 73.10 | 72.97 | 72.72 | 72.52 | 72.50 | 72.53 | 72.59 | 8 | | 9` | 73.45 | 73.65 | 73.76 | 76.03 | 73.78 | 73.05 | 72.99 | 72.62 | 72.59 | 72.45 | 72.50 | 72.62 | 9 | | 10 | 73.47 | 73.64 | 73.84 | 76.04 | 73.70 | 73.08 | 72.95 | 72.59 | 72.59 | 72.42 | 72.51 | 72.57 | 10 | | 11 | 73.84 | 73.64 | 73.76 | 76.02 | 73.59 | 73.14 | 72.83 | 72.57 | 72.51 | 72.42 | 72.49 | 72.59 | 11 | | 12 | 75.25 | 73.61 | 73.68 | 76.02 | 73.60 | 73.32 | 72.83 | 72.57 | 72.49 | 72.49 | 72.55 | 72.61 | 12 | | 13 | 75.94 | 73.60 | 73.64 | 76.03 | 73.63 | 73.00 | 72.89 | 72.57 | 72.47 | 72.48 | 72.61 | 72.63 | 13 | | 14 | 75.81 | 73.61 | 73.73 | 76.02 | 73.45 | 72.94 | 72.83 | 72.56 | 72.51 | 72.49 | 72.63 | 72.69 | 14 | | 15 | 75.80 | 73.67 | 73.68 | 76.02 | 73.31 | 72.95 | 72.70 | 72.54 | 72.53 | 72.46 | 72.61 | 72.66 | 15 | | 16 | 75.85 | 73.68 | 73.56 | 75.99 | 73.13 | 73.03 | 72.64 | 72.54 | 72.54 | 72.47 | 72.60 | 72.63 | 16 | | 17 | 75.84 | 73.72 | 73.67 | 74.83 | 73.09 | 72.96 | 72.64 | 72.57 | 72.52 | 72.49 | 72.63 | 72.69 | 17 | | 18 | 75.23 | 73.64 | 73.66 | 75.11 | 73.08 | 72.98 | 72.65 | 72.53 | 72.51 | 72.48 | 72.62 | 72.68 | 18 | | 19 | 73.65 | 73.72 | 74.09 | 75.23 | 73.08 | 72.95 | 72.65 | 72.51 | 72.50 | 72.45 | 72.63 | 72.64 | 19 | | 20 | 73.44 | 73.90 | 75.98 | 75.22 | 73.07 | 72.99 | 72.65 | 72.50 . | 72.45 | 72.53 | 72.55 | 72.64 | 20 | | 21 | 73.52 | 74.04 | 76.07 | 75.51 | 73.06 | 72.99 | 72.65 | 72.49 | 72.48 | 72.54 | 72.55 | 72.67 | 21 | | 22 | 73.59 | 73.81 | 76.07 | 76.85 | 73.05 | 73.07 | 72.64 | 72.50 | 72.50 | 72.43 | 72.58 | 72.71 | 22 | | 23 | 73.69 | 73.83 | 76.07 | 76.41 | 73.04 | 73.29 | 72.66 | 72.60 | 72.41 | 72.45 | 72.65 | 72.75 | 23 | | 24 | 73.66 | 73.90 | 76.07 | 76.18 | 73.00 | 73.03 | 72.64 | 72.58 | 72.47 | 72.45 | 72.65 | 72.73 | 24 | | 25 | 73.61 | 73.83 | 76.05 | 76.14 | 72.99 | 73.00 | 72.63 | 72.52 | 72.50 | 72.41 | 72.63 | 72.69 | 25 | | 26 | 73.65 | 73.75 | 76.04 | 76.10 | 72.96 | 72.97 | 72.71 | 72.50 | 72.39 | 72.51 | 72.60 | 72.70 | | | 27 | 73.65 | 73.71 | 76.06 | 76.09 | 72.96 | 72.94 | 72.76 | 72.53 | 72.33 | 72.48 | 72.57 | 72.68 | 26
27 | | 28 | 73.58 | 73.60 | 75.94 | 76.08 | 72.96 | 72.96 | 72.77 | 72.55 | 72.45 | 72.46 | 72.65 | 72.71 | 26 | | 29 | 73.47 | 73.67 | 76.04 | 76.07 | 72.99 | 73.02 | 72.83 | 72.49 | 72.42 | 72.50 | 72.67 | 72.73 | 28 | | 30 | 73.56 | 73.67 | 76.04 | 76.07 | , 20,77 | 73.07 | 72.77 | 72.51 | 72.40 | 72.48 | 72.68 | 72.72 | 30 | | 31 | 73.57 | 15001 | 76.02 | 76.07 | | 73.06 | 12011 | 72.53 | 120 | 72.47 | 72.62 | | 30 | #### CREST STAGES | | DATE | TIME | STAGE | OATE | TIME | STAGE | OATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|---------|------|---------|------|------|-------|------|------|-------|------|------|-------| | E — ESTIMATED | 1-22-64 | 1500 | 77.47 | | | | | | | | | | | | | | ,,,,,,, | | | | | | | | | | | NR - NO RECORD | 1 | , | | NE - NO FLOW | | | | | | | | | | | | | | | LOCATION | V | | MAXII | MAXIMUM DISCHARGE | | | FRECORD | DATUM OF GAGE | | | | |----------|-----------|-------------|------|--------|-------------------|----------|--------------|-------------|---------------|------|------------|-------| | LATITUOE | LONGITUDE | 1/4 SEC. T. | 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 1100 | ZERO
ON | REF. | | LATITUDE | LUNGITUDE | M.O.B.8 | M. | C.F.S. | GAGE HT. | OATE | 510 011A110E | ONLY | FROM | то | GAGE | OATUM | | 37 44 31 | 120 56 21 | SW24 2S | 9E | 85800 | 103.18 | 12-23-55 | JUL 40-DATE | | 1940 | | 0.00 | USCGS | Station located at Burneyville Bridge, immediately N of Riverbank. | , | WATER YEAR | STATION NO. | STATION NAME | |------------------------|------------|-------------|---------------------------| | DAILY MEAN GAGE HEIGHT | 1964 | 803125 | STANISLAUS RIVER AT RIPON | | (IN FFFT) | | | | | DAY | ОСТ. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|---------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-----| | 1 | 38.43 | 38.28 | 38.38 | NR | 41.59 | 37.62 | 38.05 | 37.13 | 37.04 | 36.73 | 36.66 | 37.36 | 1 | | 2 | 38.44 | 38 - 27 | 38 • 32 | MR | 41.58 | 37.63 | 38.42 | 37.09 | 36.94 | 36.76 | 36.72 | 37.28 | 2 | | 3 | 38.67 | 38 - 27 | 38.59 | NR | 41.57 | 37.57 | 37.95 | 37.18 | 36.90 | 36.74 | 36.67 | 37.36 | 3 | | 4 | 38.43 | 38.25 | NR NR | NR | 41.57 | 37.54 | 37.79 | 37.39 | 36.86 | 36.84 | 36.76 | 37.16 | 4 | | 5 | 38.32 | 38 • 27 | NR | MR | 41.58 | 37.52 | 37.80 | 37.35 | 36.91 | 36.95 | 36.67 | 37.06 | 5 | | 6 | 38.24 | 38.35 | NR | NR | 41.57 | 37.59 | 37.70 | 37.49 | 36.86 | 35.84 | 36.62 | 37.07 | 6 | | 7 | 38.37 | 38.34 | NR | NR | 41.56 | 37.63 | 37.55 | 37.40 | 36.88 | 36.88 | 36.74 | 37.13 | 7 | | 8 | 38.40 | 38 • 34 | NR | NR. | 40.72 | 37.75 | 37.58 | 37.33 | 37.06 | 36.90 | 36.80 | 37.07 | 8 | | 9 | 38.38 | 38 • 38 | NR | 41.48 | 39.18 | 37.76 | 37.60 | 37.26 | 37.37 | 36.91 | 36.87 | 36.98 | 9 | | 10 | 38.52 | 38.34 | NR | 41.48 | 38.80 | 37.64 | 37.57 | 37.15 | 37.39 | 36.92 | 36.78 | 36.96 | 10 | | 11 | 39.04 | 38.34 | NR | 41.48 | 38.60 | 37.67 | 37.53 | 37.12 | 37.44 | 36.84 | 36.78 | 36.94 | 11 | | 12 | 39.64 | 38.33 | NR | 41.47 | 38.48 | 37.80 | 37.45 | 37.10 | 37.19 | 36.83 | 36.87 | 37.01 | 12 | | 13 | 40.77 | 38.30 | NR. | 41.47 | 38.46 | 37.75 | 37.44 | 37.08 | 37.01 | 36.86 | 36.70 | 36.94 | 13 | | 14 | 40.87 | 38.30 | NR | 41.46 | 38.41 | 37.54 | 37.50 | 37.00 | 37.04 | 36.88 | 36.71 | 37.03 | 14 | | 15 | 41.00 | 38.34 | NR | 41.43 | 38.24 | 37.49 | 37.43 | 36.96 | 37.00 | 36.90 | 36.81 | 37.96 | 15 | | 16 | 40.96 | 38.35 | NP. | 41.44 | 38.08 | 37.48 | 37.36 | 36.99 | 36.97 | 36.81 | 36.89 | 37.21 | 16 | | 17 | 40.99 | 38 • 38 | NP | 40.90 | 37.94 | 37.56 | 37.25 | 37.06 | 37.00 | 36.81 | 36.91 | 36.96 | 17 | | 18 | 40.85 | 38 - 35 | NR | 39.92 | 37.89 | 38.05 | 37.31 | 37.09 | 36.92 | 36.76 | 36.83 | 37.01 | 18 | | 19 | 39.60 | 38.38 | NP | 40.32 | 37.87 | 37.76 | 37.28 | 37.10 | 36.92 | 36.70 | 36 . R3 | 37.01 | 19 | | 20 | 38.68 | 38.49 | NP | 40.33 | 37.82 | 37.61 | 37.30 | 36.98 | 36.97 | 36.70 | 36 • R2 | 36.98 | 20 | | 21 | 38.46 | 38.79 | NR. | 40.47 | 37.79 | 37.58 | 37.26 | 37.02 | 36.91 | 36.76 | 36.78 | 37.01 | 21 | | 22 | 38.39 | 38 • 65 | NR | 41.72 | 37.76 | 37.83 | 37.21 | 37.00 | 36.92 | 36.77 | 36 . R2 | 37.06 | 22 | | 23 | 38.40 | 38.56 | NR | 42.74 | 37.72 | 38.29 | 37.23 | 37.02 | 36.89 | 36.70 | 36.99 | 37.07 | 23 | | 24 | 38.41 | 38 • 66 | NP. | 41.92 | 37.71 | 37.82 | 37.17 | 37.03 | 36.85 | 36.72 | 36.89 | 37.12 | 24 | | 25 | 38.38 | 38.66 | NR | 41.73 | 37.68 | 37.60 | 37.15 | 37.10 | 36.86 | 36.78 | 36.82 | 37.07 | 25 | | 26 | 38.36 | 38.52 | NR | 41.67 | 37.66 | 37.58 | 37.10 | 37.04 | 36.82 | 36.76 | 36.82 | 36.96 | 26 | | 27 | 38.38 | 38.44 | NR | 41.63 | 37.64 | 37.58 | 37.27 | 36.98 | 36.79 | 36.79 | 36.77 | 37.09 | 27 | | 28 | 38.38 | 38.35 | NR | 41.62 | 37.62 | 37.53 | 37.17 | 37.07 | 36.88 | 36.69 | 36.74 | 37.09 | 28 | | 29 | 38.30 | 38.31 | NR | 41.61 | 37.61 | 37.57 | 37.23 | 37.06 | 36.95 | 36.65 | 36.85 | 37.02 | 29 | | 30 | 38.25 | 38.33 | NR | 41.61 | | 37.64 | 37.19 | 37.04 | 36.91 | 36.66 | 36.98 | 37.09 | 30 | | 31 | 38.30 | | NR | 41.61 | | 37.65 | | 37.01 | | 36.75 | 37.05 | | 31 | #### CREST STAGES | | DATE | TIME | STAGE | DATE
| TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | E - ESTIMATED | 1-23-64 | 0300 | 43.24 | | | | | | | | | | | NR - NO RECORD | | | | | | | | | | | | | | NF - NO FLOW | | | | | | | | | , J | | | | | | LOCATION | N | MAXIMUM DISCHARGE | | | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|------------------|-------------------|-----------|----------|-------------|-------------|------|-------|------------|-------| | LATITUOE | LONGITUDE | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M. O. B. & M. | C.F.S. | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | 37 43 50 | 121 06 35 | SE29 2S 8E | 62500 | 63.25 | 12-24-55 | APR 40-DATE | | 1940 | | 0.00 | USGS | Station located 15 ft. below the Southern Pacific Railroad Bridge, 1.0 mi. SE of Ripon. Records furn. by U.S.G.S. Flow records are published in U.S.G.S. report "Surface Water Records of California." | TABLE B-5 (Cont.) | WATER YEAR | STATION NO. | STATION NAME | |------------------------|------------|-------------|-----------------------------------| | DAILY MEAN GAGE HEIGHT | 1964 | B03115 | STANISLAUS RIVER AT KOETITZ RANCH | | (IN FEFT) | | | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|---------|---------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-----| | 1 | 28.80 | 28.55 | 28.61 | 31.73 | 32.10 | 27.81 | 28.37 | 27.45 | 27.32 | 26.72 | 26.88 | 27.63 | 1 | | 2 | 28.83 | 28 • 52 | 28 • 56 | 31.78 | 32.09 | 27.82 | 28.79 | 27.35 | 27.21 | 26.75 | 26.95 | 27.63 | 2 | | 3 | 29.08 | 28.51 | 28.67 | 31.85 | 32.08 | 27.77 | 28.46 | 27.44 | 27.35 | 26.86 | 26.70 | 27.69 | 3 | | 4 | 28.95 | 28.51 | 28.92 | 31.88 | 32.07 | 27.66 | 28.07 | 27.66 | 27.18 | 27.03 | 26.84 | 27.62 | 4 | | 5 | 28.79 | 28.52 | 28.68 | 31.89 | 32.08 | 27.54 | 28 • 15 | 27 • 68 | 27.21 | 27.24 | 27.01 | 27.41 | 5 | | 6 | 28.69 | 28.58 | 28.63 | 31.90 | 32.08 | 27.57 | 28.05 | 27.89 | 27.14 | 27.10 | 26.93 | 27.33 | 6 | | 7 | 28.83 | 28.57 | 28.61 | 31.89 | 32.07 | 27.67 | 27.77 | 27.65 | 27.22 | 27.10 | 26.79 | 27.31 | 7 | | 8 | 28.85 | 28.56 | 28.60 | 31.90 | 31.65 | 27.85 | 27.69 | 27.75 | 27.33 | 27.28 | 26.82 | 27.25 | 8 | | 9 | 28.74 | 28 - 60 | 28.61 | 31.91 | 30.05 | 27.94 | 27.79 | 27.58 | 27.84 | 27.18 | 27.06 | 27.22 | 9 | | 10 | 28.79 | 28.58 | 28.65 | 31.91 | 29.46 | 27.81 | 27.93 | 27.52 | 27.72 | 27.04 | 27.44 | 27.27 | 10 | | 11 | 29.62 | 28.56 | 28.69 | 31.91 | 29.18 | 27.83 | 27.89 | 27.32 | 27.88 | 26.83 | 27.41 | 27.18 | 11 | | 12 | 30.25 | 28.55 | 28.63 | 31.91 | 28.99 | 28.00 | 27.92 | 27.26 | 27.67 | 26.95 | 27.37 | 27.05 | 12 | | 13 | 31.20 | 28.53 | 28.57 | 31.91 | 28.92 | 28.04 | 27 • 83 | 27.32 | 27.40 | 27.03 | 27.16 | 27.01 | 13 | | 14 | 31.56 | 28.54 | 28.53 | 31.92 | 28.87 | 27.78 | 27.81 | 27.23 | 27.29 | 27.06 | 27.10 | 27.12 | 14 | | 15 | 31.65 | 28.57 | 28.59 | 31.90 | 28.68 | 27.70 | 27.79 | 27.27 | 27.26 | 27.12 | 27.02 | 27.27 | 15 | | 16 | 31.60 | 28.56 | 28.54 | 31.89 | 28.49 | 27.66 | 27.65 | 27.05 | 27.24 | 27.05 | 27.23 | 27.32 | 16 | | 17 | 31.44 | 28.59 | 28.46 | 31.63 | 28.34 | 27.67 | 27.48 | 27.08 | 27.27 | 27.03 | 27.06 | 27.27 | 17 | | 18 | 31.30 | 28.59 | 28.51 | 30.46 | 28.23 | 28.26 | 27 • 68 | 27.35 | 27.21 | 26.91 | 27.09 | 27.36 | 18 | | 19 | 30.34 | 28.57 | 28.50 | 30.73 | 28.13 | 28.19 | 27.69 | 27.24 | 27.11 | 26.98 | 27.24 | 27.37 | 19 | | 20 | 29.21 | 28.71 | 29.28 | 30.79 | 28.07 | 27.99 | 27.67 | 27.17 | 27.19 | 26.96 | 27.08 | 27.33 | 20 | | 21 | 28.84 | 28.94 | 31.00 | 30.88 | 28.03 | 28.19 | 27.58 | 27.21 | 27.30 | 27.01 | 27.14 | 27.53 | 21 | | 22 | 28.70 | 28.96 | 31.41 | 31.52 | 28.00 | 28.12 | 27.52 | 27.16 | 27.21 | 27.00 | 27.19 | 27.59 | 22 | | 23 | 28.70 | 28.82 | 31.56 | 32.88 | 27.95 | 28.71 | 27.51 | 27.16 | 27.14 | 26.88 | 27.37 | 27.55 | 23 | | 24 | 28.70 | 28.89 | 31.65 | 32.46 | 27.92 | 28.32 | 27.40 | 27.26 | 26.93 | 26.93 | 27.38 | 27.50 | 24 | | 25 | 28.66 | 28.95 | 31.66 | 32.21 | 27.90 | 28.14 | 27.41 | 27.36 | 26.93 | 26.92 | 27.12 | 27.46 | 25 | | 26 | 28.63 | 28.80 | 31.66 | 32.13 | 27.83 | 28.06 | 27.50 | 27.27 | 26.98 | 27.00 | 27.13 | 27.58 | 26 | | 27 | 28.66 | 28.68 | 31.70 | 32.10 | 27.76 | 28.05 | 27.65 | 27.32 | 26.90 | 26.96 | 26.96 | 27.62 | 27 | | 28 | 28.66 | 28.60 | 31.74 | 32.08 | 27.81 | 27.95 | 27.58 | 27.25 | 26.89 | 26.80 | 26.94 | 27.55 | 28 | | 29 | 28.57 | 28.53 | 31.67 | 32.09 | 27.78 | 28.03 | 27.42 | 27.22 | 26.93 | 26.78 | 27.11 | 27.26 | 29 | | 30 | 28.52 | 28.56 | 31.78 | 32.09 | | 28.01 | 27.40 | 27.34 | 27.05 | 26.73 | 27.28 | 27.30 | 30 | | 31 | 28.56 | | 31.81 | 32.09 | | 28.01 | | 27.38 | | 26.88 | 27.39 | | 31 | ### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|---------|------|-------|------|---------------------------------------|-------|------|------|-------|------|------|-------| | E — ESTIMATED | 1-23-64 | 1440 | 33.09 | | | | | | | | | | | NR - NO RECORD | | | | | | | | | | | | | | NE - NO FLOW | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | LOCATIO | V | MAXIMUM DISCHARGE | | | PERIOD (| OF RECORD | DATUM OF GAGE | | | | |----------|-----------|------------------|-------------------|-----------|------|----------------|---------------|---------------|------|------------|---------------| | | | 1/4 SEC. T. B.R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.B.8M, | C.F.S. | GAGE HT. | OATE | - CIO GITATIOE | ONLY | FROM | TO | GAGE | DATUM | | 37 41 57 | 121 10 08 | SW 2 3S 7E | | | | OCT 62-DATE | MAR 50-SEP 62 | 1950
1951 | 1951 | 0.00 | USED
USCGS | | | | | | 1 | | 1 | | 1951 | | 3.60 | USED | Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon. | TABLE B-5 (Cont.) | WATER YEAR | STATION NO. | STATION NAME | |------------------------|------------|-------------|-----------------------------| | DAILY MEAN GAGE HEIGHT | 1964 | 803105 | STANISLAUS RIVER NEAR MOUTH | | /IN FEET) | | | | | DAY | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-----| | 1 | 16.31 | 16.73 | 17.69 | 19.12 | 19.17 | 15.78 | 16.13 | 14.83 | 14.68 | 13.89 | 13.97 | 15.03 | 1 | | 2 | 16.31 | 16.69 | 17.73 | 19.11 | 19.14 | 15.62 | 16.36 | 14.70 | 14.44 | 13.92 | 14.15 | 15.12 | 2 | | 3 | 16.51 | 16.72 | 17.74 | 19.20 | 19.15 | 15.66 | 16.18 | 14.89 | 14.50 | 13.96 | 14.01 | 15.24 | 3 | | 4 | 16.57 | 16.73 | 17.76 | 19.17 | 19.14 | 15.62 | 15.52 | 15.17 | 14.51 | 14.04 | 13.92 | 15.48 | 4 | | 5 | 16.45 | 16.74 | 17.62 | 19.19 | 19.16 | 15.20 | 15 • 49 | 15.26 | 14.55 | 14.29 | 14.13 | 15.49 | 5 | | 6 | 16.57 | 16.79 | 17.50 | 19.11 | 19.15 | 15.45 | 15.49 | 15.33 | 14.46 | 14.37 | 14.18 | 15.55 | 6 | | 7 | 16.75 | 16.80 | 17.47 | 19.18 | 19.13 | 15.56 | 15.35 | 15.11 | 14.93 | 14.47 | 13.98 | 15.02 | 7 | | 8 | 16.85 | 16.78 | 17.42 | 19.19 | 18.97 | 15.72 | 15.11 | 15.02 | 14.85 | 14.35 | 13.99 | 14.77 | 8 | | 9 | 16.68 | 16.77 | 17.41 | 19.20 | 18.21 | 15.77 | 15.03 | 14.89 | 15.50 | 14.51 | 14.11 | 14.62 | 9 | | 10 | 16.50 | 16.79 | 17-41 | 19.14 | 17.46 | 15.54 | 15.37 | 15.32 | 15.61 | 14.27 | 14.38 | 14.84 | 10 | | 11 | 17.25 | 16.77 | 17.41 | 19.12 | 17.12 | 15.39 | 15.43 | 14.98 | 15.71 | 14.08 | 14.32 | 14.70 | 11 | | 12 | 18.04 | 16.77 | 17.35 | 19.12 | 16.88 | 15.59 | 15.40 | 14.72 | 15.52 | 14.29 | 14.15 | 14.35 | 12 | | 13 | 18.62 | 16.76 | 17.31 | 19.10 | 16.78 | 15.78 | 15.24 | 14.67 | 15.25 | 14.35 | 13.94 | 14.60 | 13 | | 14 | 19.15 | 16.77 | 17.27 | 19.09 | 16.71 | 15.64 | 15.23 | 14.67 | 15.04 | 14.23 | 14.00 | 14.80 | 14 | | 15 | 19.23 | 16.80 | 17.26 | 19.05 | 16.62 | 15.48 | 15.15 | 14.64 | 14.73 | 14.06 | 14.00 | 14.85 | 15 | | 16 | 19.14 | 16.83 | 17.19 | 19.06 | 16.54 | 15.29 | 15.08 | 14.58 | 14.88 | 14.22 | 14.57 | 15.03 | 16 | | 17 | 18.95 | 16.87 | 17.12 | 18.91 | 16.46 | 15.21 | 14.96 | 14.47 | 14.71 | 14.31 | 14.39 | 14.83 | 17 | | 18 | 18.80 | 16.98 | 17.12 | 18.17 | 16.29 | 15.35 | 14.98 | 14.84 | 14.64 | 14.04 | 13.99 | 14.78 | 18 | | 19 | 18.42 | 17.03 | 17-12 | 18.08 | 16.11 | 15.68 | 15.06 | 15.04 | 14.33 | 14.19 | 14.28 | 14.95 | 19 | | 20 | 17.58 | 17.23 | 17.22 | 18.19 | 15.95 | 15.52 | 15.07 | 14.88 | 14.18 | 14.17 | 14.25 | 15.23 | 20 | | 21 | 17.47 | 17.42 | 18.36 | 18.23 | 15.82 | 15.77 | 14.91 | 14.66 | 14.19 | 14.18 | 14.22 | 14.97 | 21 | | 22 | 17.75 | 17.55 | 18.83 | 18.77 | 15.74 | 15.84 | 14.99 | 14.63 | 14.19 | 14.03 | 14.45 | 14.85 | 22 | | 23 | 17.70 | 17.53 | 18.97 | 19.88 | 15.73 | 16.39 | 15.05 | 14.72 | 14.18 | 14.05 | 14.79 | 14.88 | 23 | | 24 | 17.58 | 17.61 | 19.07 | 19.73 | 15.64 | 16.37 | 15 • 19 | 14.97 | 14.08 | 14.04 | 15.02 | 15.03 | 24 | | 25 | 17.40 | 17-68 | 19-20 | 19.43 | 15.48 | 16.17 | 14.98 | 14.82 | 14.02 | 14.06 | 14.71 | 14.95 | 25 | | 26 | 17.11 | 17.69 | 19.27 | 19.32 | 15.40 | 16.07 | 14.94 | 14.66 | 14.20 | 14.39 | 14.38 | 15.25 | 26 | | 27 | 16.89 | 17.63 | 19.32 | 19.24 | 15.35 | 16.12 | 14.89 | 14.75 | 14.06 | 14.13 | 14.42 | 15.57 | 27 | | 28 | 16.82 | 17-60 | 19.21 | 19.24 | 15.49 | 16.04 | 14.87 | 14.88 | 14.09 | 14.06 | 14.14 | 15.29 | 28 | | 29 | 16.64 | 17.64 | 19.08 | 19.23 | 15.59 | 16.01 | 14.78 | 14.82 | 13.94 | 14.13 | 14.20 | 14.77 | 29 | | 30 | 16.58 | 17.67 | 19.14 | 19.20 | | 15.81 | 14.64 | 14.69 | 14.05 | 13.69 | 14.73 | 14.99 | 30 | | 31 | 16.63 | | 19.15 | 19.18 | | 15.86 | | 14.89 | | 13.81 | 15.01 | | 31 | #### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|---------|------|-------|------|------|-------|------|------|-------|------|------|-------| | E — ESTIMATED |
1-23-64 | 1400 | 20.21 | | | | | | | | | | | NR - NO RECORD | | | | | | | | | | | | | | NF - NO FLOW | | | | | | | | | | | | | | | LOCATION | ١ | MAXI | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|-----------|-----------------|--------|-----------|-------|-------------|-------------|--------------|-------|------------|----------------| | LATITURE | LONGTURE | 1/4 SEC. T.8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | RIOD | 2ERO
ON | REF. | | LATITUDE | LONGITUDE | M. D. B. & M. | C.F.S. | GAGE HT. | DATE | 0.00. | ONLY | FROM | TO | GAGE | DATUM | | 37 40 33 | 121 13 18 | NE17 3S 7E | | | | SEP 51-DATE | | 1951
1959 | 1959 | 1.11 | USCGS
USCGS | Station located 1.9 mi. above mouth, 7 miles SW of Ripon. Backwater from San Joaquin River at times affects the stage-discharge relationship. Prior records available at other sites. Drainage area 1,091 sq. mi. Altitude of gage is approx. 25 ft. (from U.S.G.S. topographic map). | TABLE 5-0 (Cont.) | WATER YEAR | STATION NO. | STATION NAME | |------------------------|------------|-------------|---------------------------------| | DAILY MEAN GAGE HEIGHT | 1964 | 807020 | SAN JOAQUIN RIVER NEAR VERNALIS | | (IN FEET) | | | | | DAY | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | DAY | |-----|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-----| | 1 | NR | 13.78 | 15.38 | 14.65 | 13.63 | NR | 11.01 | 10.22 | 10.15 | 9.62 | 9.04 | 10.58 | 1 | | 2 | NR | 13.69 | 15.40 | 14.68 | 13.52 | NR | 11.17 | 10.29 | 9.95 | 9.54 | 9.17 | 10.62 | 2 | | 3 | NR | 13.81 | 15.39 | 14.72 | 13.47 | NR | 11.11 | 10.36 | 9.91 | 9.53 | 9.23 | 10.55 | 3 | | 4 | NR | 13.85 | 15.27 | 14.57 | 13.39 | 10.10 | 10.98 | 10.48 | 9.86 | 9.55 | 9.21 | 10.51 | 4 | | 5 | NR | 13.87 | 15.05 | 14.48 | 13.43 | 10.10 | 10.55 | 10.59 | 9.82 | 9.68 | 9.17 | 10.41 | 5 | | 6 | 12.87 | 13.95 | 14.98 | 14.47 | 13.44 | 10.16 | 10.52 | 10.71 | 9.78 | 9.78 | 9.17 | 10.38 | 6 | | 7 | 13.27 | 13.94 | 14.97 | 14.50 | 13.42 | 10.30 | 10.31 | 10.80 | 9.83 | 9.67 | 9.02 | 10.46 | 7 | | 8 | 13.67 | 13.92 | 14.94 | 14.61 | 13.37 | 10.39 | 10.21 | 10.72 | 9 • 96 | 9.48 | 9.04 | 10.38 | 8 | | 9 | 13.32 | 13.92 | 14.95 | 14.63 | NR | 10.42 | 10.19 | NR | 10.44 | 9.50 | 9.13 | 10.29 | 9 | | 10 | 13.07 | 13.93 | 14.96 | 14.28 | NR | 10.37 | 10.15 | NR | 10.88 | 9.37 | 9.32 | 10.15 | 10 | | 11 | 13.33 | 13.92 | 14.89 | 14.09 | NR | 10.28 | 10.15 | NR | 10.91 | 9.38 | 9.24 | 10.12 | 11 | | 12 | 14.03 | 13.90 | 14.78 | 13.99 | NR | 10.38 | 10.18 | 10.11 | 10.88 | 9.33 | 9.16 | 10.13 | 12 | | 13 | 14.63 | 13.90 | 14.78 | 13.80 | NR | 10.70 | 10.11 | 9.99 | 10.68 | 9.40 | 9.20 | 10.12 | 13 | | 14 | 15.09 | 13.92 | 14.79 | 13.72 | NR | 10.68 | 10.00 | 9.93 | 10.45 | 9.22 | 9.12 | 10.22 | 14 | | 15 | 15.32 | 13.98 | 14.73 | 13.76 | NR | 10.51 | 9.93 | 9.78 | 10.44 | 9.08 | 9.20 | 10.20 | 15 | | 16 | 14.87 | 14.04 | 14.59 | 13.76 | NR | 10.40 | 10.06 | 9.78 | 10.28 | 8.98 | 9.33 | 10.12 | 16 | | 17 | 14.60 | 14.12 | 14.58 | 13.75 | NR | 10.26 | 10.01 | 9.78 | 10.13 | 9.13 | 9.64 | 10.11 | 17 | | 18 | 14.72 | 14.26 | 14.62 | 13.38 | NR | 10.25 | 10.00 | 9.91 | 9.92 | 9.23 | 9.61 | 10.11 | 18 | | 19 | 14.73 | 14.33 | 14.54 | 13.24 | NR | 10.56 | 10.03 | 10.13 | 9.83 | 9.38 | 9.69 | 10.12 | 19 | | 20 | 14.48 | 14.63 | 14.43 | 13.21 | NR | 10.54 | 10.37 | 10+12 | 9.89 | 9.41 | 9.60 | 10.16 | 20 | | 21 | 14.84 | 14.86 | 14.72 | 13.32 | NR | 10.53 | 10.44 | 10.16 | 9.74 | 9.31 | 9.48 | 10.28 | 21 | | 22 | 15.35 | 14.88 | 14.91 | 13.48 | NR | 10.55 | 10.41 | 10.16 | 9.87 | 9.28 | 9.53 | 10.31 | 22 | | 23 | 15.34 | 14.98 | 14.94 | 14.37 | NR | 11.23 | 10.43 | 10.13 | 9.72 | 9.32 | 9.73 | 10.37 | 23 | | 24 | 15.17 | 15.15 | 14.98 | 14.73 | NR | 11.42 | 10.46 | 10.14 | 9.49 | 9 • 24 | 10.01 | 10.83 | 24 | | 25 | 14.96 | 15.20 | 15.29 | 14.22 | NR | 11.34 | 10.43 | 10.25 | 9 • 45 | 9.11 | 10.00 | 11.20 | 25 | | 26 | 14.56 | 15.20 | 15.44 | 13.98 | NR | 11.28 | 10.46 | 10.26 | 9.41 | 9.26 | 9.86 | 11.34 | 26 | | 27 | 14.13 | 15.18 | 15.52 | 13.83 | NR | 11.21 | 10.51 | 10.24 | 9.46 | 9.31 | 9.80 | 11.52 | 27 | | 28 | 13.93 | 15.20 | 15.17 | 13.64 | NR | 11.09 | 10.54 | 10.29 | 9.61 | 9.28 | 9.84 | 11.71 | 28 | | 29 | 13.74 | 15.30 | 14.87 | 13.62 | NR | 11.01 | 10.45 | 10.27 | 9.59 | 9.17 | 9.86 | 11.34 | 29 | | 30 | 13.79 | 15.33 | 14.73 | 13.60 | | 10.97 | 10.31 | 10.36 | 9.68 | 8.97 | 10.06 | 11.36 | 30 | | 31 | 13.81 | | 14.64 | 13.55 | | 10.90 | | 10.26 | | 8.93 | 10.31 | | 31 | | | | | | | | | | | | | | | | #### CREST STAGES | | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | DATE | TIME | STAGE | |----------------|----------------------|--------------|----------------|----------|------|-------|------|------|-------|------|------|-------| | E - ESTIMATED | 10-15-63 | 1020 | 15.38 | 12-27-63 | 1400 | 15.58 | | | | | | | | NR - NO RECORD | 10-22-63
12- 2-63 | 2400
0430 | 15.45
15.41 | | 0430 | 14.88 | | | | | | | | NF - NO FLOW | | | | | | | | _ | | | | | | | LOCATION | ı | MAXII | MUM DISCH | IARGE | PERIOD O | F RECORD | | DATUM | OF GAGE | | |----------|--|-----------|--------|-----------|---------|---|-------------|------|-------|------------|----------------| | | ATITUDE LONGITUDE 1/4 SEC. T. & M.D. 8.8 M | | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PEF | 100 | ZERO
ON | REF. | | LATITUDE | LONGITUDE | M.D.8.8M. | C.F,S, | GAGE HT. | DATE | O O O O I I I I I I I I I I I I I I I I | ONLY | FROM | TO | GAGE | DATUM | | 37 40 34 | 121 15 51 | | 79000 | 27.75 | 12-9-50 | JUL 22-DEC 23
JAN 24-FEB 25 | | 1931 | | 8.4 | USED | | | | | | | | JUN 25-OCT 28
MAY 29-DATE | | 1959 | 1959 | | USCGS
USCGS | Station located 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River, 3.4 mi. NE of Vernalis. Records furn. by U.S.G.S. Drainage area is approx. 14,010 sq. mi. #### DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) October 1963 through September 1964 | | MILE
ANO BANK | NUMBER
ANO SIZE | | | | М | ONTHLY | OIVERSI | OA NI NO | RE - FE | ΕT | | | | TOTAL | |---|------------------|----------------------|------|------|------|------|--------|---------|----------|---------|------|------|------|-------|-----------------------| | WATER USER | * | OF PUMP
IN INCHES | ост. | NOV. | OEC. | JAN, | FE8 | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | OCTSEPT.
ACRE-FEET | | DURHAM FERRY BRIDGE | 76.7 | | | | | | | | | | | | | | | | GAGING STATION - SAN JOAQUIN | 76.7 | | | | | | | | | | | | | | | | RIVER NEAR VERNALIS Cook Land and Cattle Company | 79 00 | 1 14 | | | | | | | | | | | | | | | COOK Land and Cattle Company | 78.9R | 1-14
1-24 | | | | | | 164 | 522 | 160 | 383 | 858 | 727 | 285 | 3099 | | Cruze, Trudel and Gillmeister | 79.4R | 1-20 | | | | | 2 | 136 | 41 | 77 | 79 | 59 | 153 | 44 | 591 | | STANISLAUS RIVER | 79.7R | | 1 | | | | | | | | 1 | | | | | | Faith Ranch | 79.8R | 1-16 | 161 | 3 | | | 60 | 164 | 147 | 140 | 172 | 245 | 220 | 240 | 1552 | | W. C. Blewett Estate | 80.7L | 1-12 | 172 | | | | | | 259 | 284 | 251 | 441 | 477 | 181 | 2065 | | W. C. Blewett Estate | 81.8L | 2-12
1-14 | 540 | | | | 394 | 128 | 970 | 1230 | 1110 | 1980 | 1850 | 61 | 8263 | | GAGING STATION - SAN JOAQUIN
RIVER AT MAZE ROAD BRIOGE | 81.85 | | | | | | | | | | | | | | | | Blewett Mutual Water Company | 81.95L | 1-10
2-12 | 208 | | | | 3. | 557 | 869 | 1280 | 1170 | 1210 | 1330 | 770 | 7397 | | El Solyo Water District | 82.0L | 1-10
1-16
3-18 | 125 | | | | 164 | 1380 | 2420 | 2550 | 2110 | 3520 | 3680 | 1360 | 17310 | | GAGING STATION - SAN JOAQUIN
RIVER AT HETCH HETCHY AQUEOUC
CROSSING | 82.65
T | | | | | | | | | | | | | | | | El Solyo Ranch | 82.91, | 1-16 | 41 | | | | | 105 | 202 | 250 | 77 | 204 | 384 | 282 | 1545 | | El Solyo Ranch | 83.5L | 1-12 | | | | | | 28 | 43 | 117 | 64 | 85 | 59 | 35 | 431 | | El Solyo Ranch | 83.7L | 1-12 | 55 | | | | | 202 | 248 | 285 | 189 | 264 | 327 | 289 | 1859 | | Faith Ranch | 84.4R | 1-16
1-20 | 514 | 60 | | | 320 | 422 | 906 | 1010 | 599 | 904 | 781 | 604 | 6120 | | TUOLUMNE RIVER | 91.CR | 1 20 | | | | | | | | | | | | | | | GAGING STATION - SAN JOAQUIN
RIVER AT WEST STANISLAUS
IRRIGATION OISTRICT INTAKE
CANAL | 91.8L | | | | | | | | | | | ! | | | | | WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL | 91.8L | | | | | | | | | | | | | | | | West Stanislaus Irrigation
Oistrict | 91.8L | 1-12
1-24
6-26 | 1530 | 151 | | 407 | 3520 | 6390 | 7650 | 7850 | 9290 | 7420 | 5000 | 2910 | 52120 | | Fred Lara #1 | **(0.6S) | 1-14 | | | | | | 164 | 6 | 154 | 200 | 288 | 152 | 47 | 1011 | | Frank Sarmento #1 | ** (0.7N) | 3-16 | 152 | | | | | 1230 | 873 | 697 | 929 | 1050 | 748 | 507 | 6186 | | Frank Sarmento #2 | ** (1.1N) | 1-14 | 583 | | | | 74 | 454 | 529 | 374 | 361 | 610 | 363 | 107 | 3455 | | Fred Lara #2 | **(2.2S) | 1-16
1-16 | | | | | 19 | 9 | 30 | 29 | 60 | 12 | 55 | | 214 | | Frank Sarmento #3 | ** (2.3N) | 2-16 | | | | | 1 | 250 | 103 | 153 | 291 | 364 | 383 | 100 | 1644 | | J. V. Steenstrup Estate | 93.IR | 1-12 | | | | | | 250 | 338 | 634 | 393 | 1260 | 1370 | 135 | a 4130 | | | | 1-14 | | | | | | | | | | | 1273 | 100 | | | T. C. Daily | 94.1L | 1-3
I-6 | 21 | | | | 37 | 159 | 49 | 131 | 93 | 129 | 75 | 25 | 719 | | Rancho Dos Rios | 94.7R | 1-12 | 15 | 1 | | 1 | 149 | 3 | 174 | 175 | 314 | 419 | 226 | 305 | 1782 | | E. L. Brazil | 95.5R | 1-16 | 15 | 3 | | 2 | 94 | 51 | 102 | 139 | 70 | 163 | 221 | 35 | 895 | | Charles Correia | 95.8R | 1-10 | | | | | | | | 50 | 19 | 27 | 20 | 12 | 128 | | GAGING STATION - SAN JOAQUIN
RIVER AT GRAYSON | 95.95L | | | | | | | | | | | | | | | | Island Dairy | 96.0L | 1-18 | 107 | | | | 211 | 119 | 318 | 266 | 438 | 519 | 568 | 345 | 2891 | | LAIRD SLOUGH
BRIOGE | 96.05 | | | | | | | | | | | | | | | | E. S. 8rush | 98.5R | 1-7 | 25 | | | | | | 6 | 44 | | 45 | 33 | | 153 | | Rancho El Pescadero | 98.9L | 1-18 | 23 | | 1 | 1 | 120 | 22 | 140 | 230 | 216 | 246 | 29 | 73 | 1101 | | GAGING STATION - SAN JOAQUIN | 104.4L | | | | | | | | | | | | | | 1 | | RIVER AT PATTERSON BRIOGE Patterson Water District | 104.4L | 1-14
2-18
3-20 | | | | | 322 | 4290 | 6670 | 6190 | 7210 | 9280 | 8800 | 5080 | 47840 | | Chase Brothers | 104.5R | 1-36
1-18 | 21 | | | | | 303 | 480 | 289 | 375 | 551 | 541 | 470 | 3030 | | PATTERSON BRIDGE | | 1-18 | 21 | | | | | 303 | 400 | 209 | 373 | 331 | 541 | 470 | 3030 | | | 104.6 | | | | | | | 247 | 244 | 45.5 | | | | | | | Chase Brothers | 106.5R | 1-12 | 10 | | | | | 367 | 244 | 453 | 631 | 448 | 517 | 391 | 3061 | | Tony Spinelli | 109.1R | 1-12 | | | | | 35 | 35 | 36 | 75 | 44 | 80 | 31 | 80 | 416 | | Twin Oaks Irrigation Company | 109.8L | 1-12
2-16
1-18 | 39 | | | | 134 | 1280 | 980 | 2550 | 2290 | 2770 | 2280 | 1810 | a 14130 | | T. J. Henderson | 110.8R | 2-8 | 20 | | | | 12 | 120 | 204 | 351 | 307 | 308 | 321 | 300 | 1943 | DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) October 1963 through September 1964 | | MILE
AND SANK | NUMBER
AND SIZE | | | | М | ONTHLY | DIVERSI | ON IN A | CRE - FE | ET | | | | TOTAL | |---|------------------|----------------------|-------------------|-----------------|-------------|-----------------|--------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|-----------------------| | WATER USER | * | OF PUMP
IN INCHES | OCT. | NOV. | DEC. | JAN, | FEB. | MAR, | APR, | MAY | JUHE | JULY | AUG. | SEPT. | OCTSEPT.
ACRE-FEET | | L. A. Thompson | 112.55R | 1-18 | | | | | | 32 | 331 | 231 | 98 | 33 | 30 | | 755 | | Frank C. Mosier | 113.4R | 1-12 | 72 | | | | 79 | 107 | 143 | 143 | 155 | 169 | 167 | 155 | 1190 | | GAGING STATION - SAN JOAQUIN
RIVER AT CROWS LANDING BRIDGE | 113.4 | | | | | | | | | | | | | | | | Frank C. Mosier | 114.63R | b 1-4
1-8 | | | | | | 15 | 47 | 30 | 67 | 70 | 46 | 51 | 326 | | Manual A. Serpa | 114.75R | 2-10 | 43 | | | | 146 | 50 | 257 | 189 | 322 | 410 | 356 | 263 | 2036 | | ORESTIMBA CREEK | 115.2L | | | | | | | | ŀ | | | | | | | | Roy F. Crow | 115.8L | 1-10 | | | | | | | 47 | 314 | 42 | 250 | 205 | 11 | B96 | | L. B. Crow | 116.051 | 1-14 | 23 | | | 24 | 41 | 51 | 86 | 157 | 94 | 205 | 162 | 108 | 951 | | John W. Greer | 116.5R | 1-12 | | | | | | 101 | 294 | 99 | 156 | 206 | 276 | 190 | 1322 | | Stevinson Water District | 121.3R | 1-1B | 12 | : | | | 37 | 121 | 24 2 | 262 | 190 | 450 | 322 | 272 | 1908 | | MERCED RIVER SLOUGH | 122.2R | | | | | | | | | | i | | | | | | GAGING STATION - SAN JOAQUIN
RIVER NEAR NEWMAN | 123.7 | | | | | | | | | | | | | | : | | MERCED RIVER | 123.75R | | | | | | | | | 1 | | | | | | | Stevinson Corporation | 129.1R | 1-16 | 19 | | | | 193 | 222 | 212 | 312 | 381 | 195 | 443 | 240 | 2217 | | GAGING STATION - SAN JOAQUIN
RIVER AT FREMONT FORD BRIDGE- | 129.5 | | | | | | | | | | | | | | | | VERNALIS TO FREMONT FORD BRIDGE | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of seaso | nal | | 4546
74
2.2 | 218
4
0.1 | 1
0
0 | 435
7
0.2 | 6166
107
3.0 | 19230
313
9.2 | 27040
454
13.0 | 29950
487
14.4 | 31240
525
15.0 | 37750
614
18.1 | 33730
549
16.2 | 17870
300
8.6 | 208700
288 | Mileage along San Joaquin River from its mouth, 4.5 miles below Antioch. West Stanislaus Irrigation District Canal. The intake canal joins the San Joaquin River at mile 91.8L. Distance from the river and the bank is shown in parentheses. a Includes an undetermined amount of water returned to river by spill.b The 4" unit was installed in 1964. # DIVERSIONS - SAN JOAQUIN RIVER (Fremont ford Bridge to Gravelly Ford) October 1963 through September 1964 | | MILE AND SANK | NUMBER
ANO SIZE | | | | MC | NTHLY | OIVERSIO | N IN AC | RE - FE | £Τ | | | | TOTAL | |---|---------------|--------------------|---------------------|---------------------|--------------------|--------------------|---------------------|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------|----------------| | WATER USER | * | OF PUMP | DCT. | NOV. | OEC. | JAN. | FE8 | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | OCTSEPT. | | GAGING STATION - SAN
JOAQUIN RIVER AT FREMONT
FORD BRIDGE | 129.5 | | | | | | | | | | | | | | | | GAGING STATION - SAN
JOAQUIN RIVER NEAR
DOS PALOS | 186.0 | | | | | | | | | | | | , | | | | San Luis Canal Company (a) | 186.6L | Gravity | 7517 | 3486 | 2751 | 1279 | 7404 | 12260 | 18284 | 22586 | 25030 | 26775 | 26120 | 18828 | 169323 | | FIREBAUGH BRIDGS | 198.4 | | | | | | | | | | | | | | | | GAGING STATION - SAN
JOAQUIN RIVER NEAR
MENDOTA | 206.2 | | | | | | | | | | | | | | | | MENDOTA DAM | 208.63 | | | | | | | | | | | | | | | | Central California
Irrigation District (a) | 208.8L | Gravity | 19460 | 4856 | 107 | 5871 | 28477 | 50686 | 66553 | 75168 | 75667 | 90252 | 83826 | 43097 | đ 544020! | | FRESNO SLOUGH | 209.0L | | | | | | | | | | | | | | | | DELTA-MENDOTA CANAL | 8 (0.2L) | | | | | | | | | | | | | | | | Firebaugh Canal Company (a) | 8 (0.4L) | | 835 | 117 | 20 | 0 | 1722 | 9956 | 11748 | 13440 | 14231 | 13765 | 5946 | 1203 | 72983 | | M. Jenson | | | | | | | | NO DIV | ERSION | | | | | | | | M. L. Dudley | 8 (3.4L) | | 0 | 0 | 0 | 0 | 182 | 438 | 373 | 347 | 530 | S45 | 454 | 14 | 2883 | | State of California Ö (6
Mendota Waterfowl
Management (b) | .45 - 8.20) | | 4762 | 1960 | 446 | 470 | 26 | 54 | 186 | 79 | 2212 | 2414 | 2634 | 3120 | 18363 | | Fresno Slough Water District | (a) | | 0 | 0 | 0 | 0 | 651 | 141 | 569 | 696 | 1123 | 873 | 661 | 0 | 4714 | | JAMES BYPASS | ö (11.80R) | | | | | | | | | | | | | | | | Traction Water District (b) | öö (0.75) | | 192 | 0 | 0 | 34 | 573 | 240 | 611 | 756 | 912 | 1020 | 1152 | 1218 | 6708 | | Reclamation District (b) 1606 | öö (1.50) | | 0 | 0 | 0 | 0 | 40 | 36 | 54 | 0 | 137 | 123 | 71 | 7 | 468 | | James Irrigation District (b | 88 (4.4) | | 36 | 0 | 0 | 0 | 5336 | 2729 | 4348 | 5338 | 8846 | 9483 | 9082 | 3352 | 4855 | | Tranquillity ở (12.0
Irrigation District (b) | 00 - 13.75) | | 210 | 0 | 0 | 28 | 5361 | 1722 | 2164 | 2045 | 5395 | 7018 | 5353 | 1327 | 30623 | | Melvin D. Hughes (b) | ö (12.20) | | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 28 | 14 | 22 | 0 | 84 | | LONE WILLOW SLOUGH | 219.8R | | | | | | | | | | | | | | | | Columbia Canal Company (a) | 219.8R | | 3050 | 2523 | 145 | 1166 | 1978 | 4149 | 6006 | 8630 | 6083 | 8785 | 8652 | 6141 | 59308 | | State Center Duck Club (b) | | е | 173 | 89 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 302 | | C. Sawall | | f | | | | | | NO DIV | ERSION | | | | | | | | Mendota Duck Club (b) | | g | | | | | | NO DIV | ERSION | | | | | | | | M. Beck (b) | | h | 20 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | | Mario Giomi (c) | | | 0 | 0 | 0 | 0 | 159 | 52 | 61 | 10 | 32 | 52 | 34 | 0 | 400 | | F. A. Yearout | | | 0 | 0 | 0 | 0 | 54 | 63 | 56 | 52 | 38 | 0 | 85 | 0 | 348 | | Tulle Gun Club | | j | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 34 | | Westlands Water District | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 216 | 1038 | 1824 | 1962 | 488 | 5528 | | FREMONT FORD BRIDGE TO GRAVE | LLY FORD | | | | | | | | | | | | | | | | Total
Average cubic feet per secon
Monthly use in percent of se | | | 37174
605
3.8 | 13008
219
1.3 | 3501
569
0.4 | 9237
150
1.0 | 53254
926
5.5 | 77535
1261
8.0 | 108821
1829
11.2 | 127373
2072
13.1 | 141299
2375
14.6 | 164221
2671
16.9 | 154359
2510
15.9 | 80064
1346
8.3 | 969846
1336 | - 8 - Mileage along San Josquin River from its mouth 4.5 miles below Antioch. Plant is located on Fresno Slough which diverts from San Josquin River at mile 209.0L. Distance from San Josquin River and bank is shown in parentheses. Plant is located on James Bypass which diverts from Fresno Slough at mile ö (11.80R). Distance from Fresno Slough and bank are shown in parentheses. Records furnished by contracting entities. Records furnished by U. S. Bureau of Reclamation. Formerly listed as J. E. Jennings. - d Includes Class I water. e 1 6" pump located on arm of slough at S.W. corner S. 12, T. 14 S., R. 15 E. f 1 8" pump located on arm of slough, 1500' W. of S.E. corner S. 18, T. 14 S., R.16 E. g 1 8" pump located on arm of slough at S.W. 1 corner S. 11, T. 14 S., R. 15 E. h 1 8" pump located on arm of slough, 1400' S. of N.E. corner S. 24, T. 14 S., R. 15 E. j 1 8" pump located on arm of slough adjacent to M. Beck. #### DIVERSIONS - SAN JOAQUIN RIVER (Gravelly Ford to Friant Dam) Dctober 1963 through September 1964 | | MILE | NUMBER
AND SIZE | <u> </u> | | | м | ONTHLY | DIVERSI | ON IN AC | RE - FE | ET | | | | TOTAL | |---|----------|----------------------|-------------------|------------|------------------|-------------|-------------------|-------------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-------------| | WATER USER | AND BANK | OF PUMP
IN INCHES | ост. | NDV. | DEC. | JAN. | FEB. | MAR. | APR, | MAY | JUNE | JULY | AUG. | SEPT. | OCTSEPT. | | W. A. Kochergen l | 233.66R | 1-6 | | | | | | 8 | 27 | | 22 | 31 | 36 | | 124 | | Dewey W. Johnson 1 | 235.33R | 1-5
1-10 | | | | | | 16 | 26 | 42 | 50 | 61 | 81 | 17 | 293 | | SKAGGS BRIDGE | 238.18 | | | | | | | | | | | | | | | | U.
S. HIGHWAY 99 BRIDGE | 247.38 | | | | | | | | | | | | | | | | SANTA FE RAILROAD BRIDGE | 249.23 | | | | | | | | | | | | | | | | Miller Brothers | 251.46L | 1-6 | 23 | | | | 8 | 7 | 73 | . 86 | 70 | 92 | 64 | 54 | 477 | | Sycamore Island Stock Ranch 2 | 256.52R | 1-8 | | | | | | | 3 | 50 | 50 | 93 | 50 | 37 | 283 | | Oscar Spano River Ranch 1 | 257.10L | 1-16 | 33 | | | | 41 | 36 | 112 | 148 | 218 | 257 | 224 | 134 | 1203 | | Oscar Spano River Ranch 2 | 257.70L | 1-12 | 10 | 6 | | | 7 | 30 | 33 | 51 | 43 | 157 | 151 | 162 | 650 | | L. D. Cobb | 258.08R | 1-6
1-7 | | | | | 15 | 97 | 21 | 8 | 147 | 176 | 132 | | 596 | | STATE HIGHWAY 41 BRIDGE | 258.33 | | | | | | | | | | | | | | | | R. J. Curtis | 258.39L | 1-4
1-7 | | | | | | | | | 21 | 61 | 41 | | 123 | | W. E. Roberts 1 | 258.80L | 1-6 | 4 | | | | | 5 | 44 | 16 | 38 | 52 | 42 | 5 | 206 | | W. E. Roberts 2 | 258.9DL | 1-12 | 29 | 2 | 1 | 1 | 1 | 9 | 44 | 70 | 97 | 99 | 85 | 89 | 5 27 | | J. E. Cobb | 259.39R | 2-6 | 1 | | | | 39 | 4 | 19 | 5 | 51 | 79 | 79 | 16 | 293 | | DLD LANES BRIDGE | 259.78 | | | | | | | | | | | | | | | | J. E. Cobb 3 | 260.40R | 1-6 | 34 | 1 | | | | 39 | 72 | 105 | 121 | 126 | 122 | 69 | 689 | | R. C. Arnold | 261.53R | 1-4
1-5 | 5 | | | | 16 | 35 | 46 | 67 | 87 | 142 | 146 | 62 | 606 | | Duane M. Folsom | 261.70L | 1-6 | 20 | | | | | 38 | 55 | 99 | 117 | 161 | 144 | 90 | 724 | | E. G. Rank, Jr. | 262.32L | 1-5 | 12 | | | | 11 | 17 | 13 | 56 | 45 | 63 | 50 | 36 | 303 | | Dale McCoon 1 | 262.60R | 1~5 | | | | | | 25 | 98 | | 32 | 153 | 134 | 30 | 472 | | W. H. Rohde | 262.66L | 1-7 | | | | | | 46 | 1 | 6 | 36 | 86 | 60 | 12 | 247 | | Dale McCoon 2 | 263.40R | 1-7 | | | | | | 5 | 80 | 16 | 27 | 171 | 141 | 27 | 467 | | Dale McCoon 3 | 263.48R | 1-6 | 5 | | | | | 29 | 20 | 17 | 23 | 126 | 74 | | 294 | | H. K. Jensen | 263.76R | 1-5 | 31 | | | | 37 | 15 | 54 | 67 | 96 | 91 | 78 | 58 | 527 | | H. W. Ball 4 | 264.08L | 1~6 | | | | | | | | | 36 | 103 | 110 | 80 | 329 | | Ike D. Ball | 264.60R | 1-6 | 34 | | | | 29 | 57 | 94 | 114 | 108 | 111 | 109 | 96 | 752 | | W. F. Ball | 264.83L | 1-4
1-5 | 12 | 1 | | | 10 | 9 | 25 | 50 | 61 | 67 | 69 | 53 | 357 | | Virgil Durando | 267.56L | 1~8 | 3 | 1 | 11 | | 10 | 45 | 52 | 57 | 180 | 204 | 210 | 118 | 891 | | GAGING STATION - SAN JOAQUIN
RIVER BELDW FRIANT | 268.13L | | | | | | | | | | | | | | | | FRIANT BRIDGE | 268.88 | | | | | | | | | | | | | | | | COTTONWOOD CREEK | 269.53R | | | | | | | | | | | | | | | | FRIANT DAM | 269.63 | | | | | | | | | | | | | | | | GRAVELLY FORD TO FRIANT DAM | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of seaso | nal | | 252
4.1
2.2 | 0.2
0.1 | 12
0.2
0.1 | 1
0
D | 224
3.9
2.0 | 567
9.2
5.1 | 968
16
8.6 | 1114
18
9.9 | 1738
29
15.5 | 2710
44
24.1 | 2390
39
21.3 | 1240
21
11.0 | 11230
15 | ^{*} Mileage along San Joaquin River from its mouth $4\frac{1}{2}$ miles below Antioch. #### DIVERSIONS - MERCED RIVER October 1963 through September 1964 | | MILE | NUMBER
AND SIZE | | | | м | ONTHLY | DIVERSI | ON IN AC | RE - FE | ET | | | | TOTAL | |--|----------------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|---------------------|---------------------|----------------------|---------------------|-------------------|--------------| | WATER USER | AND BANK
ABOVE
MOUTH | OF PUMP
IN INCHES | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR, | MAY | JUNE | JULY | AUG. | SEPT. | OCTSEPT | | WYLIG GODDY ODYDGO | | | | | | | | | | | - | 100 | | | ACRE-FEE | | HILLS FERRY BRIDGE
Stevinson Water District #1 | 1.1
1.8R | 1-16 | 43 | 116 | | | 11 | 307 | 231 | 222 | 252 | 255 | 493 | 277 | 2212 | | Stevinson Water District #2 | 3.8R | 1-18 | 141 | 110 | 3 | 4 | 77 | 462 | 557 | 227
580 | 257
718 | 255
868 | 699 | 273
450 | 2213
4559 | | Milton Gordon | 4.3L | 1-10 | 3 | 1 | , | 2 | 4 | 3 | 27 | 55 | 53 | 1 | 29 | 37 | | | GAGING STATION - MERCED
RIVER NEAR STEVINSON | 4.6 | 1 10 | | _ | | | , | J | . 21 | 25 | 23 | 64 | 29 | 37 | 278 | | Maria DeAngelis | 5.8L | 1-12 | 10 | | | | 42 | | 32 | 43 | 62 | 80 | 96 | 49 | 414 | | Stevinson Water District | 6.1L | 1-20 | 114 | 3 | 11 | 4 | 279 | 404 | 466 | 464 | 548 | 606 | 553 | 332 | 3784 | | Stevinson Water District #3 | 7.7L | 1-20 | | | | | 154 | 551 | 943 | 106 | 222 | 1150 | 937 | 551 | 4614 | | Manuel Clemintino | 8.5L | 1-12 | 18 | | | | 22 | 16 | 34 | 25 | 32 | 62 | 74 | | 283 | | Manuel Clemintino | 8.9L | 1-12 | 11 | | | | | 66 | 55 | 26 | 48 | 50 | 44 | 42 | 342 | | Samuel 8. McCullagh | 9.4L | 1-8 | 14 | | 2 | | | | | 130 | 8 | 135 | 82 | 6 | 377 | | Mrs. J. R. Jacinto | 9.6L | 1-12 | 14 | 42 | | | 30 | 103 | 100 | 105 | 122 | 145 | 66 | 40 | 767 | | Mrs. J. B. Silva,
E. and J. Gallo Winery Ranch,
L. Alves and A. Mattos | 10.35L | 1-10 | 21 | 6 | S | 3 | 9 | 115 | 131 | 173 | 177 | 304 | 108 | 110 | 1162 | | Manual Freitas | 10.9L | 1-12 | 35 | | | } | | 57 | 82 | 68 | 119 | 106 | 130 | 44 | 641 | | R. E. Prusso and John Vierra | 10.9L | 1-8
1-12 | 13 | 4 | | | | 63 | 84 | 50 | 106 | 128 | 103 | 99 | 650 | | E. and J. Gallo Winery Ranch | 11.6L | 1-18 | | | | | | 158 | 319 | 29 | 340 | 342 | 269 | | 1457 | | MILLIKEN BRIDGE | 11.65 | | | | | | | | | | | | | | | | E. and J. Gallo Winery Ranch | 12.35L | 1-10 | | | | | | 19 | 38 | 6 | 61 | 87 | 17 | | 228 | | Anthony L. Calderia | 12.5R | 1-12 | 7 | | | | | 21 | 38 | 55 | 16 | 48 | 64 | 43 | 292 | | E. and J. Gallo Winery Ranch | 12.85L | 1-12 | | | | | | 67 | 109 | 17 | 177 | 250 | 42 | | 662 | | J. M. Souza | 14.5L | 1-10 | 32 | | | | | | 55 | 65 | 64 | 66 | 97 | 55 | 434 | | GAGING STATION - MERCED
RIVER NEAR LIVINGSTON | 16.49L | | | | | | | | | | | | | | | | E. and J. Gallo Winery Ranch | 16.5L | 1-14 | | | | | | | 136 | 124 | 63 | 234 | 97 | | 654 | | J. E. Gallo | 20.4L | 1-8 | | | | | | 130 | 182 | 32 | 178 | 224 | 8 | | 754 | | U. S. HIGHWAY 99 BRIDGE | 21.04 | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
BRIDGE | 21.05 | | | | | | | | | | | | | | | | Gallo Cattle Company | 22.2R | 1-8
1-16 | 38 | 1 | 1 | 5 | 72 | 241 | 244 | 135 | 248 | 438 | 310 | 204 | 1937 | | Gallo Cattle Company | 22.8R | 1-12
1-15 | | | | | 57 | 128 | 183 | 90 | 169 | 325 | 198 | 38 | 1188 | | Merced River Farms Association | 26.3R | 1-8 | | | | | | | 67 | 71 | 50 | 78 | 71 | 31 | 368 | | SANTA FE RAILROAD BRIDGE | 27.05 | | | | | | | | | | | | | | | | W. C. Magneson | 27.5R | 1-10 | 31 | | | | | | 31 | 48 | 14 | 57 | 35 | 50 | 266 | | GAGING STATION - MERCED
RIVER AT CRESSEY | 27.55 | | | | | | | | | | | | | | | | CRESSEY BRIDGE | 27.55 | | | | | | | | | | | | | | | | Manuel Silva | 29.9R | 1-6
1-10 | | | | | | | 13 | 71 | 67 | 91 | 61 | | 303 | | Manuel Silva | 30.95R | 1-12 | | | | | | | 62 | 67 | 90 | 138 | 89 | 78 | 524 | | Rancho Con Valor | 31.1L | 1-8 | 31 | | | | | | 22 | 119 | 54 | 122 | 76 | 67 | 491 | | Manuel Silva | 31.4R | 1-10 | | | | | | | 91 | 237 | 118 | 261 | 210 | 145 | 1062 | | P. Hilarides | 32.3L | 1-12 | | | | | | | 4 | 44 | | 3 | 52 | 27 | 130 | | SHAFFER BRIDGE | 32.5 | | | | | | | | | | | | | | | | Harry F. Schmidt and Son | 33.1R | 1-10 | | | | | | | 3 | 138 | 18 | 57 | 107 | 3 | 326 | | Walter Bettencourt | 34.5L | 1-12 | | | | | | NO I | IVERS I | N | | | | | | | W. F. Bettencourt, F. Hilarides, and Cowel Lime and Cement Company | 36.9L | Gravity | 648 | 752 | 597 | 713 | 25 | 35 | 521 | 887 | 956 | 1330 | 1080 | 566 | 8110 | | Amsterdam Orchards Incorporated | 39.1L | 1-14 | | | | 1 | 75 | 116 | 90 | 32 | | 24 | 16 | | 354 | | Ratzlaff Brothers | 4D.2L | a 1-2
1-4 | | | | | | 10 | 23 | 18 | 44 | 56 | 58 | 23 | 232 | | COX FERRY BRIDGE | 42.1 | | | | | | | | | | | | | | | | Cowel Ditch | 45.3R | Gravity | 511 | 654 | 582 | 819 | 787 | 827 | 2410 | 3620 | 3390 | 3720 | 3410 | 1620 | 22350 | | GAGING STATION - MERCED
RIVER BELOW SNELLING | 46.2 | | | | | | | | | | | | | | | | MERCED RIVER | | | | | | | | | | | - | | | | | | Total
Average cubic feét per second
Monthly use in percent of season | al | | 1735
28
2.8 | 1579
27
2.5 | 1201
20
1.9 | 1551
25
2.5 | 1644
29
2.7 | 3899
63
6.3 | 7383
124
11.9 | 7957
129
12.8 | 8589
144
13.8 | 11900
194
19.1 | 9781
159
15.7 | 4983
84
8.0 | 6221D
86 | a The 2" unit was installed in 1964. ## DIVERSIONS - TUOLUMNE RIVER October 1963 through September 1964 | | | NUMBER | | | | ugh Sept | | | | | | | | | TOTAL | |--|------------------|-------------------------------|-----------------|-------------|-------------|----------------|------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-----------------------| | | MILE
AND BANK | NUMBER
ANO SIZE
OF PUMP | | | | M+ | ONTHLY | OIVERSIO | ON IN AC | RE - FE | ET | | | | OIVERSION
OCTSEPT. | | WATER USER | ABOVE
MOUTH | IN INCHES | OCT. | NOV. | OEC. | JAN. | FEB | MAR, | APR. | MAY | JUNE | JULY | AUG. | SEPT. | ACRE-FEET | | E. T. Mape | 1.3R | a 2-14 | 73 | | | 55 | 429 | 560 | 366 | 810 | 806 | 1120 | 1110 | 386 | 5715 | | J. V. Steenstrup Estate | 1.9L | 2-12 | | | | | 19 | 96 | 176 | 161 | 63 | 258 | 347 | 13 | 1153 | | J. V. Steenstrup Estate | 2.9L | 1-10
1-12 | | 1 | | | 28 | 445 | 224 | 94 | 318 | 337 | 343 | 108 | 1898 | | GAGING STATION - TUOLUMNE
RIVER AT TUOLUMNE CITY
(SHILOH BRIDGE) | 3.35 | | | | | | | | | | | | | | | | Bancroft Fruit Farms | 5.0R | 1-10 | 10 | | | | | 21 | 44 | 47 | 58 | 57 | 42 | 37 | 316 | | Della Battestin | 5.9L | b 1-16 | | | | | | 391 | 869 | 356 | 603 | 948 |
1199 | 744 | 5110 | | Western Farms | 6.3L | 1-16 | 1 | | | | | 35 | 108 | 11 | 71 | 114 | 69 | 22 | 431 | | Eugene Boone, Galen Hartwich,
and Dr. Harold Willis | 7.1R | 1-10 | 7 | | | | 10 | 4 | 118 | 4 | 34 | 51 | 95 | 72 | 1 395 | | Beth Wootten | 8.4R | 1-10 | | | | | 23 | 10 | 32 | 51 | 5 | 20 | 43 | 27 | 211 | | Ella T. Rahilly Estate | 8.5L | 1-10 | 16 | | | | , | | 25 | 20 | 12 | 29 | 61 | 8 | 171 | | A. C. Watkins Estate | 9.4L | 1-20 | 7 | | 2 | | 5 | 90 | 593 | 523 | 168 | 561 | 406 | 40 | 2395 | | McClure Ranches | 9.7R | 1-12 | 16 | | | | 20 | 4 | 23 | | 23 | 3 | 13 | | 102 | | Homer Couchman (c) | 10.2R | 1-14 | | | | | 17 | 3 | 107 | 78 | 123 | 107 | 120 | 129 | 684 | | CARPENTER ROAD BRIDGE | 12.9 | | | | | | | | | | | | | | | | SEVENTH STREET BRIDGE | 15.75 | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
BRIDGE | 15.8 | | | | | | | | | | | | | | | | U. S. HIGHWAY 99 BRIDGE | 16.05 | | | | | | | | | | | | | | | | GAGING STATION - TUOLUMNE
RIVER AT MODESTO | 16.05 | | | | | | | | | | | | | | | | DRY CREEK | 16.5R | | | } | | | | | | | | i | | | | | EAST MODESTO BRIDGE | 19.3 | 1 | | | | | | | | | | | | | | | Jack Gardella | 20.3R | 1-10 | 19 | | | | | 4 | 23 | 19 | 51 | 19 | 51 | 56 | 242 | | SANTA FE RAILROAD BRIDGE | 21.6 | | | | | | | | | | | | | | | | SANTA FE ROAD BRIDGE | 21.65 | | 1 | | 1 | | | | | | | | | | | | Mrs. A. L. Leib | 22.8R | 1-3
1-6 | | | | | | 6 | 25 | 7 | 26 | 27 | 28 | 13 | 132 | | GEER AVENUE BRIDGE | 26.0 | | | | | | | | | | | | | | | | Michel Investment Company | 2B.BR | 1-B | 10 | | | | 1 | 24 | 35 | 22 | 79 | 54 | 100 | 50 | 375 | | J. W. and Lola Mae Short | 29.8L | 1-10 | 17 | | | | 2 | 108 | 60 | 56 | 34 | 72 | 63 | 8 | d 420 | | Firpo Ranch | 30.2L | 1-10 | | | 1 | | 9 | 15 | 55 | 59 | 30 | 54 | 39 | 28 | 290 | | SOUTHERN PACIFIC RAILROAD
BRIDGE (OAKDALE BRANCH) | 31.5 | | | | | | | | | | | | | | | | GAGING STATION - TUOLUMNE
RIVER AT HICKMAN BRIDGE | 31.7 | | | | | | | | | | | | | | | | Iva M. Ketcham (e) | 39.4R | 1-8 | 18 | | | | | 39 | 62 | 116 | 96 | 159 | 134 | 111 | 735 | | Westley N. Sawyer | 39.8L | 1-8 | 7 | | | | | 13 | 64 | 90 | 90 | 95 | 97 | 54 | 510 | | GAGING STATION - TUOLUMNE
RIVER AT ROBERTS FERRY
BRIDGE | 39.9 | | | | | | | | | | | | | | | | Westley N. Sawyer | 40.8L | 1-14 | 24 | | | | | 26 | 75 | 80 | 82 | 97 | 106 | 54 | 544 | | Curtner Zanker | 45.7L | 1-10 | 1 | 1 | | 1 | 1 | 1 | 90 | 58 | 5 5 | 51 | 36 | 33 | 328 | | Dolling Brothers | 46.3R | 1-8 | 20 | | | | | 15 | 57 | 68 | 55 | 90 | 103 | 80 | 488 | | STATE HIGHWAY 132 BRIDGE | 47.4 | | | | | | | | | | | | | | | | GAGING STATION - TUOLUMNE
RIVER AT LA GRANGE BRIDGE | 50.5 | | | | | | | | | | | | | | | | TUOLUMNE RIVER | | | | T) | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of seas | onal | | 246
4
1.1 | 2
0
0 | 3
0
0 | 56
1
0.2 | 564
10
2.5 | 1910
31
8.4 | 3231
54
14.3 | 2730
44
12.1 | 2902
49
12.8 | 4323
70
19.1 | 4605
75
20.3 | 2073
35
9.2 | 22640
31 | a One 14" unit was installed in 1964. b Replaces a 14" unit. c Formerly listed as Raymond Boone. d Includes an undetermined amount of water returned to river by spill. e Formerly listed as A. E. Ketcham Estate. #### OIVERSIONS - ORY CREEK October 1963 through September 1964 | | MILE
AND BANK | NUMBER
AND SIZE | | | | М | ONTHLY | OIVERSIC | N IN AC | RE - FE | ET | | | | TOTAL
DIVERSION | |---|------------------|----------------------|----------------|---------------|---------------|---------------|----------------|----------------|------------------|-----------------|------------------|------------------|------------------|------------------|---------------------| | WATER USER | ABOVE
MOUTH | OF PUMP
IN INCHES | ост. | NOV. | OEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | OCTSEPT
ACRE-FEE | | MODESTO-EMPIRE TRACTION
COMPANY RAILROAD BRIGGE | 0.7 | | | | | | | | | | | | | | | | STATE HIGHWAY 132 BRIDGE
(YOSEMITE BOULEVARD) | 0.8 | | | | | | | | | | | | | | | | LA LOMA BRIDGE | 1.2 | | | | | | | | | | | | | | | | EL VISTA AVENUE BRIDGE | 2.9 | | | | | | | | | | | | | | i | | GAGING STATION - DRY CREEK NEAR MODESTO | 5.3R | | | | | | | | | | | | | | | | CLAUS ROAD BRIDGE | 5.4 | | | | | | | | | | | | | | | | SANTA FE RAILROAD BRIDGE | 6.4 | | | | | | | | | | | | | | | | CHURCH STREET BRIDGE | 7.2 | | | | | | | | | | | | | | | | WELLSFORD ROAD BRIDGE | 8.7 | | | | | | | | | | | | | | | | ALBERS ROAD BRIOGE | 11.0 | | | | | | | | | | | | | | | | MODESTO IRRIGATION DISTRICT CANAL CROSSING | 11.1 | | | | | | | | | | i | | | | | | Edward Johnson | 12.6R | 1-6 | 7 | | | | | | 7 | 12 | 2 | 19 | 37 | 26 | 110 | | Edward Johnson | 12.7R | 1-6 | 22 | | | | | | 28 | 17 | 39 | 46 | 64 | 24 | 240 | | Joe Fagundes | 14.7R | 1-10 | 22 | 2 | 4 | 7 | 61 | 78 | 108 | 91 | 120 | 144 | 166 | 106 | 909 | | OAKDALE-WATERFORD HIGHWAY
BRIOGE | 17.4 | | | | | | | | | | | | | | | | DRY_CREEK | | | | | | | | | | | | | | | | | Total Average cubic feet per second Monthly use in percent of sea | sonal | | 51
1
4.0 | 2
0
0.2 | 4
0
0.3 | 7
0
0.6 | 61
1
4.8 | 78
1
6.2 | 143
2
11.4 | 120
2
9.5 | 161
3
12.8 | 209
3
16.6 | 267
4
21.2 | 156
3
12.4 | 1259 | #### OIVERSIONS - STANISLAUS RIVER October 1963 through September 1964 | | MILE
ANO BANK | NUMBER
ANO SIZE | | | | м | ONTHLY | OIVER51 | OA NI NO | RE - FE | EΤ | | | | TOTAL | |--|------------------|----------------------|-------------------|------|----------------|----------------|-------------------|-------------------|---------------------|---------------------|---------------------|----------------------|----------------------|---------------------|---------------------| | WATER USER | ABOVE
MOUTH | OF PUMP | ост. | NOV. | DEC. | JAN. | FEB. | MAR. | APR, | MAY | JUNE | JULY | AUG. | SEPT, | OCT SEPT. | | GAGING STATION - STANISLAUS
RIVER NEAR MOUTH | 1.9R | | | | | | | | | | | | | | | | Cook Land and Cattle Company
and C. M. Carroll | 1.9R | 1-16 | | | | | | | 13 | 20 | 9 | 9 | 10 | 57 | 118 | | C. C. Angyal | 2.4R | 1-18 | 63 | | | | 1 | 198 | 146 | 153 | 309 | 318 | 239 | 125 | 1551 | | Faith Ranch | 3.4L | 2-12
1-16 | 408 | | | | 299 | 290 | 443 | 673 | 566 | 660 | 618 | 506 | 4463 | | Reclamation District 2064 | 4.0R | 1-14
1-16
2-20 | 223 | | | | 344 | 689 | 2630 | 2040 | 2340 | 3080 | 2670 | 2050 | 16070 | | Reclamation District 2075 | 4.05R | 2-16
1-20 | 483 | | 31 | 42 | 739 | 976 | 2160 | 2280 | 2270 | 2580 | 2550 | 1890 | 16000 | | D. F. Koetitz | 4.7L | 1-14 | | | | | 39 | 49 | 3 24 | 356 | 206 | 288 | 331 | 312 | 1905 | | E. T. Mape | 4.75L | 1-20 | | | | | 131 | 212 | | | 110 | 269 | 117 | | 839 | | Henry Pelucca | 5.5L | 1-16 | 18 | | | | | 53 | 55 | 52 | 156 | 149 | 167 | 91 | 741 | | Alice Gill | 6.4L | 1-12 | | | | | | | | 370 | 312 | 298 | 453 | 265 | a 1698 | | D. J. Macedo | 8.4R | 1-16 | 123 | | | | 58 | 213 | 263 | 403 | 203 | 539 | 589 | 498 | 2889 | | N. E. Cannon | 8.7R | 1-10 | 19 | | | | | 271 | 281 | 2 66 | 321 | 459 | 430 | 163 | 2210 | | GAGING STATION - STANISLAUS
RIVER AT KOETITZ RANCH | 9.35L | | | | | | | | | | | | | | | | D. F. Koetitz | 9.4L | 1-12 | | | i ' | | 51 | 181 | 369 | 2 58 | 253 | 622 | 420 | 342 | 2496 | | John L. Hertle | 9.8L | 1-10 | 6 | | | | | 40 | 36 | 41 | 40 | 39 | 56 | 34 | 292 | | Nelson Santos | 10.0R | 1-16 | 18 | | | i | | | 102 | 94 | 20 | 55 | 81 | 33 | 403 | | Nelson Santos | 10.5R | 1-16 | 2 5 | | | | | | 263 | 122 | 63 | 127 | 180 | 68 | 848 | | John L. Hertle | 10.7L | 1-10 | 7 | | | | | 17 | 9 | 9 | 10 | 15 | 17 | 5 | 89 | | GAGING STATION - STANISLAUS
RIVER AT RIPON
SOUTHERN PACIFIC RAILROAD | 15.7L
15.7 | | | | | | | | | | | | | | | | BRIDGE | | | | | | | | | | | | | | | | | U. S. HIGHWAY 99 BRIDGE | 15.7 | | | | | | | | | | | | | | | | A. Girardi | 17.7L | 1-16 | | | | 2 | 1 | | 219 | 126 | 92 | 249 | 182 | 115 | a 986 | | E. J. Freethy | 19.0R | 1-14 | | | | | 29 | | 130 | 134 | 123 | 200 | 236 | 88 | 940 | | Libby, McNeill, and Libby | 20.9R | 1-14 | | | | | | 250 | 150 | 55 | 264 | 300 | 268 | 164 | 1451 | | Heath Ranch | 21.2L | 1-6 | 71 | | | | | 7 | 8 | 50 | 61 | 53 | 74 | 91 | 415 | | Mark Rumble | 23.4L | 1-8 | | | | | | | | | 3 | 3 | 7 | | 13 | | MODESTO-ESCALON HIGHWAY
8RIDGE | 29.6 | | | | | | | | | | | | | | | | F. K. Floden | 29.9L | 1-10 | | | | | | NO I | DIVERSI | ON | | | | | | | SANTA FE RAILROAD BRIDGE | 33.4 | | | | | | | | | | | | | | | | GAGING STATION - STANISLAUS
RIVER AT RIVERBANK | 33.6 | | | | | | | | | | | | | | | | Oakdale Irrigation District
(Crawford pump) (b) | 37.7L | 1-14 | 17 | | | | | 86 | 144 | 115 | 164 | 112 | 260 | 6 | a 904 | | Oakdale Irrigation District
(Brady pump) (b) | 39.1L | 1-12 | 46 | | | | | 81 | 94 | 130 | 145 | 157 | 191 | 54 | a 898 | | OAKDALE-STOCKTON HIGHWAY BRIDGE | 41.2 | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
8RIDGE (OAKDALE BRANCH) | 41.2 | | | | | | | | | | | | | | | | GAGING STATION - STANISLAUS
RIVER AT ORANGE BLOSSOM
BRIDGE | 47.0 | | | | | | | | | | | | | | | | STANISLAUS RIVER | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of seaso | onal | | 1527
25
2.6 | | 31
1
0.1 | 44
1
0-1 | 1691
29
2.9 | 3613
59
6.2 | 7839
132
13.5 | 7747
126
13.3 | 8040
135
13.8 | 10580
172
18.2 | 10150
165
17.4 | 6957
117
11.9 | 58 220
80 | a Includes an undetermined amount of water returned to river by apill. b Oakdale Irrigation District for season of 1964 maintained plants at miles 27.7L and 39.1L to supplement district gravity supply. ## DIVERSIONS - TULE
RIVER October 1963 through September 1964 | | MILE
ANO BANK | NUMBER
AND SIZE | | | | М | ONTHLY | DIVERSI | DN IN AC | RE - FE | ETa | | | | TOTAL | |---|------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|-----------------|--------------------|--------------------|---------------------|--------------------|-------------------|-------------| | WATER USER | * | DF PUMP
IN INCHES | DCT. | NOV. | OEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | OCTSEPT | | SUCCESS DAM | 0.0 | | | | | | | | | | | | | | | | GAGING STATION - TULE RIVER
BELOW SUCCESS DAM | 0.35 | | | | | | | | | | | | | | | | Campbell Moreland Ditch | 2.4L | Gravity | 832 | 156 | 176 | 944 | 71 | 20 | 55 | 1485 | 740 | 697 | 888 | 1412 | 7476 | | PORTER SLOUGH | 2.4R | | | | | | | | ì | | | | | | l | | GAGING STATION - PORTER
SLOUGH AT PORTERVILLE
(B LANE BRIDGE) | ** (2.4) | | | | | | | | | | | | | | | | PIONEER SPILL | ** (3.7R) | | | | | | | | | | | | | 1 | | | Porter Slough Ditch | **(4.5R) | Gravity | 155 | 191 | | | | | | | 417 | 531 | 292 | | 1586 | | GAGING STATION - PORTER
SLOUGH NEAR PORTERVILLE
(NEWCOMB ROAD) | ** (6.1) | | | | | | | , | | | | | | | | | Vandalia Ditch (b) | 3.1L | Gravity | 165 | | | | | ļ | | 209 | 143 | 132 | 211 | 44 | 904 | | SANTA FE RAILROAD BRIDGE | 5.1 | | | | | | | | | | | | | | | | Poplar Ditch | 5.8L | Gravity | 123 | 1460 | 943 | 1253 | 337 | 21 | | 365 | 3050 | 5815 | 2422 | 121 | 15910 | | STATE HIGHWAY 190 BRIDGE | 5.9 | | | | | | | | | | | | | | | | SOUTHERN PACIFIC RAILROAD
BRIDGE | 6.0 | | | | | | | | | | | | | | | | Hubbs-Miner Ditch (c) | 6.4R | Gravity | 171 | 153 | | | | 181 | 106 | 236 | 419 | 728 | 427 | 160 | 2581 | | STATE HIGHWAY 65 BRIDGE | 6.6 | | | | | | | | | | | | | | | | Rhodes-Fine Ditch (c) | 8.4L | Gravity | | | | | | | 87 | 942 | 374 | | 5 | | 1408 | | OLIVE AVENUE BRIDGE | 9.9 | | | | | | | | | İ | | | | | | | FRIANT KERN CANAL CROSSING | 10.5 | | | | | | | | | | | | | | | | Woods-Central Ditch (c) | 11.0L | Gravity | | | 647 | 559 | | 3 | | | | | | | 1209 | | GAGING STATION - TULE
RIVER BELOW PORTERVILLE | 11.8 | | | | | | | | | | | | | | , | | OTTLE BRIDGE | 14.4 | | | | | | | | | | | | | | | | TULE RIVER | | | | | | | | | | | | | | | | | Total
Average cubic feet per second
Monthly use in percent of seaso | onal | | 1446
24
4.7 | 1960
33
6.3 | 1766
29
5.7 | 2756
45
8.9 | 408
7
1.3 | 225
4
0.7 | 248
4
0.8 | 3237
53
10.4 | 5143
86
16.5 | 7903
129
25.4 | 4245
69
13.7 | 1737
29
5.6 | 31070
42 | Mileage downstream from Success Dam. Figure in parenthesis indicates distance along Porter Slough from Tule River. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources. The greater portion of this water was used to recharge Vandalia Irrigation District well field. During periods of no record, the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods. | | T | | | | | | OIVERSI | ON | | | | | | ACREAGE I | RRIGATEO | |---|-----------------------|---------------------|------------------|------------------|-----------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|------------------------|----------------------|-------------------|--------------------|-------------| | WATER USER | ост. | NOV. | OEC. | JAN | FE8 | MAR. | APR. | мау | JUNE | JULY | AUG. | SEPT. | TOTAL | GENERAL | RICE | | Friant-Kern Canal | T | | | San Jo | aquin R | iver | | | | | | | | | | | Total acro-feet diverted
Average cubic feet per second
Monthly use in percent of sessonal | 93329
1568
11.4 | 23222
390
2.8 | 1557
25
.2 | 0
0
0 | 92337
1605
11.3 | 75012
1220
9.2 | 32460
546
4.0 | 36786
598
4.5 | 112026
1883
13.7 | 155538
2530
19.0 | 145948
2374
17.9 | 49348
829
6.0 | 817563
1126 | | | | Madera Canal | | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 9965
167
4.5 | 492
83
.2 | 0 0 | 0 0 | 0
0
0 | 28154
458
12.8 | 0 0 | 5133
83
2.3 | 47560
799
21.5 | 72890
1185
33.0 | 49264
801
22.3 | 7281
122
3.3 | 220739
304 | | | | Merced Irrigation District | | | | Merc | ed Rive | - | | | | | | | | | | | Main Canal
Northside Canal | 2755
494 | 0
117 | 0
123 | 0
188 | 0
125 | 0
135 | 75680
3074 | 83610
3687 | 84134
3731 | 104660
4737 | 73586
3521 | 0
5 2 0 | a 424645
20452 | ъ 111826 | 5297 | | Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal | 3249
53
.7 | 117
2
0 | 123
2
0 | 188
3
0 | 125
2
0 | 135
2
0 | 78754
1324
17.7 | 87297
1420
19.6 | 87865
1477
19.8 | 109617
1783
24.7 | 77107
1254
17.4 | 520
9
.1 | 445097
615 | | | | Turlock Igrigation District | | | | Tuolu | mne Riv | e <u>r</u> | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 34187
556
6.6 | 18960
319
3.6 | 1595
26
.3 | 1459
24
.3 | 9540
166
1.8 | 40982
666
7.9 | 73190
1230
14.0 | 59006
960
11.3 | 73071
1228
14.0 | 80648
1312
15.4 | 1258 | | c 522414
722 | d 173043 | 0 | | Modesto Irrigation Oistrict | 1 | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 20049
326
7.9 | 45
1
0 | 43
1
0 | 304
5 | 90
2
0 | 26607
433
10.5 | 34828
585
13.7 | 37342
607
14.7 | 40791
686
16.1 | 40163
653
15.8 | 534 | 352 | e 254068
351 | f 74161 | 450 | | Waterford Irrigation District | | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 2049
33
6.7 | 0
0
0 | 0 0 | 0 0 | 0 0 | 2060
34
6.8 | 4189
70
13.8 | 5206
85
17.1 | 5568
94
18.3 | 5241
85
17.3 | 3917
64
12.9 | 2164
36
7.1 | g 30394
42 | h 6819 | 0 | | Oakdale Irrigation District | 1 | | | Stanis | laus Ri | ver | | | | 1 | | | | | | | Northside Canal
Southside Canal | 6811
10201 | 0 | 0 | 0 | 0 | 7458
13745 | 15848
22975 | 16572
23758 | 16044
24499 | 16535
26302 | | 12899
20852 | 109101
169324 | i 33381
j 33869 | 3290
416 | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 17012
277
6.1 | 0 0 | 0 0 | 0 0 | 0 0 | 21203
345
7.6 | 38823
652
13.9 | 40330
656
14.5 | 40543
681
14.6 | 42837
697
15.4 | 714 | 33751
567
12.1 | 278425
385 | k 67250 | k 3706 | | South San Joaquin Irrigation District | | | | | | | | | | | | | | | | | Total acre-feet diverted
Average cubic feet per second
Monthly use in percent of seasonal | 8284
135
3.0 | 0 | 0 0 | 0 | 6812
123
2.5 | 17109
278
6.1 | 48558
816
17.4 | 44205
719
15.9 | 36513
614
13.1 | 40096
652
14.4 | | | 278427
385 | m 62832 | 0 | - Data for Madera and Friant-Kern Canals furnished by \mathbf{U}_{\star} S. Sureau of Reclamation, all other data furnished by individual irrigation - Reclamation, all other data turnished by summer districts. An additional 118,352 acre-feet of water was pumped from wells. An additional 118,352 acre-feet of this acreage, 3,341 was double cropped. It does not include an undetermined amount of riparian water users acreage. An additional 178,064 acre-feet of water was pumped from wells. Of this acreage, 19,909 was double cropped. An additional 91,060 acre-feet of water was pumped from wells. Of this acreage, 8,971 was double cropped. - g An additional 7,569 acre-feet of water was pumped from wells. h Of this acreage, 110 was double cropped. i Of this acreage, 275 was double cropped. j Of this acreage, 486 was double cropped. k This acreage also received 13,435 acre-feet of water from wells and controlled drainage. This acreage also received an undetermined amount of well water, and an undetermined amount of controlled drainage water from Oakdale Irrigation District. Of this acreage, 3,198 was double cropped. Includes 1,446 acrea served by subirrigation. TABLE 8-8 IMPORTS AND EXPORTS October 1963 through September 1964 | WATER USER | OCT. | NOV. | OEC. | JAN. | FE8 | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | |--|-----------------------|------|------|------|--------|---------|-----------------|---------|------|----------------------|------------------------|-------|-------| | | | | | | Im | ports f | com Del | ļ
ķā | | | | | | | Delta-Mendota Canal | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly use in percent of seasonal | 120464
1959
7.4 | 475 | | 504 | 1508 | 2079 | 2932 | | 3586 | | 247272
4021
15.2 | 2240 | | | | | | | | Export | from ' | <u>Fuolumne</u> | e River | | | | | | | City and County of San Francisco | | | | | | | | | | | | | | | Total acre-feet
Average cubic feet per second
Monthly use in percent of seasonal | 10255
167
6.5 | | | 200 | 243 | | 258 | | 261 | 16185
263
10.2 | 16236
264
10.2 | 264 | 219 | | | MILE POST
FR | DM | | | 1 | MONTHLY | OELIVE | RIES IN | ACRE-FE | ET | | | | Γ | |---|-----------------------|--------|-------|------|-------|---------------|----------|---------|---------|--------|--------|--------------|-------|---------------| | WATER USER | CANAL HEAD
FROM TO | ост. | NOV. | OEC. | JAN. | FE8. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | | | _ | _ | | _ | | + | | | | 1 | 1 | | | | 0 | 2.54 | 2201 | | | | | elta-Mer | | | | | | | | | State of California
(South Bay Aqueduct) | 3.54 | 2301 | 487 | 382 | 1277 | 1040 | 1315 | 621 | 2808 | 2986 | 2754 | 2348 | 2537 | 20856 | | Plain View Water Oistrict | 8.50 20. | 615 | 33 | 6 | 7 | 424 | 1492 | 25 23 | 2802 | 2317 | 3677 | 3 523 | 1739 | 19158 | | West Side Irrigation Oistrict | 14.78 | 0 | 0 | 0 | 0 | 0 | 0 | 219 | 286 | 0 | 999 | 578 | 2 | 2084 | | Banta-Carbona Irrigation Oistrict | 20.42 | 0 | 0 | 0 | 0 | 0 | 0 | 962 | 1476 | 776 | 3752 | 5707 | 1317 | 13990 | | Hospital Water District | 18.05 30. | 96 544 | 53 | 116 | 30 | 683 | 2762 | 3513 | 3838 | 4234 | 4696 | 4580 | 2617 | 2 7666 | | West Stanislaus Irrigation
Oistrict | 31.31 | 0 | 0 | 0 | 0 | 0 | 1322 | 8703 | 3210 | 4022 | 11895 | 10578 | 3349 | 43079 | | Kern Canon Water District | 31.31 35.3 | 18 372 | 4 | 0 | 1 | 130 | 826 | 1699 | 772 | 812 | 1548 | 1275 | 598 | 8037 | | Oel Puerto Water Oistrict | 35.73 42.0 | 228 | 22 | 22 | 95 | 507 | 1865 | 1828 | 1028 | 2002 | 2105 | 1884 | 863 | 12449 | | Patterson Water District | 42.51 | 249 | 0 | 28 | 30 | 0 | 993 | 684 | 646 | 922 | 501 | 1021 | 587 | 5661 | | Salado Water Oistrict | 42.10 46.8 | 33 14 | 0 | 0 | 0 | 0 | 662 | 2371 | 1280 | 1380 | 2125 | 1573 | 800 | 10205 | | Sunflower Water Oistrict | 44.23 52.0 | 108 | 99 | 0 | 0 | 253 | 1185 | 2335 | 1456 | 1647 | 2750 | 2105 | 546 | 12484 | | Orestimba Water District | 46.83 51.4 | 110 | 0 | 2 | 0 | 226 | 819 | 3344 | 1179 | 1462 | 2770 | 1537 | 371 | 11820 | | Foothill Water Oistrict | 51.65 57.4 | 342 | 0 | 0 | 1 | 412 | 848 | 1169 | 1677 | 1584 | 2016 | 1757 | 1178 | 10984 | | Davis Water Oistrict | 53.60 56.8 | 206 | 1 | 0 | 0 | 214 | 71 | 539 | 360 | 385 | 758 | 435 | 206 | 3175 | | Luhr and Wendt | | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | | Mustang Water Oistrict | 56.80 62.6 | 136 | 0 | 0 | 0 | 209 | 882 | 921 | 1655 | 1029 | 2055 | 1791 | 792 | 9470 | | Quinto Water District | 63.96 67.5 | 5 252 | 0 | 0 | 0 | 409 | 865 | 940 | 732 | 752 | 1107 | 1064 | 768 | 6889 | | Romero Water Oistrict | 66.70 68.0 | 104 | 33 | 0 | 0 | 101 | 420 | 138 | 168 | 41 | 119 | 178 | 105 | 1407 | | San Luis Water District | 69.21 90.5 | 1683 | 1578 | 2407 | 3802 | 6866 | 9354 | 6625 | 8260 | 11101 | 12958 | 9993 | 4148 | 78775 | | Grasslands Water Oistrict | 70.00 | 9633 | 4773 | 0 | 0 | 0 | 0 | 472 | 1097 | 922 | 1094 | 244 | 2501 | 20736 | | Grasslands Water District (a) | Poo1 | 22501 | 7311 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6819 | 36631 | | Morrison-Knudsen | | 13 | 3 | 1 | 1 | 1 | 5 | 6 | 5 | 2 | 7 | 5 | 1 | 50 | | State Fish and Game | 70.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Sam Hamburg Farms | 90.53 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 4 | 0 | 3 | 22 | | Panoche Water District | 93.25 96.7 | 0 1462 | 1062 | 1650 | 4760 | 10198 | 7492 | 4587 | 6699 | 9220 | 13151 | 10912 | 1508 | 72701 | | Eagle Field Water District | 93.27 94.5 | 7 191 | 0 | 318 | 352 | 719 | 233 | 724 | 620 | 467 | 815 | 1167 | 572 | 6178 | | Oro Loma Water Oistrict | 95.50 96.6 | 2 0 | 0 | 0 | 0 | 0 | 52 | 595 | 1113 | 942 | 1141 | 1028 | 212 | 5083 | | Westside Golf Association | 95.95 | 11 | 3 | 5 | 2 | 6 | 8 | 14 | 19 | 21 | 26 | 20 | 14 | 149 | | McNamara-Mannix | | 62 | 41 | 26 | 34 | 50 | 74 | 67 | 0 | 157 | 51 | 101 | 98 | 761 | | Mercy Springs Water Oistrict | 97.70 99.8 | 2 302 | 7 | 128 | 0 | 38 | 447 | 107 | 1164 | 1185 | 1115 | 1081 | 297 | 5871 | | Mercy Springs (a) | Pool | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Widren Water District | 102.03 | 0 | 0 | 0 | 0 | 79 | 0 | 170 | 542 | 363 | 427 | 396 | 0 | 1977 | | Broadview Water District | 102.95 | 291 | 433 | 158 | 1507 | 2952 | 2276 | 1642 | 1499 | 2752 | 3102 | 2276 | 55 | 18943 | | McNamara Corp. of California | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 33 | 14 | 60 | | San Luis Water District
(Temp. M & I) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 25 | 27 | 39 | 19 | 119 | | Western Contracting Corp. | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 63 | 63 | | Total | | 41738 | 15945 | 5250 | 11900 | 2 5518 | 36270 | 47520 | 46403 | 53510 | 79558 | 69229 | 34699 | 467540 | | Net Deliveries, DMC to
Mendota Pool | | 66062 | 19946 | 0 | 17449 | 59516 | 86206 | 119855 | 130885 | 144565 | 168974 | 161806 | 90470 | 1065734 | Millert | 1 | | | | | | | | Fresno County Water Oistrict #18 | | 5 | 2 | 2 | 1 | 3 | 3 | 7 | 12 | 19 | 23 | 18 | 12 | 107 | | Ralston Associates | | 1 | 0 | 0 | 1 | 1 | ۵ | 1 | 2 | 4 | 2 | 1 | 1 | 14 | | Total | | 6 | 2 | 2 | 2 | 4 | 3 | 8 | 14 | 23 | 25 | 19 | 13 | 121 | | | | | | | | | Madera | Canal | | | | | | | | Madera Irrigation Oistrict | 6.10 32.2 | 9965 | 492 | 0 | 0 | 0 | 16378 | 0 | 5133 | 30018 | 43151 | 20325 | 0 | 125462 | | Adobe Ranch | 20.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | О | 0 | 43 | 89 | 132 | | Chowchilla Water District | 35.9 | 0 | 0 | 0 | 0 | 0 | 11776 | 0 | 0 | 17542 | 29739 | 28896 | 7192 | 95145 | | | | | | 0 | | | | | | | | | _ | | #### TABLE 8-9 (Cont.) # DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS* October 1963 through September 1964 | | MILE POS | | MONTANI DIDIVENTED IN NORD-1201 | | | | | | | | | | | | | |--|----------|--------|---------------------------------|--------------|------|------|-----------------|---------|---------|-------|---------|--------|----------|-------|-----------------| | WATER USER | FROM | TO | OCT. | NOV. | DEC. | JAN. | FEB. | MAR. | APR. | MAY | JUNE | JULY | AUG. | SEPT. | TOTAL | | | | | | | | | | riant-K | orn Can | | | | | | | | Garfield Water District | 7. | .53 | 110 | 122 | 168 | 0 | <u>£</u>
278 | 46 | 200 | 430 | 512 | 547 | 488 | 298 | 3199 | | International Water District | 14. | | 61 | 58 | 0 | 0 | 0 | 21 | 0 | 103 | 151 | 210 | 84 | 27 | 715 | | Round Mountain Water District | 20.85 | 21.33 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | | Round Mountain Ranch | 20. | | 4 | 0 | 0 | 0 | 4 | 0 | 6 | 0 | 5 | 11 | 7 | 4 | 41 | | Consolidated Irrigation District | 28. | | 10084 | 1674 | 0 | 0 | 1533 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13291 | | Last Chance Water Ditch Company | 28. | | , 0 | 0 | a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Laguna Irrigation District | 28. | | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Corcoran Irrigation District | 28. | .50 | 3618 | 0 | 0 | 0 | 4701 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8319 | | Stratford Irrigation District | 28. | .50 | О | 0 | 0 | 0 | О | 0 | 0 | 0 | 0 | 0 | 0 | О | o | | Tulare Lake Basin Water
Storage District | 28.50 8 | 95.64 | 0 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Alta Irrigation District | 28. | .50 | 0 | 0 | 0 | 0 | 0 | 0 | О | 0 | 0 | 0 | 0 | 0 | 0 | | Fresno Irrigation District | 28. | .50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Riverdale Irrigation District | 28. | .50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Kings River Water Association | 28. | .50 | 9001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9001 | | Westside Irrigation District | 28. | .50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Kings County Water District | 28.50 | 71.29 | 1855 | 145 | 0 | 0 | 3273 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5273 | | Orange Cove Irrigation District | 35.87 | 53.31 | 1063 | 474 | 0 | 0 | 0 | 2140 | 1571 | 3400 | 5847 | 7436 | 7266 | 3667 | 3 2864 | | City of Orange Cove | 43. | .44 | 14 | 4 | 0 | 0 | 1 | 21 | 25 | 37 | 44 | 45 | 38 | 22 | 251 | | Stone Corral Irrigation District | 56.90 | 64.40 | 238 | 131 | 0 | 0 | 353 | 393 | 101 | 694 | 1382 | 1870 | 1910 | 881 | 7953 | | Ivanhoe Irrigation District | 65.04 | 68.13 | 1339 | 547 | 0 | 0 | 0 | 373 | 212 | 621 | 968 | 2475 | 2694 | 1607 | 10836 | | Tulare Irrigation District | 68.14 | 71.29 | 13307 | 0 | 0 | О | 16927 | 0 | 0 | 0 | 15755 | 27581 | 21918 | 0 | 95488 | | Lakeside Irrigation Water
District | 69. | .42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Kaweah-Delta Water Conservation
District | 69.08 | 71.29 | 10249 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 10249 | | Exeter Irrigation District | 72.52 | 79.24 | 938 | 422 | 0 | 0 | 1938 | 944 | 996 | 2053 | 2491 | 2803 | 3 2 0 5 | 1827 | 17617 | | Lindsay-Strathmora Irrigation
District | 85, | | 1396 | 686 | 0 | 0 | 984 | 770 | 1454 | 3047 | 4312 | 5066 | 5125 | 4017 | b 26857 | | Lindmore Irrigation District | 86.17 | 91.12 | 1628 | 563 | 0 | 0 | 3414 | 2039 | 2267 | 3170 | 5954 | 7611 | 7569 | 5125 | 39340 | | Porterville Irrigation District | 93.93 | 98.62 | 916 | 321 | 0 | 0 | 1065 | 1845 | 1267 | 1384 | 2577 | 3983 | 4263 | 1863 | 19484 | | Lower Tule Irrigation District | 95.67 | 98.62 | 20008 | 7549 | 0 | 0 | 18960 | 12984 | 0 | 0 | 18587 | 32270 | 33777 | 7561 | 151696 | | Tea Pot Dome | 99. | | 194 | 34 | 0 | 0 | 133 | 147 | 329 | 458 | 682 | 783 | 815 | 603 | 4178 | | Saucelito Irrigation District | 98.62 | | 1623 | 375 | 0 | 0 | 3408 | 4848 | 1632 | 1045 | 4044 | 4949 | 5772 | 2061 | 29757 | | Cloer Commercial Service
District | 101. | | 0 | 0 | 0 | 0 | 0 | 0 | .0 | 0 | 0 | 0 | 0 | 0 | 0 | | Terra Bella Irrigation District | 102. | | 662 | 91 | 0 | 0 | 298 | 452 | 1004 | 1525 | 2317 | 2761 | 2755 | 1853 | 13718 | | Pixley Irrigation District Delano-Earlimart Irrigation District | 102. | | 4510
5272 | 2372
4873 | 179 | 0 | 6016
16406 | 19920 | 9416 | 7801 | 20551 | 22211 | 18671 | 7156 | 12898
132456 | | Rag Gulch Water District | 117. | 96 | 377 |
262 | 0 | 0 | 946 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1585 | | Southern San Joaquin Municipal Utility Diatrict | 117.44 | | 3683 | 1422 | 32 | 0 | B188 | 19849 | 8674 | 7222 | 16967 | 21586 | 20150 | 7178 | 114951 | | Shafter-Wasco Irrigation District | 134.42 | 137.17 | 1164 | 692 | 301 | 0 | 3511 | 8220 | 3306 | 3796 | 8880 | 11340 | 9441 | 3598 | 54249 | | Pacific Gas and Electric Company | 150. | | 0 | 405 | 877 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1282 | | Rosedale Rio Bravo Water
Storage District | 151. | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Buena Viata Water Storage
District | 151. | .80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total | | | 93329 | 23222 | 1557 | 0 | 92337 | 75012 | 32460 | 36786 | 11 2026 | 155538 | 145 94 8 | 49348 | 817563 | ^{*} Data furnished by the U.S. Bureau of Reclamation. a Delta-Mendota Canal water delivered via Delta-Mendota Pool. b Includes water transported from Wutchumna Ditch. APPENDIX C GROUND WATER MEASUREMENTS #### TABLE OF CONTENTS | | <u>Page</u> | |------------------------|--| | INTRODU | CTION | | De | finitions | | Ex | planation of Headings and Symbols Used in Columns in Appendix C | | | LIST OF TABLES | | Table
<u>Number</u> | | | C-1 | Ground Water Levels at Wells | | | LIST OF PLATES | | | (Bound at end of volume) | | Plate
Number | | | C-1 | Ground Water Level Changes in Districts or Areas, Unconfined and Semiconfined Aquifers,
Spring 1963-Spring 1964 | | C-2 | Ground Water Level Changes in Districts or Areas, Confined and Semiconfined Aquifers,
Spring 1963-Spring 1964 | | C-3 | Location of Selected Observation Wells and Cooperative Program Areas | | C-4 | Map of 19 Ground Water Areas in San Joaquin Valley and Profiles Along Section A-A' Showing Ground Water Levels in 1921, 1951, 1963, and 1964 | | C-5 | Fluctuation of Average Water Level, 1921 to 1964, in 19 Ground Water Areas in San Joaquin
Valley | | C-6° | Fluctuation of Water Level in Selected Wells in San Joaquin Valley | | C-7 | Lines of Equal Elevation of Water in Wells, Unconfined Aquifers, San Joaquin Valley,
Spring 1964 | | C-8 | Lines of Equal Elevation of Water in Wells, Pressure Surface, San Joaquin Valley,
Spring 1964 | (Plates C-7 and C-8 are in pocket) #### INTRODUCTION This appendix presents ground water measurement data for the period July 1, 1963, through June 30, 1964. The area for which ground water level measurements of selected wells are shown on Table C-1 is designated as Area 4 on page iii. Area IV is that portion of the Water Pollution Control Board Region 5, which includes the Stanislaus River drainage area and the area south, to the Tehachapi Mountains. The Department cooperates with U. S. Geological Survey and the U. S. Bureau of Reclamation and many local agencies for the systematic observation of ground water levels. Wells for which water level measurements are collected in the San Joaquin Valley Hydrologic area number approximately 7,500 of which nearly 600 are presented here. These 600 wells were selected as representative wells of all the wells measured in the area, and are designated as selected wells. These wells were selected on the basis of a number of factors such as areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, in a confined aquifer, or in a zone of shallow depth; and availability of a log, mineral analyses, and production records. The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gage or an electric sounder. Forty-eight districts or areas in the San Joaquin Valley are shown on Plates C-1 and C-2. The districts or areas with a ground water level change of five feet or more in the unconfined and semiconfined aquifers are also shown on Plate C-1. The districts or areas with a ground water level change of five feet or more in the confined and semiconfined aquifers are shown on Plate C-2. A map showing the location of the selected wells as listed in Table C-1 and cooperative program areas is presented on Plate C-3. A map of 19 ground water areas and profiles along a section showing water levels in 1921, 1951, 1963, and 1964 are presented on Plate C-4. Unit hydrographs depicting the fluctuation of average water levels in the 19 ground water areas in the San Joaquin Valley are presented on Plate C-5. Water level fluctuations are depicted graphically on hydrographs for 35 selected wells distributed among significant districts and areas in the San Joaquin Valley. The hydrographs are presented on Plate C-6 by region, basin, or area, and well number. Presented on Plate C-7 is a map showing lines of equal elevation of water in wells, unconfined aquifers, San Joaquin Valley, spring 1964. Presented on Plate C-8 is a map showing lines of equal elevation of water in wells, pressure surface, spring 1964. #### Definitions Free ground water is water in the interconnected interstices in the zone of saturation down to the impervious barrier, moving under the control of the water-table slope. Water table is the upper surface of the body of free water which completely fills all openings in the material sufficiently pervious to permit percolation. On fractured impervious rocks and in solution openings, it is the surface at the contact between the water body in the openings and the overlying ground air. <u>Confined ground water</u> is a body of ground water overlain by material sufficiently impervious to sever free hydraulic connections with overlying ground water except at the intake. Confined water moves in conduits under pressure due to difference in head between intake and discharge areas of the confined water body. Semiconfined ground water occurs when the vertical movement is at a slower rate than the horizontal movement so as to cause differences in head between aquifers during periods of heavy pumping, but when during periods of little draft, the water level recovers to a level coincident with the water table. These aquifers are subject to pressure effects for short periods but the artesian head adjusts to equilibrium with the water table over long periods of time. <u>Pressure surface</u> or <u>piezometric surface</u> is the level to which the water level will rise above the bottom of a confining bed of impervious material when penetrated. Perched ground water is ground water occurring in a saturated zone separated from the main body of ground water by unsaturated material. #### Explanation of Headings and Symbols Used in Columns in Appendix C State well number used in this report is based on the township, range, and section subdivision of the Public Land Survey. It conforms to the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number, which is assigned to a well in accordance with this system, is referred to as the "state well number". Under the system, each section is divided into 40-acre tracts lettered as follows: | D | С | В | A | |---|---|---|---| | E | F | G | Н | | М | L | К | J | | N | P | Q | R | Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers. For example, a well which has the number 16S/15E-17Kl M would be in Township 16 South, Range 15 East, Section 17, M.D.B. & M., and would be further located as the first well assigned a state well number in Tract K. In this report, well numbers are referenced to the Mount Diablo Base and Meridian (M) or the San Bernardino Base and Meridian (S). <u>Ground surface elevation</u> represents the elevation in feet above mean sea level (U.S.G.S. datum). <u>Date</u> is the date upon which the depth measurement was made. Ground surface to water surface in feet is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump in operation, (c) existence of a leaking or wet casing, (d) well having been pumped recently, (e) air gage measurement, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained through the San Joaquin District Office of the Department of Water Resources. Other code symbols used in this column are as follows: **m**--No measurement #--Measurement discontinued @--Well has been destroyed The words FLOW and DRY are shown in this column to indicate a flowing or dry well. The word DISCONTINUED indicates records from this well will no longer be published. <u>Water surface elevation</u> is the elevation in feet above mean sea level (U.S.G.S. datum) of the water surface in the well. It was derived by machine computation by subtraction of the depth measurement from the reference point elevation. Agency supplying data represents the code numbers for the agencies supplying water level data. The agency code consists of a five-digit number, the first of which is a region number. Thus, 54200 refers to agency 4200 in Region 5. Because of the limitations of punch-card space, the agency code has been shown as a four-digit number without the region number. The first digit of the four-digit agency code designates the type of well numbering system used by the agency as follows: | Code | Well Numbering System | |------|---------------------------------------| | 4 | Local numbers | | 5 | State or U. S. G. S. | | 6 | U. S. B. R. | | 7 | South San Joaquin
Irrigation District | | 8 | Kern County Land Company | The last three digits of the agency code are numbers that designate, within specified serial limits, the type of agency from which the data were obtained, as follows: | Code | Type of Agency | | | | |---------|----------------|-------------|---------------|------| | 000-049 | Federal | | | | | 050-099 | State | | | | | 100-199 | County | | | | | 200-399 | Municipal | | | | | 400-699 | DistrictWater, | Irrigation, | Conservation, | etc. | | 700-999 | Private | | | | In the Central Valley Region, the agency code for <u>districts</u> is further broken down to the geographic areas, as follows: | Code | Area in Central Valley Region | |---------|--| | 500-599 | American River to San Joaquin River | | 600-699 | San Joaquin River to Tehachapi Mountains | In this list of water levels, the agency furnishing the measurement is listed. The agencies and code numbers assigned to them are as follows: | Agency Code | Agency | |-------------|------------------------------------| | 4200 | City of Fresno | | 4520 | Oakdale Irrigation District | | 4521 | Modesto Irrigation District | | 4524 | Turlock Irrigation District | | 4525 | Merced Irrigation District | | 4636 | Consolidated Irrigation District | | 4637 | Alta Irrigation District | | 4640 | Buena Vista Water Storage District | | Agency Code | Agency | |-------------|---------------------------------------| | 5000 | U. S. Geological Survey | | 5050 | Department of Water Resources | | 5120 | Kern County Surveyor | | 5529 | Poso Soil Conservation District | | 5631 | Fresno Irrigation District | | 6001* | U. S. Bureau of Reclamation | | 7518 | South San Joaquin Irrigation District | | 8700 | Kern County Land Company | ^{*}A large amount of data listed under this agency code has been gathered by irrigation and water districts and compiled by the Bureau of Reclamation for transmittal to the Department of Water Resources. #### TABLE C-1 | AGENCY
SUPPLYING
DATA | | 5050 | | | | | | | | | | | | 4520 | | | | | | | ٠ | | | | | 4520 | | 4520 | | | | | | | | | | | | |---|-----------------------|--------------------|------------|----------|----------------|----------|----------|-------------|----------|---------|---------|-----------------------------|---------|----------------|---------|----------------|----------|----------|----------|---|---------|---------|---------|---------|---------|----------------|----------------|----------------|------------|----------|----------|-----------------|----------|---------|-------------------|---------|---------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 9•99 | 66.5 | 67.2 | 69.3 | 68.9 | 69.2 | 68.4
4.0 | 66.4 | 67.6 | 67.4 | | | 61.0 | 60.2 | 61.3 | 02.0 | 0 4 6 6 | 64.0 | 4 | 64.02 | 63.9 | 61.8 | 61.6 | | 97.1 | 400 | 9.46 | 9.46 | 95.0 | 96•2 | 7.96 | 70.0 | 96.5 | 7007 | 7007 | 700 | 0.000 | 1.00 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.04 | 10.6 | 10.7 | 4.0 | 7.9 | 80 | 0 0 | 10.3 | 10.8 | 9.6 | 8.6 | 5-22-06 | 27-7 | 58.0 | 58.8 | 57.7 | 2007 | 74.7 | 54.8 | 54.6 | 54.8 | 55.1 | 57.2 | 57.4 | ı | 6.74 | 4
8
9 | 51.9 | 51.9 | 51.5 | 50.3 | 49.8 | 0.00 | 000 | 0 0
0 0
0 0 | 2005 | 00.0 | 2000 | \$ °06 | | DATE | | 7-24-63 | 8-26-63 | 10-25-63 | 11-21-63 | 12-20-63 | 1-2/-64 | 3-23-64 | 4-24-64 | 5-25-64 | 6-23-64 | 101 | į | 7-01-63 | 8-01-63 | 9-03-63 | 10-01-63 | 12-02-63 | 1-02-64 | 2-03-64 | 3-03-64 | 4-01-64 | 5-01-64 | 6-02-64 | | 12-00-63 | 3-00-6 | 7-01-63 | 8-01-63 | 8-03-63 | 10-01-63 | 11-01-63 | 12-02-63 | 1-02-64 | 2-03-04 | 5-03-64 | 49-10-4 | 10-10-0 | *0-70-9 | | GROUND
SURFACE
ELEVATION
IN FEET | | 77.2 | | | | | | | | | | DAKDALF IRRIGATION DISTRICT | | 119.0 | | | | | | | | | | | | 145.0 | | 146.5 | | | | | | | | | | | | | STATE WELL NUMBER | TRACY AREA | 35/06E-06N01 M | | | | | | | | | | OAKDALF TRRI | | 1S/09E-16J01 M | | | | | | | | | | | | 1S/09E-36A01 M | | 15/10E-19L01 M | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | | | | 5050 | | _ | | | | | | | | 0,00 | 200 | | | | | | | | | | | 5050 | | | _ | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | | | | 1.1 | C 0 | • | 0.7 | 9•0 | 1.4 | 1.1 | 1.1 | 0.7 | 0.8 | 20.0 | 19.0 | 19.0 | 20.7 | 20.2 | 20.3 | 21.3 | 20.8 | 20.7 | 19.3 | 21.6 | 7017 | 15.9 | 15.5 | 15.0 | 12.0 | 9 4 5 | † • † † | | | | | | | | | GROUND SUR. FACE TO WATER SURFACE IN FEET | | 5-22.00 | 5-22 04 | , | 2.9 | 60 c | 7 7 | m • | 3.4 | 2.6 | 2°9 | 2.9 | 3.3 | 3.2 | 9 | 13.0 | 13.0 | 11.3 | 11.8 | 11.7 | 10.7 | 11.2 | 11.3 | 12.7 | 4.01 | 10.0 | 4.1 | \$ · | 2 4
U 4 | 0 0 | 0 4 | 0
• Q | | | | | | | | | DATE | REG I ON | | | | 7-24-63 | 8-26-63 | 10-25-63 | 11-21-63 | 12-20-63 | 1-27-64 | 3-23-64 | 4-24-64 | 5-25-64 | 6-23-64 | 27.70 | 69-47-1 | 9-24-63 | 10-25-63 | 11-21-63 | 12-20-63 | 1-27-64 | 2-21-64 | 3-23-64 | 4-54-64 | 5-25-64 | 10-67-0 | 7-24-63 | 8-26-63 | 9-24-63 | 10-23-01 | 11-21-63 | 12-20-63 | • | | | | | | | | GROUND
SURFACE
ELEVATION
IN FEET | CENTRAL VALLEY REGION | > | | | 0.4 | | | | | | | | | | ć | 32.0 | | | | | | | | | | | 20.0 | | | | | | | | | | | | | | STATE WELL
NUMBER | - GE | SAN JOAQUIN VALLEY | TRACY AREA | 10000 | 15/05E-31R02 M | | | | | | | | | | | 25/05E-15N02 M | | | | | | | | | | | 25/06E-28J01 M | | | | | | | | | | | | | | > U | SUPPLYING
DATA | | 4520 | 4520 | 4520 | | | | | | | | 4520 | | | 4521 | 4521 | 4 | 0000 | | | | | | | | | | | | | |------------------------|---------------------------------|---------------------|----------------|----------------|---------------------------------------|----------|--------------|----------|-----------------------|----------------|---------|----------------|----------------|----------|---------------------|----------------|----------------|---------------|---------|----------------|----------|----------------|---------|----------|----------|----------|---------|---------|---------|---------|------| | WATER | SURFACE
ELEVATION
IN FEET | | 114.8 | 146.9 | 7.4 | 96.6 | 6 | 102.3 | 103.6 | 102.9 | | | 106.3 | | | 59.8 | 63.3 | 6 6 | 47.9 | 46.6 | 48.7 | 46.8 | 49.9 | 50.1 | 44.7 | 44.2 | 44.3 | | | | | | GRDUND SUR- | WATER
SURFACE
IN FEET | 5-22.06 | 77.2 | 43.1 | 54°3 | 55.4 | ם ו | 48.8 | 4 4
0 8 8
0 4 6 | 49.1 | n : | 1 | 55.7 | • 00 | 5-22.07 | 37.4 | 37.0 | 76.7 | 16.1 | 17.4 | 15.3 | 14.2 | 14.1 | 13.9 | 10.0 | 19.8 | 19.7 | | | | | | | DATE | ICT | 12-00-63 | 12-00-63 | 7-01-63 | 9-03-63 | 11-01-63 | 12-02-63 | 2-03-64 | 4-01-64 | 5-01-64 | 70-0 | 12-02-63 | 100 | ICT | 3-00-64 | 3-00-64 | 7-00-63 | 8-05-63 | 9-04-63 | 11-05-63 | 12-04-63 | 1-07-64 | 2-04-64 | 4-02-4 | 5-05-64 | 6-08-64 | | | | | | GROUND | SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 192.0 | 190•0 | 152.0 | | | | | | | | 162.0 | | IRRIGATION DISTRICT | 97.2 | 100•3 | 0.44 | • | | | | | | | | | | | | | | 1 | STATE WELL
NUMBER | OAKDALE IRRIG | 25/11E-31ND1 M | 25/12E-31K01 M | 35/10E-15A01 M | | | | | | | | 35/11E-18D01 M | | MODESTO IRRIC | 2S/08E-25P01 M | 25/09E-31G01 M | M (0700-1907) | | | | | | | | | | | | | | | AGENCY | SUPPLYING
DATA | | 4520 | 4520 | | | | | | 4520 | 9 | 4520 | | | | | | | 000 | 076# | 7 6 7 0 | 4360 | | | | | | | | | | | | SURFACE
ELEVATION
IN FEET | | 108.3 | ; | 79.2 | 80.7 | 80°8
80°7 | 79.8 | 78•3 | | | 106.1 | 107.3 | 109.0 | 109.9 | 109.9 | 109.1 | 107.3 | | 105.3 | 1 | 122.1 | 121.6 | 121.8 | 124.4 | 126.5 | 126.8 | 126.6 | 126.3 | 125.1 | ,,,, | | GROUND SUR-
FACE TO | WATER
SURFACE
IN FEET | 5-22.06 | 84.7 | n n ' | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 51.3 | 51.2 | 52.2 | 53•7
¤ | 12 | | 79.4 | 78.2 | 76.5 | 75.6 | 75.6 | 76.4 | 78.2 | (| 59.7 | 0 | 0 0 0
0 0 0 | 96.4 | 96.2 | 93.6 | 92.4 | 91.2 | 91.4 | 91.7 | 92.9 | | | | DATE | ſСТ | 12-01-63 | 7-01-63 | 10-01-63 | 12-02-63 | 1-02-64 | 3-03-64 | 5-01-64 | 6-02-64 | | 8-01-63 | 9-03-63 | 11-01-63 | 1-02-64 | 2-03-64 | 4-01-64 | 6-02-64 | | 3-00-64 | ; | 8-01-63 | 9-03-63 | 10-01-63 | 11-01-63 | 12-02-63 | 7-03-64 | 3-03-64 | 4-01-64 | 5-01-64 | | | GROUND | SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 193.0 | 132.0 | | | | | | 132.0 | , | 185.5 | | | | | | | | 165.0 | 6 | 718.0 | | | | | | | | | | | 3 | NUMBER | OAKDALE IRRIG | 15/10E-28J01 M | 2S/09E-26F01 M | | | | | | 2S/09E-26F01 M | | 25/10E-04H01 M | | | | | | | | 2S/10E-33J01 M | | 25/11E-29801 M | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 4554 | | | | | | | | 4554 | 4554 | | 4554 | 4524 | | | | | | | 4554 | | 5050 | | | | | | | | | | | | |---|-----------------------------|----------------|---------|----------|----------|---------|---------|---------|---------|----------------|----------------|----------------|----------------|----------------|----------------|---------|----------------|----------------|---------|---|-----------------------------|----------------|----------------|---------|----------|----------|----------|----------|---------|---------|---------|---------|----------------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 96.1
97.5 | 100.0 | 101.3 | 100 | 100.4 | 0.66 | 98.7 | 98.1 | 95.0 | | | 107.4 | 47.9 | 47.0 | 40°V | 40.8 | 0.94 | 45.7 | 45.5 | 40.3 | | 0.49 | 65.3 | 65.0 | 8.49 | 0.99 | 65.4 | 63.0 | 65.9 | 62.1 | 63.1 | 4.49 | 010 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.08 | 12.9 | 0.6 | 7.7 | - C | 9 6 | 10.0 | 10.3 | 10.9 | 14.0 | DRY | DRY
DRY | 22.6 | 5.1 | 0.9 | 3°21 | 0°0
0°5 | 7.0 | 7.3 | 7.5 | 9.7 | | 0.9 | 4.7 | 5.0 | 5.2 | 4.0 | 4.6 | 7.0 | 7.1 | 7.9 | 6.9 | ი ი
ი | 8.2 | | DATE | CT | 7-03-63 | 9-00-63 | 10-03-63 | 12-04-63 | 1-03-64 | 2-05-64 | 3-04-64 | 4-00-4 | 2-00-64 | 7-02-63 |
12-03-63 | 2-00-64 | 7-02-63 | 8-02-63 | 9-05-63 | 11-01-63 | 12-03-63 | 1-02-64 | 3-03-64 | 2-00-64 | | 7-08-63 | 8-05-63 | 9-04-63 | 10-02-63 | 11-05-63 | 12-04-63 | 1-02-64 | 2-04-64 | 3-02-64 | 4-05-64 | 5-05-64 | 6 -08-64 | | GROUND
SURFACE
ELEVATION
IN FEET | TURLOCK IRRIGATION DISTRICT | 109.0 | | | | | | | | 109.0 | 131.0 | | 130.0 | 53.0 | | | | | | | 0.03 | | 70.0 | | | | | | | | | | | | | STATE WELL
NUMBER | TURLOCK IRRI | 45/10E-21R01 M | | | | | | | | 45/10E-21R02 M | 45/11E-29N01 M | | 45/11E-32P01 M | 55/08E-01N01 M | | | | | | | M 10000_300033 | | 55/09E-04A01 M | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5050 | | - Harris | | | _ | | | | 4521 | 4521 | 4521 | 4521 | 4521 | | 4521 | 4521 | 7.631 | 1764 | | 4524 | ! | | | | | | | | | | 4554 | | | WATER
SURFACE
ELEVATION
IN FEET | | 500.3 | 48.9 | 50.1 | 51.4 | 51.1 | 51.3 | 51.3 | 51.6 | 50.9 | 53.1 | 68.6 | 62.2 | 0.94 | 91.6 | | 72.2 | 65.0 | F 6.4 | • | | 46.1 | 46.8 | 48.1 | 48.9 | 47.6 | 46.7 | 46.0 | 45.0 | 44.6 | 45.7 | | | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.07 | 13.3 | 15.1 | 13.9 | 12.6 | 12.9 | 12.7 | 12.7 | 12.8 | 13.1 | 50.9 | 23.9 | 37.0 | 36.5 | 35.5 | | 47.0 | 58.0 | 2 4 5 | 1000 | 5-22.08 | 0,0 | 8.2 | 6.9 | 6.1 | 7.4 | . 60 | 0.6 | 10.0 | 10.4 | 9.3 | 1 | DRY | DRY | | DATE | ICT | 7-08-63 | 9-04-63 | 11-05-63 | 12-04-63 | 1-07-64 | 2-04-64 | 3-02-64 | 5-05-64 | 6-08-64 | 3-00-64 | 3-00-64 | 3-00-64 | 3-00-64 | 3-00-64 | | 3-00-64 | 3-00-64 | 77-00-6 | 3-00-64 | ICT | 7-03-63 | 8-05-63 | 9-06-63 | 10-03-63 | 11-04-63 | 12-04-63 | 1-03-64 | 2-05-64 | 3-04-64 | 4-00-64 | | 12-04-63 | 3-03-64 | | GRDUND
SURFACE
ELEVATION
IN FEET | MODESTO IRRIGATION DISTRICT | 0 • 4 • 0 | | | | | | | | | 74.0 | 92.5 | 99.2 | 82.5 | 133.1 | | 119.2 | 123.0 | 6 | 0.50 | TURLOCK IRRIGATION DISTRICT | 55.0 | | | | | | | | | | | 82.0 | | | STATE WELL
NUMBER | ODESTO IRRI | 35/08E-22C02 M | | | | | | | | | 35/08E-24C01 M | 35/09E-05N01 M | 35/09E-21A02 M | 35/09E-30P01 M | 35/10E-06G01 M | | 35/10E-29K01 M | 35/10E-32G01 M | | 45/08E-03E01 M | TURLOCK IRRI | 45/08F-27001 M | | | | | | | | | | | 45/09E-21A02 M | | | AGENCY
SUPPLYING
DATA | | 4554 | | | | 4554 | | 4554 | | | | | | | | | 46.34 | +36+ | | | | | | | | | | | 4524 | | | | | | | | | | | | |---|-----------------------------|----------------|------------|----------|----------|----------------|---------|----------------|-------------|---------|----------------|-----------------|-------------|---------|----------|----------|----------------|---------|---------|---------|---------|----------------|----------------|----------|------------|----------|----------|----------|----------------|---------|---------|---------|----------------|---------|----------|----------|------------|---------|----------|----------| | WATER
SURFACE
ELEVATION
IN FEET | | 117.1 | 116.5 | 117.6 |) | 109.9 | | | 137.3 | | | 135.0 | 135.2 | 135.3 | | | 9.75 | 56.2 | 57.0 | 57.6 | 56.2 | 57.8 | 55.2 | 54.1 | 53.6 | 53.9 | 53.7 | 04•B | 81.7 | 81.0 | 81.9 | 82.8 | 82.8 | 83.7 | 83.5 | 83°6 | 0000 | 0 4 6 0 | 83.1 | 83.5 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.08 | 7.9 | φ ο
Φ C | 7.4 | | 10.1 | | DRY
S | DRY
12.7 | DRY | DRY | 15.0 | 14.8 | 14.7 | DRY | DRY | 3.0 | 1 e0 | 3.0 | 2.4 | 8 6 | 2.5 | 4 4 | 5.9 | 6.4 | 6.1 | 6.3 | 2•5 | 5.63 | 0.9 | 5.1 | 4.2 | 4.2 | 3.3 | 3.0 | 3° (| υ .
υ . | 0.0 | + C | 3.6 | | DATE | ICT | 12-31-63 | 3-03-64 | 4-02-64 | | 2-00-64 | | 3-05-63 | 7-02-63 | 8-02-63 | 10-02-63 | 12-01-63 | 1-02-64 | 2-05-64 | 3-03-64 | 4-03-64 | 4-02-63 | 5-02-63 | 6-04-63 | 7-02-63 | 8-02-63 | 9-05-63 | 11-01-63 | 12-03-63 | 1-02-64 | 5-04-64 | 3-05-64 | 4-03-64 | 4-01-63 | 5-01-63 | 6-03-63 | 7-01-63 | 8-01-63 | 9-04-63 | 10-01-63 | 10-31-63 | 12-02-63 | 2-04-64 | 3-01-64 | 4-05-64 | | GROUND
SURFACE
ELEVATION
IN FEET | TURLOCK IRRIGATION DISTRICT | 125.0 | | | | 120.0 | | 150.0 | | | | | | | | | 0.04 | | | | | | | | | | | | 87.0 | | | | | | | | | | | | | STATE WELL
NUMBER | TURLOCK IRRI | 5S/11E-21N01 M | CONT. | | | 55/11E-29F01 M | | 55/12E-31N01 M | | | | | | | | | 65/09F-15R01 M | | | | | | | | | | | | AS/10F-21A01 M | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 4554 | | | | | | | | | 4254 | 4524 | 1761 | | | | | | | | | 4554 | 4524 | , | | | | | | | | | 4554 | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 68.3 | 69.6 | 60.00 | 68.5 | 67.8 | 67.4 | 67.7 | 67.0 | | 55•3 | 70.3 | 69.1 | 68.4 | 68.9 | 68•6 | 68.0 | 69.2 | 68.6 | 68.7 | | 81.1 | 84.5 | 83.8 | 83.0 | 82.3 | 82.8 | 83.7 | 4 4 4 | 83.8 | 83.5 | | 118.2 | 117.8 | 118.0 | 118.2 | 118.7 | 11/09 | 11/08 | 117.6 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.08 | 6.7 | 4.0 | 2.0 | 6.5 | 7.2 | 7.6 | 7.3 | 0 ° 0 | | 7.7 | 4.7 | 5.9 | 9.9 | 6.1 | 4.9 | 0 0 0 |
 | 4.9 | 6.3 | | 8 6 9 | 7.5 | 8 .2 | 0°6 | 9.7 | 9.2 | m c | 0.0 | 200 | 8.5 | | 6.8 | 7.2 | 7.0 | 8.9 | 6.9 | , r | 7 - 1 | 7.4 | | DATE | וכד | 7-02-63 | 8-02-63 | 10-02-63 | 11-01-63 | 12-03-63 | 1-05-64 | 2-04-64 | 4-03-64 | | 5-00-64 | 7-03-63 | 8-02-63 | 9-09-63 | 10-02-63 | 11-01-63 | 12-03-63 | 2-04-64 | 3-02-64 | 4-03-64 | ; | 5-00-64 | 7-01-63 | 8-01-63 | 69-04-63 | 10-01-63 | 10-31-63 | 12-02-63 | 2-04-64 | 3-01-64 | 4-05-64 | | 4-01-63 | 5-01-63 | 6-03-63 | 7-01-63 | 8-01-63 | 9-04-63 | 10-01-63 | 12-02-63 | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 75.0 | | | | | | | | | 63.0 | 7 3 2 | | | | | | | | | ; | 0°06 | 92.0 | | | | | | | | | | 125.0 | | | | | | | | | STATE WELL
NUMBER | TURLOCK IRRI | 55/09E-14R01 M | | | | | | | | | 55/09E-22N01 M | N 10476 2007 20 | S/09E=24N01 | | | | | | | | | 55/10E-21001 M | 55/10E-21R01 M | | | | | | | | | | 5S/11E-21N01 M | | | | | | | | | AGENCY
SUPPLYING
DATA | | 4525 | | | | | | | | 4525 | | | | | | | | | | 4525 | | 5050 | | | | | | | | | | | | | | | |---|---------------------|----------------|----------------|----------|---------|------------|------------|----------|---------|----------------|---------|----------------|----------|----------|---------|---------|---------|-----------------|----------|----------------|---------|----------------|---------|---------|----------------------------|----------------|---------|---------|----------|----------|---------|---------|---------|---------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 167.2 | 165.5 | 164.1 | 163.6 | | | | 168.3 | 166.2 | 166.6 | 165.4 | 168.2 | 164.7 | 164.5 | 162.4 | 163.4 | 164.1 | | | 79.5 | 108.0 | 108.0 | 107.6 | 108.9 | 108.6 | 108.4 | 108.4 | 108.0 | 107.0 | 105.8 | | | | | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.09 | 13.5 | 15.2 | 16.6 | 17.1 | 084
084 | ORY
ORY | DRY | 12.4 | 11.9 | 11.5 | 12.7 | 6.6 | 13.4 | 13.6 | 15.7 | 14.7 | 14.0 | 1 | DRY | 11.2 | 10.0 | 10.0 | 10.4 | 9.1 | 4.6 | 9.6 | 9.6 | 0 0 | 10.0 | 12.2 | | | | | | | DATE | | 7-31-63 | 9-06-63 | 12-02-63 | 1-06-64 | 3-02-64 | 4-01-64 | 6-01-64 | 6-29-64 | 7-01-63 | 8-05-63 | 10-01-63 | 11-06-63 | 12-03-63 | 1-29-64 | 3-04-64 | 49-80-4 | 4-29-64 | | 7-31-63 | 3-03-64 | 7-02-63 | 8-05-63 | 9-03-03 | 11-05-63 | 12-04-63 | 1-02-64 | 2-05-64 | 3-02-64 | 5-04-64 | 6-04-64 | | | | | | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 180.7 | | | | | | | | 178.1 | | | | | | | | | | 7.06 | | 118.0 | | | | | | | | | | | | | | | | STATE WELL
NUMBER | MERCED IRRIG | 65/13E-19N01 M | | | | | | | | 65/14E-32N01 M | | | | | | | | | | 75/10E-01N01 M | | 7S/11E-01H01 M | | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 4554 | 4554 | | | | | | | | | 4554 | | | - | _ | | | | | | | | | | 4525 | | | - | | _ | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | | 101.5 | 101.5 | 103.6 | 104.0 | 104.7 | 103.6 | 102.2 | 101.0 | | 110.1 | 1110.4 | 111.2 | 1110.4 | 111.6 | 112.6 | 112.2 | 113.1 | 110.9 | 110.5 | 111.0 | 11100 | | | 127.9 | 128.2 | 129.1 | 129.4 | 129.1 | 128.8 | 128.8 | 128.2 | 128.0 | 127.8 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.08 | o | 13.5 | 13.5 | 12.1 | 11.0 | 10.3 | 11.4 | 12.8 | 14.0 | DRY | 7.9 | 0 4 | 9 9 | 9•9 | 4.9 | t 4. | φ
• •
• • | 6.4 | 7.1 | 7.5 | 7.0 | 0 ° 0 | | 5-22 • 09 | 15.0 | 15.6 | 14.7 | 14.4 | 14.7 | 15.0 | 15.0 | 15.6 | 15.8 | 16.0 | DRY | | DATE | <u>ַ</u> | 2-00-64 | 4-01-63 | 6-03-63 | 8-01-63 | 9-04-63 | 10-01-63 | 12-02-63 | 2-03-64 | 3-01-64 | 4-05-64 | 1-03-63 | 2-01-63 | 4-02-63 | 5-02-63 | 6-04-63 | A-02-63 | 9-05-63 | 10-02-63 | 11-01-63 | 1-02-64 | 2-04-64 | 4-03-64 | | CT | 7-31-63 | 0-16-7 | 9-30-63 | 11-04-63 | 12-02-63 | 1-06-64 | 1-30-64 | 4-07-64 | 4-28-64 | 6-01-64 | 6-29-64 | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 84.0 | 115.0 | | | | | | | | | 118.0 | | | | | | | | | | | | | MERCED IRRIGATION DISTRICT | 8 676 | 0 | | | | | | | | | | | STATE WELL
NUMBER | TURLOCK IRRI | 65/10E-21N01 M | 65/11E-08R01 M | | | | | | | | | 65/11E-09N01 M | | | | | | | | | | | | | MERCED IRRI | M 10M10=301797 | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 4525 | | | 4525 | | | | | | | 6764 | | | | | | | | 4264 | | | | | | | | | |--|------------------------------------|------------------------|---------|---|----------------|---|----------------------------------|------------|--------------------------|----------------|-------|----------------|----------|---------|---------|------------|---------|-------------|-------|----------------|----------------|----------|--------------------------|---------|------------------------|---------|--------------------------|-------| | WATER
SURFACE
ELEVATION
IN FEET | | 175.8 |
173.7 | 183.0 | | | | | | | | 115.8 | 113.9 | 112.9 | 113.0 | 114.6 | 115.0 | 116.2 | | 132.2 | 131.8 | 129.4 | 129.8 | 129.3 | 128.3 | 132.9 | 132.5 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.09 | 11.7 | 13.8 | 4•5 | DRY
DBV | | DRY
DRY | DRY
ORY | ORY
ORY | DRY
DRY | · | 7°1 | 6.3 | 7.3 | 7.2 | 5.6 | 2.5 | գ. ա
• • | | 2•8
1•8 | 3.2 | 5.6 | 5.2 | 5.7 | 6.7 | 2.1 | 2.5 | | | DATE | H | 1-07-64 | 4-08-64 | 6-02-64 | 8-01-63 | 10-01-63 | 12-04-63 | 1-29-64 | 4-08-64 | 6-02-64 | | 9-06-63 | 11-06-63 | 1-07-64 | 1-28-64 | 4-01-64 | 4-29-64 | 6-30-64 | | 8-01-63 | 9-30-63 | 12-09-63 | 1-07-64 | 3-03-64 | 49-20-4 | 6-01-64 | 6-30-64 | | | GROUND
SURFACE
ELEVATION
IN FEET | MERCED IRRIGATION DISTRICT | 187.5 | | | 234.2 | | | | | | | 120.2 | | | | | | | | 135.0 | | | | | | | | | | STATE WELL
NUMBER | MERCED IRRI | 7S/14E-16R1 M
CONT. | | | 75/15E-36N01 M | | | | | | | 8S/12E-01D01 M | | | | | | | | 85/13E-09R01 M | ., | | | | | | | | | _ | | | | | AGENCY
SUPPLYING
DATA | | 4525 | | | | | | 4525 | | | | | | | | 4525 | | | | | | | | | 4525 | | | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA | | 97.9 4525
97.5 | 98.2 | 101.8 | 101.7 | 6 86
86
86 | 98.2
98.1 | 135-1 4525 | 132.4 | 133.5
133.5 | 133.6 | 133.7 | 132.3 | 131.1 | 131•1 | | 140.9 | 141.4 | 140.7 | 140.1 | 139•6
135•4 | 135.4 | 134.5 | | 182.4 4525
183.4 | 182.7 | 182.6
178.2 | 176.6 | | | 5-22.09 | | | | | | | 135+1 | 14.4 132.9
13.9 133.4 | | | | | | | 136.9 | | | | | | | 17.6 134.5
18.4 133.7 | 1 1 | 182.4 | | 4.9 182.6
9.3 178.2 | | | WATER
SURFACE
ELEVATION
IN FEET | | 97.9
97.5 | | 5 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 8 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | - & &
- & &
- & -
- & - | 135+1 | 14.4 | | 13.7 | | | 16.2 | | 15.2 136.9 | | 10.7 | | 12.0 | | 16.7 | | | 182.4 | 4 80 | | 10.9 | | GROUND SUR-
FACE TO SURFACE
WATER ELEVATION
IN FEET IN FEET | MERCED IRRIGATION DISTRICT 5-22.09 | 8.7 97.9
9.1 97.5 | | 5.2
4.8 | 4 ተ
ው ሳ | 8 6 7 | - & &
- & &
- & -
- & - | 12.2 135.1 | 14.4 | 13.8
13.8 | 13.7 | 13.6 | 15.0 | 16.2 | 16.2 | 15.2 136.9 | 11.6 | 10.7 | 11.4 | 12.0 | 12.5 | 16.7 | 17.6
18.4 | | 5.1 182.4
4.1 183.4 | 4 80 | \$ 6
6
8
6
8 | 10.9 | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TD
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |----------------------|---|---------------------------------|---|--|-----------------------------|----------------------|---|----------|---|--|-----------------------------| | STREET GENERAL | TERIGATION DISTRICT | Į. | 5-22.09 | | | DELTA-MENDOTA | A AREA | | 5-22.11 | | | | 85/14E-01A01 M | 196.8 | 8-01-63 | 11.8 | 185.0 | 4525 | 35/06E-16001 M | 80.0 | 9-27-63 | 88.2 | - 8.2
18.5 | 6001 | | | | 9-30-63
11-07-63
12-01-63 | 12.0
9.8
10.2 | 184.8
187.0
186.6 | | 35/06E-18N01 M | 99•3 | 9-26-63 | 13.3 | 86.0 | 6001 | | | | 1-08-64
1-28-64
3-04-64 | 10.8
11.8 | 186.0
185.8
185.0 | | 3S/06E-25D01 M | 63.5 | 9-27-63 | 23.0 | 40.5 | 6001 | | | | 4-07-64 | 12.6
12.2
12.2 | 184.2
184.6
184.6 | | 45/06E-04H01 M | 163.3 | 9-24-63 | 122.7 | 40.6 | 6001 | | | Ford Montage Contraction | 6-30-64 | 11.0 | 185.8 | | 45/06E-09R01 M | 166•3 | 9-24-63 | 137.7 | 28.6 | 6001 | | 95/13E-14R01 M | 133.0 | 2-10-64 | 76.5 | 57.0 | 6001 | 45/07E-27M01 M | 68.0 | 9-26-63 | 24.8 | 43.2 | 6001 | | 95/14E-20801 M | 152.0 | 2-10-64 | 62.4 | 87.6 | 6001 | 45/07E-31D01 M | 185.4 | 9-25-63 | 110.6 | 74.8 | 6001 | | DELTA-MENDOTA | TA AREA | 9-24-63 | 5.5 | 72.5 | 6001 | 55/07E-05D01 M | 157.4 | 10-07-63 | 94.0 | 72.8 | 6001 | | | 4 0 | 3-03-64 | 7.0 | 71.0 | 6001 | 55/07E-13K01 M | 107.0 | 3-25-64 | 61.0 | 0.94 | 6001 | | | | 3-03-64 | 25.0 | 55° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° | 6003 | 55/07E-14001 M | 130.4 | 10-07-63 | 75.6 | - 80 | 6001 | | 25/U4E=20AU1 m | | 3-03-64 | 128•3 | 58.7 | | | e
u | 4-10-64 | 78.8 | 38.7 | 6001 | | 25/05E-32A01 M | 76.0 | 9-25-63 | 21.6
22.0 | 54.0 | 6001 | 55/08E-06KU1 M | 20.0 | 7-01-63 |)
 **t | | 5050 | | 35/05E-08R01 M | 195.7 | 9-25-63 | 128.4 | 67.3 | 6001 | S/07E-12P01 | 248.3 | 9-26-63 | 18.4 | 229.9 | 5050 | | 35/05E-08R02 M | 195.7 | 9-25-63 | 131.7
n | 0.499 | 6001 | 65/08E-12L01 M | 6.40 | 9-27-63 | 21.8 | 45.5 | 5050 | | 35/05E-25001 M | 207.0 | 9-26-63 | 120.0 | 87.0 | 6001 | 65/08E-16M01 M | 129.5 | 9-26-63 | 89.2 | 40.3 | 5050 | | 35/05E-26K01 M | 212.1 | 9-26-63 | 126.3 | 85.8 | 6001 | 65/08E-27J01 M | 114.5 | 9-27-63 | 50.7 | 63.8
62.0 | 5050 | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 6001
5050
6001 | |---|----------------------------|--------------------------|-----------------|------------------------|----------------------|-------------------------|-------------------------|------------------------|-----------------------|----------------------|-----------------|--------------------------|------------------------|----------------------|------------------------|---------------------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 43.6 | 138•1 | 83.7
89.3 | 79.6 | 86.7 | 31.0 | 93.1
92.4 | 28.3 | 101.5 | 106.4 | 103.6 | 110.6 | 106.0 | 103.1 | 134.5 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.11 | 44.6 | 89 • 9
El | 83.3 | 19.9 | 19.9 | 160.1
n | 5.9 | 73.0 | 55.8 | 140.4 | 2.4 | 3.6 | 13.0 | 28.9 | 6 4
8 8 | | DATE | | 10-15-63 | 10-10-63 | 10-10-63 | 10-15-63 | 10-15-63 | 10-14-63 | 10-08-63 | 10-08-63 | 10-10-63 | 10-15-63 | 10-09-63 | 10-15-63 | 10-15-63 | 10-09-63 | 10-02-63
12-26-63
4-08-64 | | GROUND
SURFACE
ELEVATION
IN FEET | AREA | 90.5 | 147.0 | 167.0 | 5*66 | 106.6 | 191.1 | 0.66 | 101•3 | 157.3 | 246.8 | 106.0 | 114.2 | 119.0 | 132.0 | 138.0 | | STATE WELL
NUMBER | DELTA-MENDOTA | 95/11E-20J01 M | 10S/09E-06A01 M | 105/09E-08B01 M | 10S/10E-02R01 M | 10S/10E-11R01 M | 10S/10E-31G01 M | 10S/11E-23D01 M | 10S/11E-27E02 M | 115/10E-11J01 M | 115/10E-22001 M | 11S/11E-02J02 M | 115/11E-22K01 M | 115/11E-22003 M | 115/12E-31C01 M | 125/12E-04D01 M | | - | | | | | | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 2050 | 9050 | 5050 | | WATER AGENCY
SURFACE
ELEVATION DATA
IN FEET | | 66.8 5050
71.6 | 78•1 5050 | 48.9 5050
47.8 | 62.2 | 104.9 5050
99.0 | 99.8 5050
114.2 | 27.6 5050
53.6 | 67.3 5050
71.1 | 66.2 5050
71.2 | 174.1 | 121.0 5050
118.5 | 36.3 5050 | 80.8 5050
79.3 | 36.8 5050
33.8 | 82.5 5050
84.4 | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.11 | | | | | | | | | | | | | | | | | WATER SURFACE ELEVATION IN FEET | 5-22.11 | 66.8
71.6 | 78.1 | 48.9
47.8 | 60.9 | 104.9 | 99.8
114.2 | 27•6
53•6 | 67•3
71•1 | 66.2 | 174.1 | 121.0
118.5 | 36.3 | 80.8 | 36.8 | 82.5
84.4 | | GROUND SUR- FACE TO WATER WATER SURFACE IN FEET | DELTA-MENDOTA AREA 5-22.11 | 123.2 66.8
118.4 71.6 | 49.8 78.1 | 16.7 48.9
17.8 47.8 | 7.5 60.9
6.2 62.2 | 18.3 104.9
24.2 99.0 | 73.0 99.8
58.6 114.2 | 47.4 27.6
21.4 53.6 | 7.7 67.3
3.9 71.01 | 8.8 66.2
3.8 71.2 | 27.5 174.1 | 32.6 121.0
35.1 118.5 | 63.7 36.3
55.9 44.1 | 3.2 80.8
4.7 79.3 | 50.2 36.8
53.2 33.8 | 8.5
6.6
84.4 | | AGENCY
SUPPLYING
DATA | | | 1000 | 6001 | | | | | | | | | | | | | 6001 | | | | | | | | | | | | 6001 | | 6001 | | 6001 | | 6001 | | | | | | | | |---|---------------------------|--------------------|-----------------|---------|----------------|----------|------------|----------|----------|---------|---------|---------|---------|----------|-----------------|----------|----------------|-----------------|----------|----------|--------------------|----------|---------|---------|----------|-----------------|---------|---|---------------------------|----------------|----------------|----------------|----------------|----------|----------|-----------------|----------|----------|----------|----------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | | 184.8 | 16641 | 152.4 | 149.7 | 149.0 | 148.2 | 148.0 | 149.7 | 145.8 | 151.5 | 151.5 | 145.4 | 148.4 | | 224.0 | 223.8 | 22301 | 7.4.27 | 224.9 | 224.8 | 224.2 | 223.9 | 222.7 | 221.8 | 219.7 | | 221.3 | 223.5 | 242.6 | 0 0 7 4 7 | | 311.6 | 72.3 | 0.89 | 61.1 | 74.5 | 79.7 | 81.5 | 83.1 | 83.4 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22,12 | | 47.2 | 0.14 | | 0 00 | 0 10 | 80.00 | 0.09 | 58.3 | 62.2 | 56.5 | 56.5 | 9.29 | 9.69 | | 43.0 | 43.2 | 43.9 | 42.3 | 42.1 | 42.2 | 45.8 | 43.1 | 44.3 | 45.2 | 46.1 | • | 7 * 86 | 96.5 | 77.4 | 0.87 | п | 53.4 | 7 77 | 82.0 | 88.9 | 75.5 | 70.3 | 68.5 | 6.99 | 9.99 | | DATE | | | 11-04-63 | 7-34-63 | 0-27-63 | 10-01-63 | 10 -22 -63 | 12-06-63 | 12-23-63 | 1-22-64 | 2-12-64 | 3-27-64 | 4-54-64 | 5-21-64 | 6-26-64 | | 7-24-63 | 8-28-63 | 10-01-63 | 10-23-63 | 12-06-63 | 12-23-63 | 1-22-64 | 2-11-64 | 3-27-64 | 4-54-64 | 5-21-64 | | 10-01-63 | 2-11-64 | 10-01-63 | 2-11-64 | 9-30-63 | 2-11-64 | 27-70 | 8-28-63 | 10-01-63 | 10-23-63 | 12-06-63 | 12-24-63 | 1-22-64 | 2-12-64
| | GROUND
SURFACE
ELEVATION
IN FEET | TER DISTRICT | | 232•0 | 000 | 70807 | | | | | | | | | | | | 267.0 | | | | | | | | | | | | 320.0 | | 320.0 | | 365.0 | | 4 | 150.0 | | | | | | | | STATE WELL
NUMBER | CHOWCHILLA WATER DISTRICT | | 9S/15E-25J02 M | | 95/15E-33BUI M | | | | | | | | | | | | 95/16F-22R01 M | | | | | | | | | | | | 95/17E-21L01 M | | 9S/17E-35J01 M | | 94/18F-33001 M | | | 10S/14E-08B03 M | | | | | | | | AGENCY
SUPPLYING
DATA | | | 2000 | | | | | | | | | | | 1004 | 0.00 | 1004 | • | 6001 | | | 6001 | 5050 | 6001 | | 6001 | 5050 | 6001 | _ | | 6001 | | 6001 | | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | | 38°3
37°9 | 37.4 | 36.8 | 36.8 | 37.4 | 45.4 | 45.4 | 45.4 | 1074 | 4.I.e.8 | 1 • 00 | 111.6 | 113.0 | 111.2 | 74111 | 164.2 | 164.9 | | | 137.7 | | | 12747 | 131.6 | 127.6 | | | 106.9 | 122.0 | 105.4 | 96.3 | 109.0 | 115.7 | 122.5 | 13905 | 139.0 | 12403 | | | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 22.31 | 11.77-6 | 129.7
130.1 | 130.6 | 131.2 | 131.2 | 130.6 | 125.6 | 125.6 | 125.6 | 122.9 | 126.2 | 13103 | 45.4 | 62.1 | 100 | 0.00 | 12.8 | 12.1 | | DRY | 6.3 | > 0 | - | 26.3 | 22.4 | 26.4 | | 5-22-12 | 78.1 | 63.0 | 1111.1 | 120.2 | 107.5 | 100.8 | 94.0 | 77.0 | 77.0 | 3636 | 0 101 | | 1 | | DATE | | | 7-16-63 | 9-11-63 | 10-09-63 | 11-04-63 | 12-05-63 | 1-07-64 | 2-01-64 | 3-05-64 | 3-30-64 | 4-20-64 | 0-62-04 | 10-03-63 | 12-24-63 | 60-07-71 | 101011 | 10-02-63 | 49-08-64 | | 10-03-63 | 12-27-63 | 79-80-7 | | 10-03-63 | 12-23-63 | 4-01-64 | | - | 10-31-63 | 2-10-64 | 7-24-63 | 8-27-63 | 10-01-63 | 12-06-63 | 12-23-63 | 1-22-64 | 2-11-64 | 3-27-64 | 6-21-64 | 7-21-64 | 10-07-0 | | GROUND
SURFACE
ELEVATION
IN FEET | | A AREA | 168.0 | | | | | | | | | | | 444 | 7 | | | 177.0 | | | 144.0 | • | | | 0 7 3 1 | 1540 | | | CHOWCHILLA WATER DISTRICT | 185.0 | | 216.5 | | | | | | | | | | | | STATE WELL
NUMBER | | DELTA-MENDOTA AREA | 12S/12E-16H05 M | | | | | | | | | | | | 125/12E-25001 M | | | M 50050-3017301 | | | N LUNCTISETIONOL M | | | | | 125/14E-30001 M | | | CHOWCHILLA | 95/14E-25R01 M | | 95/15E-22R02 M | | | | | | | | | | | | AGENCY
SUPPLYING
OATA | | 6001 | | | | | | | | 6001 | | | | | | | | | | 6001 | | 6001 | | 6001 | | | | | | | | | |---|----------------------------|-----------------|----------|----------|-----------------|-----------------|-----------------|----------|----------|-----------------|---------|----------|----------|---|---------|---------|-----------------|----------|----------|-----------------|---------|-----------------|---------------------------------------|-----------------|-----------------|----------|----------------------------|---------|-----------------|---------|-----------------|---| | WATER
SURFACE
ELEVATION
IN FEET | | 123.1 | 120.6 | 125.6 | 130.0 | 131.0 | 128.8 | 125.5 | 123.2 | 132.8 | 133.9 | 136.8 | 140.4 | 141.0 | 142.2 | 142.9 | 138.0 | 134.7 | 131.7 | 178.0 | 0 | 201•5 | | 202.8 | 202+4 | 201.6 | 199•6 | 203.8 | 204.7 | 202.5 | 202•8 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.13 | 72.9 | 75.4 | 70.4 | 0.99 | 65.0
64.1 | 67.2 | 70.5 | 72.8 | 72.2 | 71.1 | 68.2 | 600 | 64.0 | 62.8 | 62.1 | 200 | 70.3 | 73•3 | 72.6 | • | 72.9 | • | 81.7 | 81.6 | 82.4 | 84°4 | 80.2 | 79.3 | 81.5 | п
81•2 | | | DATE | | 7-24-63 | 10-01-63 | 10-23-63 | 12-23-63 | 1-21-64 2-12-64 | 3-26-64 | 5-21-64 | 6-25-64 | 7-24-63 | 8-27-63 | 10-01-63 | 12-06-63 | 12-23-63 | 1-21-64 | 2-12-64 | 3-20-64 | 5-20-64 | 6-25-64 | 12-16-63 | 10-11-7 | 12-03-63 | , , , , , , , , , , , , , , , , , , , | 7-24-63 | 69-06-6 | 10-24-63 | 12-24-63 | 1-22-64 | 2-10-64 | 4-23-64 | 5-20-64 | | | GROUND
SURFACE
ELEVATION
IN FEET | MADERA IRRIGATION DISTRICT | 196.0 | | | | | | | | 205.0 | | | | | | | | | | 250.6 | | 274.4 | | 284.0 | | | | | | | | | | STATE WELL
NUMBER | MADERA IRRIG | 115/16E-06A01 M | | | | | | | | 115/16F-10N01 M | | | | | | | | | | 115/17E-27C01 M | | 115/18E-20N01 M | | 115/18E-27M01 M | | | | | | | | | | AGENCY
SUPPLYING
DATA |] | 6001 | | | 6001 | | 6001 | | | | | | | | | | 6001 | | | | | | | | 6001 | | | | 6001 | | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 77.5 | 72.9 | 69.9 | 112.9 | 129.2 | 106.4 | 100.5 | 109.9 | 114.5 | 114.5 | 109.0 | 112.4 | • | 102.9 | , | 148.7 | 147.0 | 150.9 | 160.5 | 162.4 | 155.8 | | | 127.7 | 134.0 | | | 263.3 | 259•0 | 365.6 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-12 | 72.5 | 77.1 | 84•1 | 81.1 | 64.8 | 76.6 | 82.5 | 73.1 | 68.5 | 68.5 | 74.0 | 70.6 | 7 0 | 80.1 | | 83.3 | 85.0 | 81.1 | 71.5 | 100/ | 76.2 | 3 13 | a | 81.8 | 75.5 | 5-22.12 | | 62.7 | 67.0 | 21.4 |) | | DATE | | 3-27-64 | 5-21-64 | 6-26-64 | 10-30-63 | 2-12-64 | 7-24-63 | 10-01-63 | 10-23-63 | 12-06-63 | 1-22-64 | 2-12-64 | 3-27-64 | 5-21-64 | 6-26-64 | | 7-24-63 | 10-01-63 | 10-23-63 | 12-23-63 | 2-12-64 | 3-27-64 | 5-21-64 | 9-56-64 | 10-29-63 | 2-11-64 | | _ | 69-06-6 | 2-11-64 | 9-30-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | CHOWCHILLA WATER DISTRICT | 150.0 | | | 194•0 | | 183.0 | | | | | | | | | 6 | 232.0 | | | | | | | | 209.5 | | MADERA 1881GATION DISTRICT | | 326.0 | | 387.0 | | | STATE WELL
NUMBER | CHOWCHILLA W | 10S/14E-08BO3 M | CONT. | | 105/15E-23K01 M | | 105/15E-27D03 M | | | | | | | | | | 105/16E-09E01 M | | | | | | | | 105/16E-29R01 M | | MADERA 19916 | | 105/18E-20801 M | | 10S/19E-16D01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | 6001 | | 6001 | 6001 | | 6001 | |---|------------------------------------|--|--|--|--|---|---------------------|---|---|--------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 170.5 | 169.7
171.8
175.9
166.4 | 180°2
181°2
181°8
180°5
176°7
170°8 | 207.2
205.0
208.5
208.9 | 211.5
210.5
210.5
207.5
208.0
208.9 | 188.2 | 186.4
186.2
187.0
188.0 | 1900.1
1910.0
1910.7
1900.7
1890.9
1880.3 | 224.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-13 | 65.8 | 65.3
63.2
59.1
68.6 | 000000 000
40040 40
•••••••••••••••••••• | 80.8
83.0
79.5 | 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 76.8
72.9 | 78.0
77.0
77.0
74.0 | | 83.0 | | DATE | - | 5-20-64 | 7-23-63
8-27-63
10-01-63
10-24-63 | 12-05-63
12-23-63
1-21-64
2-11-64
3-26-64
4-23-64
5-20-64
6-25-64 | 7-23-63
8-27-63
9-30-63
10-24-63 | 12-05-63
12-23-63
12-23-63
1-11-64
2-11-64
3-26-64
4-23-64
5-20-64 | 12-13-63
2-17-64 | 7-23-63
8-27-63
10-01-63
10-24-63 | 12-23-63
1-21-64
2-11-64
3-26-64
4-23-64
5-20-64 | 2-12-64
2-13-64 | | GRDUND
SURFACE
ELEVATION
IN FEET | MADERA IRRIGATION DISTRICT | 235.0 | 235.0 | | 288.0 | | 265.0 | 265.0 | | 307.0 | | STATE WELL
NUMBER | MADERA IRRIG | 12S/17E-26CO1 M
CONT. | 125/17E-34R01 M | | 125/18E-13R01 M | | 125/18E-21G01 M | 12S/18E-21H01 M | | 125/19E-28A01 M | | | | | | | | | | _ , | _ | | | AGENCY
SUPPLYIN
DATA | | 6001 | 6001 | 6 00 1 | | 6001 | | 6001 | 700 9 | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA | | 306.5 600]
288.0 | 135.5 6001
138.1 | | 1500-0-1
1490-0-1
1440-0-1
1440-0-1 | | 143.0 | | | 171.4
170.3 | | 1 | 5-22-13 | | | | | | | 162.0 | 66.6 168.4 65.4 169.6 62.8 172.2 63.3 171.7 60.0 175.0 59.0 176.5 60.8 174.2 | 63.6
64.7 | | WATER
SURFACE
ELEVATION
IN FEET | 5-22•1 | 9-30-63 109.5 306.5
2-12-64 128.0 288.0 | 135 ₆ 5
138 ₆ 1 | 142.8
144.8
144.8
144.8
151.4
152.5
153.9 | 74
78
77
88
81
84
56
56 | 123.5
131.5
140.2
145.1
149.8
144.9 | 75.0 | 66.0 162.0 | 168.4
169.6
172.2
171.7
175.0
176.0
176.5 | 63.6
64.7 | | GROUND SUR-
FACE TO
WATER
SURFACE ELEVATION
IN PEET | MADERA IRRIGATION DISTRICT 5-22-13 | 9-30-63 109.5 306.5
2-12-64 128.0 288.0 | 69.9 135.5
67.3 138.1
n | 86.2 142.8
87.5 141.5
84.2 144.8
81.6 147.4
77.6 151.4
76.5 152.5
75.1 153.9 | 74
78
77
88
81
84
56
56 | 94.5 123.5
86.5 131.5
77.8 140.2
72.9 145.1
68.2 149.8
69.0 149.0 | 75.0 | 6-25-64 n
12-13-63 66.0 162.0
2-14-64 n | 66.6 168.4 65.4 65.4 169.6 62.8 172.2 63.3 171.7 60.0 175.0 59.0 176.5 60.8 174.2 | 63.6
64.7 | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | | 6001 | | | | 1009 | 6001 | 6001 | | | | | ۰ | |--|------------------------|-----------------|------------------------|-------------------------|---|-------------------------------|-----------------|--|-------------------------------------|--|-----------------|--------------------------------|-----------------|------------|------------------------------|---------|-------------------------------|--------------| | WATER
SURFACE
ELEVATION
IN FEET | | | 121.5 | 121.2 | 132.0
131.8
124.9
129.6 | 126.2
112.5
119.0 | 135.0 | 136.2
138.5
141.2 | 139.0 | 133.7 | | 123.8 | 114.5 | 115.0 | 136.1 | 140.5 | 136.9 | 118.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.14 | 0 0 | 38 1 | 37.5 |
28.0
28.2
35.1 | 33.8
47.5
41.0 | 15.0 | 13.8
11.5
8.8 | 11.0
13.0
19.0 | 16.3 | # | 41.3 | 80.5 | 80.0 | ນ ເກ
ໝູ່ ໝູ່ ເ
ໝູ່ ເກີ | 54.5 | 58.1
66.2 | 77.0 | | DATE | EA | 10-03-63 | 7-24-63 | 10-03-63 | 12-23-63
12-23-63
1-21-64
2-14-64
3-26-64 | 4-24-64
5-20-64
6-25.64 | 7-23-63 | 10-03-63
10-23-63
12-05-63 | 12-23-63
1-21-64
2-14-64 | 5-20-04
4-23-64
5-20-64
6-25-64 | 10-03-63 | 10-03-63 | 7-23-63 | 10-01-63 | 12-05-63 | 2-11-64 | 3-20-04
4-23.64
5-20-64 | 6-25-64 | | GRDUND
SURFACE
ELEVATION
IN FEET | CHOWCHILLA-MADERA AREA | 158.0 | 160.0 | | | | 150.0 | | | | 145.0 | 165.1 | 195.0 | | | | | | | STATE WELL
NUMBER | WEST CHOWCH | 11S/15E-33E01 M | 11S/15E-33P01 M | | | | 12S/14E-25H01 M | | | | 12S/14E-28G01 M | 12S/15E-14L01 M | 13S/16E-02C01 M | | | | | 1 | | A L L | | 1009 | 1009 | 6001 | 6001 | | | | 6001 | | 6001 | | | 6001 | | | | | | AGE | | 9 | 9 | 9 | 9 | | | ' | Ĭ | | ď | 5 | | 99 | | | | а | | WATER SURFACE SUPPLYING ELEVATION DATA | | ğ | 99.1 6 | 97.1 6 | | 106.0
106.0
105.1 | 104.7 | | 98.2 6(| 88.2
91.4
89.4 | | 82.0 | | | 120.8 | 122.4 | 121.8 | 120.3 | | | 5-22.14 | # | | | | | | 102.0
101.2 | | | 9 00 | 82.0 | 0 | 116,6 | 16.8 118.2
14.2 120.8 | | | • | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.1 | | 99.1 | 97.1
111.9 | 19.8 111.2
21.2 109.8
22.7 108.3
25.6 105.4 | | 26.3 | 29.0 102.0
29.8 101.2 | 98.2
90.7
89.1 | | 58 4 00 A | 82.0 | | 18.4 116.6 | | 12.6 | 13.2 | D 14.7 120.3 | | GROUND SUR-
FACE TO SURFACE
WATER ELEVATION
IN FEET IN FEET | | # | 19.9 99.1
20.4 98.6 | 79.9 97.1
65.1 111.9 | 19.8 111.2
21.2 109.8
22.7 108.3
25.6 105.4 | 25.0
25.0
27.8 | 26.3 | 5-21-64 29.0 102.0
6-26-64 29.8 101.2 | 49.8 98.2
57.3 90.7
58.9 89.1 | | 58 4 00 A | 3-27-64 69.0 82.0
4-24-64 0 | | 18.4 116.6 | 14.2 | 12.6 | 13.2 | 14.7 120.3 | | [| AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | | | | | | | 6003 | | 6001 | | | | | | | | | 5631 | | | | | 6001 | 5631 | | | | | 6001 | | | | | | |------|---|---------------------|-----------------|-----------------|----------|----------|----------|----------|---------|---------|---------|-----------|---------|------------------|-----------------|----------|----------|----------|----------|---------|----------|---------|--------------|-----------------|----------|----------|----------|----------|---------|---------|-----------|---------|---------|----------|-----------------|----------|---------|---------|---------|---------| | | WATER
SURFACE S
ELEVATION
IN FEET | | 154.0 | 203.8 | 204.5 | 202.2 | 203.8 | 205.1 | 205.2 | 201.3 | 301.5 | 204.5 | | 9 6 | 182.8 | 181.5 | 184.6 | 186.2 | 185.0 | 186.3 | 182.0 | 183.0 | 181•8 | 222.2 | 222.07 | 223.2 | 222.7 | 221.8 | 222 • 8 | 222.1 | 225.4 | 219.0 | 217.3 | | 216.2 | | | | | | | 0113 | GROUND SUK-
FACE TO
WATER
SURFACE
IN FEET | 5-22-15 | 58.0 | 54.2 | 53.5 | 55.8 | 54.2 | 52.9 | 52.8 | 56.7 | E 74 | 53.5 | | 57.0 | 62.2 | 63.5 | 40.0 | 58.8 | 60.0 | 58.7 | 63.0 | 62.0 | 63.2 | 0.99 | 65.05 | | 65.5 | | | | 62.8 | 60.0 | 70.9 | | 73.8 | | | | | | | ľ | DATE | | 6-24-64 | 7-22-63 | 8-26-63 | 10-25-63 | 12-04-63 | 12-23-63 | 1-20-64 | 3-25-64 | 4-25-64 | 5-19-64 | | 2-12-64 | 7-22-63 | 8-26-63 | 10-25-63 | 12-04-63 | 12-23-63 | 2-11-64 | 3-25-64 | 5-19-64 | -24 | 7-29-63 | 8-28-63 | 9-26-63 | 12-02-63 | 12-27-63 | 2-12-64 | 3-05-64 | 3-27-64 | 49-87-4 | | | 7-22-63 | | | | | | | | GROUND
SURFACE
ELEVATION
IN FEET | TION DISTRICT | 212.0 | 258.0 | | | | | | | | | | 255.8 | 245.0 | | | | | | | | | 288.2 | | | | | | | | | | | 290.0 | | | | | | | | STATE WELL
NUMBER | FRESNO IRRIGATION | 135/17E-33D01 M | 135/18E-10P01 M | | | | | | | | | | 135/18E-16D01 M | 135/18E-34D01 M | | | | | | | | | 135/19F-09001 M | | | | | | | | | | | 135/19E-16K01 M | | | | | | | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | | | | | | 1696 | | | | | _ | | | 1000 | 5621 | 1000 | | | | | | | | | 6001 | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 262.7 | 262.4 | 262.0 | 258.3 | 257.1 | 241-3 | 264.3 | 253.3 | 258.6 | | 330.0 | 329.6 | 332.3 | 334.1 | 334.0 | 331.5 | 329.6 | | 446.3 | 0 | 182.1 | 183.4 | 181.9 | 181.7 | 180.5 | 178.6 | | 180.4 | 9 • 0 9 1 | 155.0 | 159.0 | 159.7 | 153.0 | 160.7 | 161.0 | 162.5 | 159.3 | 155.8 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-15 | 97.3 | 97.6 | 98.0 | 101.7 | 102.9 | 9201 | 95.7 | 106.7 | 101.4 | 2001 | 58.3 | 58 • 1
56 • 7 | 55.4 | 54.5 | 53.7 | 56.2 | 55.6 | | 26.7 | | 42.6
38.7 | 37.4 | | | | 42.2 | | 4.04 | 7.04 | 57.0 | | | | | | | | 56.2 | | | DATE | | 7-22-63 | 8-26-63 | 10-24-63 | 12-04-63 | 12-23-63 | 1-20-64 | 3-75-64 | 4-25-64 | 5-19-64 | t0 #7 0 | 7-31-63 | 9-30-63 | 11-27-63 | 12-31-63 | 3-05-64 | 4-29-64 | 5-28-64 | | 10-04-63 | ; | 7-29-63 | 9-26-63 | 10-26-63 | 12-28-63 | 1-30-64 | 3-05-64 | 4-29-64 | 5-28-64 | 6-29-64 | 7-22-63 | 8-26-63 | 10-05-63 | 10-25-63 | 12-04-63 | 1-20-64 | 2-11-64 | 3-25-64 | 5-19-64 | | | ů | _ | | _ | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 360•0 | | | | | | | | | | 387.7 | | | | | | | | 473.0 | | 220.8 | | | | | | | | | 0.212 | 00717 | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5631 | | 6001 | 5631 | | | | | | | 1695 | | | | | | | 5631 | | | | | | | |---|------------------------------------|--------------------------|----------------|-------------------------|----------------------------|--------------------|------------|--------------------|----------------|----------------|-------|-----------------|---------|------------|------------|--------------------|------------|-----------------|------------------------|--------------------------|----------|------------|----------------|---------|--------------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 376.3 | 375°7
375°5 | | 159.4 | 157.1 | 166.3 | 160.4 | 156.4 | 153.2 | | 191.4 | 189.6 | 194.2 | 194.5 | 192.6 | 195.8 | 195.0
194.5 | 213.9 | 2000 | 209.7 | 215.1 | 217.5 | 216.6 | 208.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-15 | 30.2 | 30.8 | * | 68.0 | 70.3
62.8 | 61.1 | 67.0
60.6 | 71.0 | 74.2 | . ; | 52.1 | 57.6 | 53.0 | 52.8 | 54.6 | 52.7 | 52.2
52.7 | 68.6 | 73.3 | 72.8 | 67.4 | 65.0 | 65.9 | 74.5 | | DATE | <u>_</u> | 2-30-64 | 5-30-64 | 7-23-63 | 7-29-63 | 9-26-63 | 11-30-63 | 3-05-64 | 3-26-64 | 5-29-64 | | 8-29-63 | 9-27-63 | 11-30-63 | 12-30-63 | 3-05-64 | 4-28-64 | 5-29-64 6-30-64 | 7-30-63 | 8-28-63 | 10-29-63 | 12-30-63 | 1-27-64 | 4-28-64 | 5-28-64 6-30-64 | | GROUND
SURFACE
ELEVATION
IN FEET | FRESNO IRRIGATION DISTRICT | 406.5 | | 215.0 | 227.4 | | | | | | 1 | 247.5 | | | | | | | 282.5 | | | | | | | | STATE WELL
NUMBER | FRESNO IRRIG | 135/23E-31P01 M
CONT. | | 14S/17E-13H02 M | 145/18E-08J01 M | | | | | | | 145/19E-20801 M | | | | | | | 145/20F-06H01 M | | | | | | | | • | AGENCY
SUPPLYING
DATA | | 6001 | | | | | 1606 | | | | | | | 5631 | | | | | | | | 1690 | | | | | WATER SURFACE SUPPLYING ELEVATION DATA | | 216.2 6001
216.9 | 216.8 | 217.4
217.5
217.5 | 215.0 | | 252.8 | 255.3 | 258.6
258.4 | 258.1
258.3 | 254.3 | 256.7 | 257.8 | 327.8 5631 | 333.9 | 335 ₀ 1 | 332.1 | 335•8 | | 334.5
333.1 | | | 373.2
373.8 | 375.8 | 375.9
376.3 | | WATER SURFACE ELEVATION IN FEET | 5-22.15 | | | | 75.0 215.0
74.5 215.5 | 215.9 | 252.8 | 83.4
81.4 255.3 | | | | 80.0 256.7 | ~ | 327.8 | 30.1 333.9 | | 31.9 332.1 | | 0 0 | 29.5 334.5
30.9 322.1 | | 373.1 | 33°3 373°2 | | 30.6 375.9
30.2 376.3 | | WATER
SURFACE
ELEVATION
IN FEET | | 216.2 216.9 | 73.0 | | -22-64 75.0
-19-64 74.5 | 74.1 215.9 | 83.9 252.8 | 83.3 | | 78.6 | 82.4 | 80.0 | ~ | 327.8 | 30.1 | | 31.9 | | 3-27-64 H
4-28-64 H | 29.5 | 1000 | 33.4 373.1 | | 30.7 | | | GROUND SUR- FACE TO SURFACE WATER SURFACE IN FEET | FRESNO IRRIGATION DISTRICT 5-22.15 | 73.8 216.2
73.1 216.9 | 73.0 | 72.6 | -22-64 75.0
-19-64 74.5 | 6-24-64 74.1 215.9 | 83.9 252.8 | 83.3 | 78•1
78•3 | 78.6 | 82.4 | 80.0 | 78.9 2 | 36.2 327.8 | 30.1 | 28.9 | 31.9 | 28°2
n | | 29.5 | | 33.4 373.1 | 33.3 | 30.7 | 30.6
30.2 | | AGENCY
SUPPLYING
DATA | | 4200 | 4200 | | 4 2 0 0 | 4200 | 4200 | |---|----------------------------|-------------------------------|---|--|--
---|---| | WATER
SURFACE
ELEVATION
IN FEET | | 226.3 | 2339°6
236°7
236°7
237°9
239°0
240°4 | 234°5
234°5
236°5 | 2114-4
2112-4
2112-6
2113-6
2114-5
2114-5
215-4
215-4 | 214.6
213.7
213.7
222.8
222.6
222.6
222.6
222.6
223.6
229.9 | 230.6
227.8
226.2
211.4
207.7
205.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.16 | 83.7 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 1 - 0 0 8 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9910-7
910-7
911-6
911-6
911-6
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
911-7
91-7
9 | | | DATE | | 12-01-63 | 7-01-63
8-01-63
9-01-63
10-01-63
11-01-63
12-01-63 | 3-01-64
4-01-64
4-29-64
6-05-64 | 7-01-63
8-01-63
9-01-63
10-01-63
12-01-64
2-01-64 | 4-101-64
4-30-64
6-30-64
7-01-63
9-01-63
11-01-63
12-01-63
1-01-64
2-01-64 | 4-01-64
4-30-64
6-04-64
7-04-63
7-31-63
10-02-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ON | 310.0 | 325°0 | | e • • • • • • • • • • • • • • • • • • • | 303 <u>.</u> 9 | 291.4 | | STATE WELL
NUMBER | CITY OF FRESHO | 135/20E-21J01 M
CONT. | 135/20E-23801 M | | 13S/20E-35H02 M | 145/20E-01D01 M | 145/20E-10M01 M | | AGENCY
SUPPLYING
DATA | | 5631 | | 5631 | | 5631 | 4200 | | WATER
SURFACE
ELEVATION
IN FEET | | 291.0
288.3
288.7 | 290.7
291.5
291.9
293.7
293.4
293.4 | 353.4 | | 8 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 226.
226.
225.
225.
8 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22-15 | 43.0
45.7 | 444444
4000000000000000000000000000000 | 44.7
46.6
11 | 7 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5-22.16
83.5
83.6
84.2 | | DATE | t | 7-30-63
8-30-63
9-30-63 | 10-30-63
11-30-63
12-31-63
1-28-64
3-06-64
4-29-64 | 7-30-63
8-28-63 | 10-20-63
11-27-63
11-27-63
12-31-63
1-28-64
3-05-64
4-29-64
6-29-64 | 7-30-63
8-29-63
9-27-63
110-29-63
111-30-63
12-29-64
4-29-64
5-29-64
6-30-64 | 7-31-63
9-01-63
10-01-63
11-01-63 | | GROUND
SURFACE
ELEVATION
IN PEET | ATION DISTRI | 334.0 | | 0 • 00 4 | | 282,5 | 310.0 | | STATE WELL
NUMBER | FRESMO IRRIGATION DISTRICT | 145/21E-14A01 M | | 14S/22E-01P01 M | | 155/20E-13E02 M | CITY OF FRESMO
135/20E-21J01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | | | | 6001 | | | | | | | | | 6001 | | | | | | | | | | 6001 | 6001 | | 6001 | 6001 | | |---|------------------------|-----------------|---------|---------|--------------|---------|-----------------|----------------------------|----------|----------|---------|---------|---------|---------|--------------------------|-----------------|---------|----------|----------|----------|-----------|---------|---------|------------|--------------------------|--------------------------|-----------------|---------|--------------------------|--------------------------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 136.5 | 140.4 | 136.4 | 131.4 | 127.0 | 135.2 | 136.3 | 144.4 | 147.4 | 149.0 | 144.0 | 140.5 | 139.7 | | 126.0 | 129.5 | 137.4 | 141.4 | 141.5 | 143.2 | 132.2 | 132.9 | 129.0 | 0 • 771 | 143.8 | | 133.8 | 135•8 | 144.9 | 144.1 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22-17 | 23.5 | 19.6 | 23.6 | 28.6
28.5 | 33.0 | 44.8 | 43.7 | 35.6 | 32.6 | 31.0 | 36.0 | 39.5 | 40.3 | D | 39.0 | 35 C | 27.6 | 23.6 | 23.5 | 21.8 | 32.8 | 32.1 | 36.0 | 7074 | 23.2 | | 77.2 | 35.2
¤ | 26.1 | 56.9 | | DATE | | 12-23-63 | 1-20-64 | 3-25-64 | 4-22-64 | 6-24-64 | 7-22-63 | 8-26-63 | 10-25-63 | 12-23-63 | 1-20-64 | 2-17-64 | 4-22-64 | 5-19-64 | 9-54-94 | 7-22-63 | 8-26-63 | 10-25-63 | 12-04-63 | 12-23-63 | 1-20-64 | 3-25-64 | 4-22-64 | 5-19-64 | * 9- * 7-9 | 10-03-63 | 10-08-63 | 2-18-64 | 10-03-63 | 7-23-63 | 8-26-63 | | GROUND
SURFACE
ELEVATION
IN FEET | SLOUGH AREA | 160.0 | | | | | 180.0 | | | | | | | | | 165.0 | | | | | | | | | | 167.0 | 211.0 | | 171.0 | 171.0 | | | STATE WELL
NUMBER | FRESNO SLOUGH | 145/15E-25H02 M | CONT. | | | | 145/16E-03C01 M | | | | | | |
 | 14S/16E-08D01 M | | | | | | | | | | 145/16E-22N01 M | 14S/17E-25A01 M | | 155/16E-01L01 M | 155/16E-12C03 M | | | AGENCY
SUPPLYING
DATA | | 4500 | | | | | | | 6001 | | 6001 | | | | | | | | | | 6001 | | | | | | | | 6001 | | | | AG
SUPP
D | WATER AG
SURFACE
ELEVATION D
IN FEET | | | 215.6 | 216.7 | 216.7 | 213.5 | 211.3 | | 120.0 | 15101 | 96.5 | 95.2 | 126.5 | 133.9 | 134.8 | 124.5 | 1110 | 109.5 | 104.0 | | | 186.3 | 186.8 | 187.3 | 187.0 | 186.7
186.1 | 185.3 | 184.2 | | 132.5 | 139.8 | | | 5-22.16 | 208.5 | | | | | 80.1 211.3 | 5-22.17 | | 1010 | | | | | 30.7 134.8
32.5 133.0 | | | | | 1 | ם מ | | | 17.7 187.3 | | 18.3 186.7
18.9 186.1 | 7 | | 131.1 | 27.5 132.5
25.0 135.0 | 7 | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.16 | 82.9 208.5 | | 74°7 | | 77.9 | | 5-22.17 | 42.0 | | *0*69 | | 39.0 | 31.6 | | 41.0 | | 56.0 | 61.5 | | 8-24-63 B | 18.7 | 18.2 | | 18.0 | | 19.7 | | 28.9 131.1
29.4 130.6 | 27.5 | 7 | | GROUND SUR- FACE TO SURFACE NATER SURFACE IN FEET | CITY OF FRESNO 5-22.16 | 82.9 208.5 | 75.8 | 74°7 | 74.7 | 77.9 | 1.08 | FRESNO SLOUGH AREA 5-22.17 | 42.0 | 6.0 | *0*69 | 70.3* | 39.0 | 31.6 | 30.7 | 41.0 | 54.5 | 56.0 | 61.5 | 6 | | 18.7 | 18.2 | 17.7 | 18.0 | 18.3
18.9 | 19.7 | 20.8 | 28.9 131.1
29.4 130.6 | 27.5 | 20.2 | | GROUND
SURFACE
ELEVATION
IN FEET | |--| | 5-22.17 | | | | | | 10-02-63 100.0
2-10-64 a
3-02-64 91.5 | | 7-23-63 100.6 84.4 8-26-63 101.2 83.8 83.8 810-25-63 97.1 87.9 92.8 81.9 10.20-64 78.0 107.0 2-10-64 82.9 102.1 3-25-64 82.9 102.1 5-264 85.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 9 | | 7 | | 98.5
102.0 | | 10-22-63 93.2
2-10-64 n
3-03-64 90.8 | | 7-30-63 DRY | | AGENCY
SUPPLYING
DATA | | 4636 | | 4636 | | | 4638 | | 4636 | | |---|-------------------------|--|-----------------|---|---|------------------------------|----------------------------------|---|--|--| | WATER
SURFACE
ELEVATION
IN FEET | | 176.3
176.8
171.2
171.2 | 167.4 | 207.9
207.5
211.0
212.2 | 212.8
213.2
213.5
213.7
212.1 | 208.1
207.9 | 264.9
264.5
265.2
265.1 | 266.9
268.6
268.6
268.6
268.6
268.0
267.0 | 301.0
301.5
304.6
304.6 | 90000000000000000000000000000000000000 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.18 | 70°3
69°8
75°4
75°4 | 79.2 | 56.9
57.3
53.8
52.6 | 52.0
511.6
511.3
521.1 | 0.00
0.00
0.00
0.00 | 36.3
36.7
36.0 | 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3 3 3 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | DATE | DISTRICT | 1-03-64
2-01-64
3-03-64
4-01-64 | 5-25-64 | 7-01-63
7-30-63
8-31-63
10-03-63 | 11-01-63
12-03-63
1-03-64
2-01-64
3-03-64 | 4-29-64 | 7-01-63
7-30-63
8-31-63 | 11-01-63
11-01-63
11-03-64
2-01-64
3-03-64
4-21-64
5-25-64 | 7-01-63
7-30-63
8-31-63
10-03-63
11-01-63 | 1-03-64
2-01-64
3-03-64
4-01-64
4-29-64
5-25-64 | | GROUND
SURFACE
ELEVATION
IN FEET | | 246.6 | | 264.8 | | | 301.2 | | 337.0 | | | STATE WELL
NUMBER | CONSOLIDATED IRRIGATION | 155/19E-24N01 M
CONT. | | 155/20E-28A01 M | | | 155/21E-15D01 M | | 15S/22E-16A01 M | | | AGENCY
SUPPLYING
DATA | | 5050 | 5050 | | | 5050 | 5050 | 4636 | | 4636 | | WATER
SURFACE
ELEVATION
IN FEET | | 76.7
79.7
90.7
91.4 | 127.9 | 129.8
134.2
135.1 | 138.4 | 78.5 | 126.7 | 3229
32210
32210
3220
320
320
320
320
320
320
320
320
3 | 324.1
324.6
323.7
322.9 | 166.2
166.8
167.4
171.0
173.2
175.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-17 | 114.3
1111.3
100.3
99.6 | 92,1 | 88 50 8
8 50 8
8 6 9 8
8 2 0 9 | 81.6
B6.8
103.0 | 120.5 | 122.07 | 3-22.18
36.2
35.6
34.2
33.3
32.7 | 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 80.4
79.8
79.2
75.6
73.4 | | DATE | | 3-31-64
4-27-64
5-25-64
6-24-64 | 7-29-63 | 9-27-63
10-28-63
11-27-63
12-30-63 | 2-03-64
2-24-64
3-31-64
4-27-64
5-25-64 | 12-19-63 | 12-19-63
2-07-64 | 7-01-63
7-30-63
8-31-63
10-03-63
11-01-63 | 2 - 01 - 64
3 - 01 - 64
4 - 01 - 64
5 - 29 - 64 | 7-01-63
7-30-63
8-31-63
10-03-63
11-01-63 | | GROUND
SURFACE
ELEVATION
IN FEET | 4 AREA | 191•0 | 220.0 | | | 199.0 | 199.5 | 355.7 | | 246.6 | | STATE WELL
NUMBER | FRESNO SLOUGH AREA | 165/18E-31002 M
CONT. | 16S/19E-34P01 M | | | 175/17E-12H01 M | 17S/18E-23A02 M | CONSOLIDATED IRRIGATION DISTRICT 145/22E-22N01 M 355.7 7-01- 7-30- 8-31- 10-03- 11-01- 12-03- | | 155/19E-24N01 M | | AGENCY
SUPPLYING
DATA | | 4636 | | | | | 4636 | | | | | | | | | | | 4636 | | | | | | | | | | | | | | 4637 | | | | | | | | | | |--|--|-----------------|------------|---------|------------|----------------|-----------------|---------|----------|------------|----------|------------|---------|---------|------------|---------|-------|-----------------|---------|---------|------------|-----------|----------|------------|------------|---------|---------|---------|----------------------------------|-----------------|----------------|-----------------|--|------------|----------|------------|----------|------------|---------|---------|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 226.6 | 227.0 | 223.1 | 221.8 | 220•9 | 266.3 | 266.3 | 267.6 | 268.1 | 269.0 | 260.3 | 269.2 | 269.2 | 269-1 | 269.1 | | 260.8 | 262.1 | 263.9 | 261.9 | 261.1 | 261•3 | 260.5 | 260.5 | 259.2 | 257.8 | | 253.8 | | | 339.9 | 04040 | 337.3 | 334.9 | 336.5 | 33505 | 231.6 | 226 0 | 321.9 | , , , | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22.18 | 4.44 | 0 4 4 | 47.9 | 49.2 | 50•1 | 31.2 | 31.2 | 20.00 | 29.4 | 28.5 | 0.82 | 28.3 |
28.3 | 28.4 | 28.4 | | 25.2 | 23.9 | 22.1 | 24.1 | 24.9 | 24.7 | 25.5 | 25.5 | 26.8 | 28.2 | 31.4 | 32.2 | 5-22-19 | , , | 51.1 | \$ 0.0
\$ 0.0 | 53.7 | 56.1 | 54.5 | 55.5 | 0 4 | 79.4 | 7040 | • | | DATE | DISTRICT | 1-03-64 | 2-01-64 | 4-01-64 | 4-29-64 | 5-25-64 | 7-01-63 | 7-30-63 | 10-03-63 | 11-01-63 | 12-03-63 | 1-03-64 | 3-03-64 | 4-01-64 | 79-67-7 | 5-25-64 | | 7-01-63 | 7-30-63 | 8-31-63 | 10-03-63 | 11-01-63 | 12-03-63 | 1-03-64 | 2-01-64 | 3-03-64 | 4-01-64 | 4-53-64 | 5-22-64 | | | 7-30-63 | 60-70-6 | 10-05-63 | 10-31-63 | 11-29-63 | 12-30-63 | 1-20-64 | *0-07-7 | 3-21-64 | 10 | | GROUND
SURFACE
ELEVATION
IN FEET | | 271.0 | | | | | 297.5 | | | | | | | | | | | 286.0 | | | | | | | | | | | | TOUR DISTRICT | TOTAL CITY NOT | 391.0 | | | | | | | | | | | STATE WELL
NUMBER | CONSOLIDATED IRRIGATION | 165/21E-22N01 M | CONT | | | | 16S/22E-23R01 M | | | | | | | | | | | 175/22E-03C01 M | | | | | | | | | | | | ALTA TRRESATION | ארוש זיאופט | 14S/23E-36R01 M | | | | | | | | | | | • | AGENCY
SUPPLYING
DATA | | 4636 | | | | | | | | | | 4636 | | | | | | | | | | | | 4636 | | | | | | | | | | | | 4636 | | | | | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA
IN FEET | | | 282.2 | 285.3 | 285.7 | 286.2
285.8 | 286.8 | 285+3 | 283.0 | 282.1 | | | 14743 | 156.0 | 157.8 | 158.9 | 160.0 | 160.8 | 157.9 | 154.9 | 151.0 | 149.3 | | | 184.2 | 186.0 | 187.3 | 186.2 | 188.9 | 189.7 | 189.2 | 187.0 | 163.0 | 180.4 | | | 218.4 | 223.0 | 0.222 | 226.0 | 7 700 7 | | | 5-22.18 | 281.8 | 39.7 282.2 | | 36.2 285.7 | | | | | 39.8 282.1 | (i | | | | 77.7 157.8 | | | 74.7 160.8 | | 7 | 84.5 151.0 | 149. | | 183.7 | 63.5 184.2 | | | | | 58.0 189.7 | | 60.7 187.0 | 7 | 67.3 180.4 | | | | 75.1 218.9 | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 40.1 281.8 | | 36.6 | 36.2 | | 35.1 | 36.6 | | 39.8 | | 150.9 | 93°7 | 70.5 | 7.77 | 76.6 | 75.5 | 74.7 | 77.6 | 80.6 | 84.5 | 149. | | 64.0 183.7 | 63.5 | 61.7 | 60°4 | 59.5 | | 58.0 | 58.5 | 60.7 | 1 040 | .3 | | 218.3 | 52.6 | | 0.64 | | 0.64 | | GROUND SUR. WATER FACE O SURFACE WATER ELEVATION IN FEET | CONSOLIDATED IRRIGATION DISTRICT 5-22.18 | 40.1 281.8 | 39°7 | 36.6 | 36.2 | 35.7 | 35.1 | 36.6 | 36.9 | 39.8 | | 84.6 150.9 | 93°7 | 70.5 | 7.77 | 76.6 | 75.5 | 74.7 | 77.6 | 80.6 | 84.5 | 86.2 149. | | 64.0 183.7 | 63.5 | 61.7 | 60°4 | 59.5 | 50 60
50 60
50 60
50 60 | 58.0 | 58.5 | 60.7 | 1 040 | 67.3 | | 52.7 218.3 | 52.6 | 1.76 | 0.64 | 0.64 | 0.64 | | AGENCY
SUPPLYING
DATA | | 4637 | | | 4637 | | 4637 | | 4637 | | |---|--------------------------|---------------------------------------|---|---|--|---|---|---|---|---------| | WATER
SURFACE
ELEVATION
IN FEET | | 301.7 | 302.4
302.4
301.3 | 202
294
295
295
295
295
295 | 311.9
315.9
312.7
313.6
314.8 | 307.9
306.4
306.5
310.4 | 238.6
241.0
242.9
244.7 | 242.5
240.4
241.7
234.4
233.5 | 237.6
236.6
237.5
239.1
240.9
242.9 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.19 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | \$50.1
\$50.3
\$50.4
\$70.5
\$70.5 | 56.1
57.6
57.5
53.6 | 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 99999999999999999999999999999999999999 | | | DATE | | 8-27-63 | 10-30-63
11-26-63
12-27-63
1-27-64 | 2-25-64
3-26-64
4-25-64
5-29-64
6-25-64 | 7-29-63
8-27-63
10-01-63
10-30-63
11-26-63
12-27-64 | 2-25-64
3-26-64
4-25-64
5-29-64
6-25-64 | 7-29-63
8-27-63
10-03-63
11-01-63
11-27-63
12-28-63
1-28-64 | 2-27-64
3-30-64
4-28-64
6-01-64
6-27-64 | 7-31-63
9-03-63
10-03-63
11-01-63
11-27-63
12-28-63
1-28-64 | | | GROUND
SURFACE
ELEVATION
IN FEET | ALTA IRRIGATION DISTRICT | 336.0 | | | 364.0 | | 275.0 | | 275.0 | | | STATE WELL
NUMBER | ALTA IRRIGA" | 165/24E-21J01 M
CONT. | | | 16S/25E-29A01 M | | 175/22E-25A01 M | | 175/22E-25J01 M | | | AGENCY
SUPPLYING
DATA | | 4637 | 4637
6001
4637 | 4637 | | 4637 | | 4637 | | 4637 | | WATER
SURFACE
ELEVATION
IN FEET | | 322.9 | 349.4
330.1
341.0 | 305.1
305.1
306.3
309.2 | 309.9
309.9
309.9
3004.7
297.6 | 348.8
351.7
344.1
342.2 | 94444
94444
9446
9416
9416
9416
9416
941 | 281.4
282.3
284.5
285.1 | 2885.2
2885.3
2885.3
2885.3
2885.3
2885.3
2885.3 | 298•2 | | GRDUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-19 | 68.1 | 45.6
64.9
54.0 | 4 4 5 4 5 4 5 4 5 4 5 5 6 5 6 5 6 5 6 5 | 744600000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44444
00004
0000000000000000000000000 | 31.7
29.5
28.9
28.9 | 99999999999999999999999999999999999999 | 37.8 | | DATE | | 5-31-64 | 7-30-63
2-06-64
2-26-64 | 7-30-63
9-02-63
10-02-63
10-31-63 | 12-30-63
1-28-64
2-26-64
3-27-64
4-27-64
5-31-64 | 7-29-63
8-31-63
10-04-63
11-02-63 | 12-31-63
1-30-64
2-28-64
3-30-64
4-29-64
5-29-64 | 7-30-63
9-03-63
10-03-63
11-01-63 | 12-28-63
1-29-64
2-27-64
3-28-64
4-28-64
6-01-64 | 7-29-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ALTA IRRIGATION DISTRICT | 391.0 | 395.0 | 358.0 | | 388.0 | | 314.0 | | 336.0 | | GRO
SURI
ELEV
IN F | TON DI | m | m | М | | m | | | | | 165/246-21.01 M 336.0 | AGENCY
SUPPLYING
DATA | | 5050
5129
5050
5129 | 5050 | 5050 | 2050 | | 5050 | 6001
5129 | 5050 | | | | 6001 | | |---|----------------------------------|--|--|-----------------|-----------------|---|-----------------|---|--|---|--|---------------------|-----------------|---| | WATER
SURFACE
ELEVATION
IN FEET | | 199.0
197.7
195.3
188.5 | 188.5
180.2
183.5
176.4 | 205•3 | 147.1 | 146.3
142.0
147.5 | 201.6 | 202.8 | 180.9
179.9
180.7 | 181.2
181.8
181.7
181.8 | 181.5 | | 429°0
430°3 | 430°7
428°8
427°9
426°5
425°7 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.20 | 55.0
56.3
65.3
65.5 | 65.5
73.8
77.5 | 2.7 | 69.9 | 70.7
75.0
69.5 | 4 • 4 | 19.2 | 30.1
31.1
30.3 | 29.8
29.2
29.3
29.3 | 31°1 | 5-22-21 | | 12.3
14.2
15.1
16.5
17.3 | | DATE | | 12-30-63
2-03-64
2-12-64
2-24-64
2-29-64 | 3-31-64
4-27-64
5-31-64
6-28-64 | 2-05-64 | 7-29-63 | 9-27-63
10-28-63
11-27-63
12-30-63 | 2-10-64 | 9-30-63 | 7-29-63
8-29-63
9-27-63 | 10-28-63
11-27-63
12-30-63
2-03-64 | 2-24-64
3-31-64
4-27-64
5-25-64 | DISTRICT | 7-02-63 | 9-03-63
10-01-63
12-02-63
1-02-64
2-03-64 | | GROUND
SURFACE
ELEVATION
IN FEET | RIVER AREA | 254.0 | | 208.0 | 217.0 | | 206.0 | 222+0 | 211.0 | | | IRRIGATION DISTRICT | 443.0 | | | STATE WELL
NUMBER | LOWER KINGS R | 185/21E-10R01 M
CONT. | | 195/19E-25A01 M | 195/20E-21A01 M | | 205/20E-09C01 M | 20S/21E-03A01 M | 20S/22E-19M01 M | | | ORANGE COVE | 145/24E-20B01 M | | | AGENCY
SUPPLYING
DATA | | 4637 | 4637 | | 5050 | 2050 | | | | 5050 | | 5050 | 5050 | 5050 | | | 1 | | | | | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 243.8
242.2
241.6
238.8
237.2 | 287.4 | | 156.4 | 159.5
159.5
126.5
157.8 | 179.6 | 162.8 | 155.6
151.3
148.0 | 212.6 | 220.2 | 205.0 | 222.5 | 181.6
181.7
186.5
192.9 | | GROUND SUR. WATER PACE TO SURFACE SURFACE IN FEET IN FEET | 5-22-19 | 31.2 243.8
32.8 242.2
33.4 241.6
36.2 238.8 | | 50 | 63.6 156.4 | | | | 67.4 155.6
71.7 151.3
75.0 148.0 | 6 212•
9* 215• | л
37•0 220•2
| 5.0 205.0 | 7.5 222.5 | 72.4 181.6
72.3 181.7
67.5 186.5
61.1 192.9 | | | 5-22-19 | | | 5-22.20 | | 6 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 | 56.6
43.4 | 660
660
140
140
140
140
140
140
140
140
140
14 | | 44.6 212.
" 215. | 220• | | ₹. | | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | ALTA IRRIGATION DISTRICT 5-22-19 | 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 47.6 | 5-22-20 | 63.6 | 6 6 9 6 9 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 | 56.6
43.4 | 600.2 | 67.4
71.7
75.0 | 44.6 212.
" 215. | 37.0 220. | 2.0 | -05-64 7.5 | 72.4
72.3
67.5
61.1 | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | 6001 | 6001 | |---|----------------------------------|--|-----------------|--|--|---|--| | WATER
SURFACE
ELEVATION
IN
FEET | | 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 348.9 | | | 259.0
260.8
263.2
263.2
263.3
261.3
261.2
261.2 | 2666
2666
2666
2666
2666
2666
2666
266 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.22 | 1.6
1.5
1.7
2.0 | 15.1 | 110000000000000000000000000000000000000 | 10.4
10.2
9.1
9.2
5-22.23 | 98889911889919899999999999999999999999 | 8822 8 8 8 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | DATE | ISTRICT | 3-24-64
4-21-64
5-19-64
6-22-64 | 7-26-63 | 10-21-63
12-24-63
12-24-63
1-20-64
2-66-64 | | 7-01-63
8-01-63
8-31-63
10-04-63
11-29-64
1-29-64
4-01-64
4-29-64
6-02-64 | 7-01-63
8-01-63
8-31-63
10-04-63
11-09-63
11-29-64
1-29-64
1-29-64
1-29-64
1-29-64
1-29-64 | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION D | 405.0 | 364.0 | | SATION DISTRI | 350.0 | 349.0 | | STATE WELL
NUMBER | STONE CORRAL IRRIGATION DISTRICT | 165/26E-32R01 M
CONT. | 175/26E-07R01 M | | IVANHOE IRRIGATION DISTRICT | 175/25E-27R01 M | 175/25E-35M01 M | | AGENCY
SUPPLYING
DATA | | 6 00 1 | 6001 | 6001 | | 6001 | 6001 | | WATER
SURFACE
ELEVATION
IN PEET | | 426.5
427.3
427.4
428.3 | 475•7
476•1 | 371.5
373.3
376.2
374.1 | 377-
3778-
378-2
378-2
378-2
378-2 | 90000000000000000000000000000000000000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.21 | 16.5
15.7
15.6
14.7 | 34.
33.9 | 33.72
28.8
20.9
27.7 | 266.88
266.88
266.88 | 15.7
115.5
113.9
114.5
114.5
115.6
117.0
117.0 | 5-22
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | DATE | STRICT | 3-03-64
4-02-64
5-01-64
6-02-64 | 9-26-63 | 7-02-63
8-02-63
9-03-63
10-01-63 | 1-03-64
2-03-64
3-02-64
4-02-64
5-01-64
6-01-64 | 7-03-63
8-003-63
9-004-63
10-03-63
11-03-64
2-03-64
4-02-64
5-04-64
6-03-64 | 7-26-63
8-30-63
9-27-63
10-21-63
12-02-64
12-04-64
2-04-64
2-04-64 | | GRDUND
SURFACE
ELEVATION
IN FEET | ORANGE COVE IRRIGATION DISTRICT | 443.0 | 510.0 | 405.0 | | 415.0 | STONE CORRAL IRRIGATION DISTRICT 6E-32R01 M 405.0 7-26- 9-27- 10-21- 12-02- 12-24- 1-20- 2-04- 2-04- | | STATE WELL
NUMBER | ORANGE COVE | 145/24E-20B01 M
CONT. | 145/25E-30D01 M | 155/24E-14D01 M | | 165/25E-04C02 M | STONE CORRAL
165/266-32R01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | 6001 | | | 6001 | | 6 0 0 1 | 6001 | 6001 | 6001 | |---|-----------------------------|--------------------------------|---|--|-----------------|---|--|-----------------|---------------------------------|-----------------|-----------------|---|---| | WATER
SURFACE
ELEVATION
IN FEET | | 357.0
378.4
358.8 | 356.5
357.1
356.3
354.8 | 304.6
313.4 | 278.6 | 270.0
273.4
272.3
271.5 | 265.7
263.7
263.6
263.6 | 230.5 | 7300 | 368•4
368•9 | 458.0
458.5 | 172.2
174.6
174.7 | 153.5
150.3
150.1 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-23 | 59.0
37.6
57.2 | 59.5
58.9
59.7
61.2 | 58.4
49.6
5-22.24 | 18.9 | 22.52.23.25.25.25.25.25.25.25.25.25.25.25.25.25. | 200 00 00 00 00 00 00 00 00 00 00 00 00 | 104.5 | O 11 %: | 16.6 | 12.0 | 78.8
76.4
76.3 | 91.5
94.7
94.9 | | DATE | Ħ. | 11-29-63
1-06-64
1-29-64 | 3-04-64
4-01-64
4-30-64
6-02-64 | 9-25-63
2-03- 64
7 DIST | 7-26-63 | 9-27-63
10-21-63
12-03-63
12-24-63
11-20-64 | 2-25-64
3-24-64
4-21-64
5-19-64
6-22-64 | 7-26-63 | 9-27-63
10-21-63
12-03-63 | 9-27-63 | 9-27-63 | 9-26-63
2-05-64
2-12-64 | 7-25-63
8-29-63
9-24-63 | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 416.0 | | 363.0 WATER CONSERV | 297.5 | | | 335.0 | | 385.0 | 470.0 | 251.0 | 245.0 | | STATE WELL
NUMBER | IVANHOE IRRI | 175/26E-34D01 M
CONT. | | 185/25E-12001 M
KAWEAH DELTA | 175/24E-34B01 M | | | 175/25E-21A01 M | | 175/26E-17P02 M | 175/27E-34P01 M | 185/22E-29A01 M | 185/22E-36P01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | 6001 | | | 6001 | | | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | | 288.7
287.7
290.2 | 290°8
290°2
290°4
284°3
289°5 | | 375.2
375.0
376.0
376.0 | 376.0
374.9
373.8
371.4 | 374.7 | 314.6 | 315.6 | 317.1 | 317.0 | 952
952
953
953
953
953
953 | | GRDUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-23 | n | 76.3
77.3
74.8 | 74.6
74.0
74.6
75.5 | ם ם | 18 0 0 1 18 0 0 1 18 0 0 0 0 0 0 0 0 0 0 | 18.0
19.1
20.2
22.6
20.8 | 19•3
¤ | 70•4
71•0 | 69.4
69.1 | 67.9 | 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 · 8 9 0 0 0 0 · 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | DATE | 15 | 6-02-64 | 7-01-63
8-01-63
8-31-63
11-04-63 | 11-29-63
1-06-64
1-29-64
3-02-64
4-01-64 | 4-29-64 | 7-01-63
8-01-63
8-31-63
10-04-63
11-04-63 | 11-29-63
1-06-64
1-29-64
3-04-64
4-02-64 | 4-30-64 | 7-01-63 | 11-04-63 | 1-29-64 | 4-02-64
4-30-64
6-02-64 | 7-01-63
8-01-63
8-31-63
10-04-63 | | GROUND
SURFACE
EL EVATION
IN FEET | ATION DISTRI | 349.0 | 365.0 | | | 394.0 | | | 385.0 | | | | 416.0 | | STATE WELL
NUMBER | IVANHOE IRRIGATION DISTRICT | 175/25E-35M01 M
CONT. | 17S/25E-36G01 M | | | 175/26E-21E01 M | | | 175/26E-32N01 M | | | | 175/26E-34D01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | | | 6001 | | | | | 6001 | |---|---------------------------------|--------------------------|----------------------|-------------------------------|---|--|-----------------|-----------------|-----------------|-----------------|--|--| | WATER
SURFACE
ELEVATION
IN FEET | | 341.0 | 175.7 | 145.5 | 149.0
150.3
151.3
151.7
148.9 | 144.4
142.5
136.5 | 127.3 | 128.5 | 131.0 | 1346 | 133.0
131.0
129.5 | 280.4
280.6
280.5
279.4
275.0
274.3
273.6
273.6
267.2
267.2 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.24 | 26.0 | 69.3 | 89.5
91.2
91.3 | 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 | 90.0
92.5
98.5 | 106.4 | 105.5 | 103.0 | 99.6
100.0 | 101.0 | 00000000000000000000000000000000000000 | | DATE | V DIST | 6-23-64 | 9-27-63 2-05-64 | 7-25-63
8-29-63
9-26-63 | 12-02-63
12-23-63
1-20-64
2-04-64
2-24-64 | 4-20-64
5-18-64
6-23-64 | 7-25-63 | 9-30-63 | 12-02-63 | 2-05-64 | 5-23-64
4-20-64
5-18-64
6-23-64 | 7-25-63
8-30-63
9-24-63
10-21-63
12-03-63
12-24-64
1-20-64
2-24-64
3-23-64
4-21-64
5-18-64 | | GROUND
SURFACE
ELEVATION
IN FEET | KAWEAH DELTA WATER CONSERV | 367.0 | 245.0 | 235.0 | | | 234.0 | | | | | 320.0 | | STATE WELL
NUMBER | KAWEAH DELTA | 185/26E-30N01 M
CONT. | 195/22E-01N02 M | 195/22E-19A01 M | | | 195/22E-36E01 M | | | | | 195/25E-07K01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | | 6001 | | | 5129 | 6001 | 6001 | 6001 | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 154.0 | 165.4 | 157.2
154.9
149.3 | 221.4
217.8
217.9
221.8
227.0 | 230°5
230°5
226°0 | 224.2 | 185.5 | 244.0 | 289.1 | 369.0
371.7 | ###################################### | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.24 | 91.0
83.5 | 79.6
82.6
87.8 | 87.8
90.1
95.7 | 64.04
64.04
60.7
55.5 | 50.00 | 58.3
61.9 | 85.5 | 68.5 | 48.9 | 21.0 | 25.7
26.3
22.1
22.1
22.1
26.1
26.1
26.2 | | DATE | V DIST | 10-22-63 12-02-63 | 1-20-64 2-24-64 | 4-20-64
5-18-64
6-23-64 | 7-25-63
8-29-63
9-24-63
10-21-63
12-02-63 | 1-20-64
2-24-64
3-23-64
4-20-64 | 5-18-64 | 2-05-64 | 9-24-63 | 10-01-63 | 9-25-63 | 7-26-63
8-30-63
9-21-63
10-21-63
12-02-64
2-24-64
3-24-64
4-21-64
5-19-64 | | GROUND
SURFACE
EL EVATION
IN FEET | KAWEAH DELTA WATER CONSERV DIST | 245.0 | | | 282.5 | | | 271.0 | 312.5 | 338.0 | 390•0 | 367.0 | | STATE WELL
NUMBER |
KAWEAH DELTA | 185/22E-36P01 M
CONT. | | | 185/23E-12H01 M | | | 185/23E-34A01 M | 185/24E-26A01 M | 185/25E-33F01 M | | 185 /26 E-30N01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | | | | 6001 | | | 6 0 0 1 | |---|---------------------------------|--------------------------|-------------------------------|--|--|-------------------------------|-----------------|---|--|----------------------------|--| | WATER
SURFACE
ELEVATION
IN FEET | | | 156.8
153.7 | 189.7
200.3
206.4 | 209.7
205.0
210.8
210.0 | 203.5 | 503 | 190.6
194.0
204.6
208.1
207.5 | 208.8
199.5
197.3
198.0 | 179.0 | 266.5 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-25 | _ | 93°7 | 100°3
89°7
83°6 | 80.0
49.2
80.0 | 86.5
93.4 | 0
0
0 | 999.4
96.0
85.0
81.9 | 81.2
90.5
92.7
92.0 | 111.0 | 61.7
558.8
55.0
55.0
55.0
60.5
60.5 | | DATE | | 4-28-64 | 2-05-64
2-17-64 | 7-25-63
8-29-63
9-25-63
10-22-63 | 12-02-63
12-23-63
1-24-64
2-10-64 | 2-25-64
3-30-64
4-28-64 | 6-26-64 | 7-25-63
8-29-63
9-25-63
10-22-63
12-02-63 | 1-24-64
2-25-64
3-30-64
4-28-64 | 6-26-64 | 7-25-63
8-30-63
9-24-63
10-21-63
12-02-63
2-06-64
3-30-64
4-21-64
5-28-64 | | GROUND
SURFACE
ELEVATION
IN FEET | TULARE IRRIGATION DISTRICT | 270•0 | 250.5 | 290.0 | | | | 290.0 | | | 327.0 | | STATE WELL
NUMBER | TULARE IRRIG | 195/23E-14R01 M
CONT. | 195/23E-32H01 M | 195/24E-16P01 M | | | | 195/24E-27001 M | | | 195/25E-17J01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | 6001
5129 | 6001 | | | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 266.1 | 227.4 | 251-1
253-6
231-0 | 241.0
226.9 | 102.9 | 199.7 | 213.7
219.2
226.0
227.9
228.7
208.3 | 213.7
214.9
207.4
193.0 | | 16990
178990
178990
178990
17890
18690
19690
19690
19690 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-24 | 53.9 | п
п
113•6
109•3 | 89.9
87.4
110.0 | 114.1 | 123•1
n | 104.8 | 9 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 90.8
89.6
97.1
111.5 | 5-22-25 | 101.0
100.0
100.0
87.2
89.6
89.9
92.9
83.5 | | DATE | V DIST | 6-23-64 | 7-26-63
8-30-63
9-25-63 | 12-02-63
12-23-63
1-20-64
2-24-64 | 5-23-64
4-20-64
5-18-64
6-22-64 | 9-30-63 | 7-25-63 | 9-25-63
10-21-63
12-02-63
12-23-63
1-20-64
2-24-64 | 3-23-64
4-20-64
5-18-64
6-23-64 | - | 7-25-63
8-29-63
9-25-63
10-10-63
12-22-63
12-23-63
2-10-64
2-25-64
3-30-64 | | GROUND
SURFACE
ELEVATION
IN FEET | KAWEAH DELTA WATER CONSERV DIST | 320.0 | 341.0 | | | 226.0 | 304.5 | | | TULARE IRRIGATION DISTRICT | 270.0 | | STATE WELL
NUMBER | KAWEAH DELTA | 195/25E-07K01 M
CONT. | 195/26E-34R02 M | | | 20S/22E-10C01 M | 20S/25E-14F01 M | | | TULARE IRRIG | 195/23E-14R01 M | | | AGENCY
SUPPLYING
DATA | | 6 001 | 6001 | | 6 0 0 1 | | 6001 | |---|---|----------------------------|---|-------------------------|--|--|---|---| | | WATER
SURFACE
ELEVATION
IN FEET | | 127.3
127.8
126.5
123.0 | 376.6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4199.5
4199.8
416.7 | 271.2
273.1
269.5
276.7
277.7
282.0
283.8 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.25 | 94.7
94.5
95.5
99.0
11 | 59.4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 27.5
27.5
28.3
30.5 | 103.8
101.9
105.5
98.3
97.3
93.0 | | | DATE | | 1-24-64
2-05-64
2-25-64
3-30-64
4-28-64
5-28-64
6-26-64 | 7-26-63 | 10-21-63
12-02-63
12-02-64
2-24-64
3-24-64
5-19-64
5-19-64 | 7-26-63
8-30-63
9-25-63
9-26-63
10-21-63
12-24-63 | 2-24-64
3-24-64
4-20-64
5-19-64
6-22-64 | 7-26-63
8-30-63
9-25-63
10-21-63
12-02-63
12-24-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 3E-05R01 M 222.0 ONT. EXETER IRRIGATION DISTRICT | 436.0 | | 447.0 | | 375.0 | | | STATE WELL
NUMBER | TULARE IRRI | 21S/23E-05R01 M CONT. | 185/26E-25K01 M | | 18S/27E-29D01 M | | 195/26E-14E01 M | | 1 | AGENCY
SUPPLYING
DATA | | 6 0 0 1 | | 6 001 | 6001 | | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 11126.2
1126.2
1136.2
11386.8
11386.9
11386.9 | 136.2
124.4
121.5 | 1553.
1511.
1711.
1850.
1865.
1700.
1700.
1600.
1600.
1600. | 1608 4 5064
1608 4 5064
1668 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 154.9 | 121.4
120.4
121.0
121.3
123.1 | |) | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-25 | 126.6
115.8
115.8
1104.2
1001.1
101.1 | 104.8
116.6
119.5 | 119.5
121.7
101.9
102.3
87.7
92.6
88.1
1102.7 | 107.5
127.7
127.7
1112.5
101.9 | 98 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 100.6
101.6
100.7
98.9
96.1 | | | DATE | _ | 7-25-63
8-29-63
9-26-63
110-22-63
112-23-63
112-23-64
2-25-64 | 5-28-64
6-26-64 | 7-25-63
8-29-63
9-25-63
110-21-63
112-20-63
2-07-64
2-25-64 | 7-25-64
6-26-64
7-25-63
9-25-63
12-21-63
12-21-63 | 1-24-64
3-30-64
4-28-64
5-28-64 | 7-26-63
8-30-63
9-26-63
10-22-63
12-04-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | TULARE IRRIGATION DISTRICT | 241.0 | | 273.0 | 250.0 | | 222.0 | | | STATE WELL
NUMBER | TULARE IRRIG | 205/23E-08B02 M | | 205/24E-16H01 M | 20S/24E-30J02 M | | 21S/23E-05R01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | | | 6 0 0 1 | | 6001 | | |---|----------------------------|---|-----------------|--------------------------|---------------------------------|--|---|--|-------------------------------|---| | WATER
SURFACE
ELEVATION
IN FEET | | 272.0
270.6
257.4 | 217•6
234•0 | 275.0 | 279.0
282.0
285.0 | 286.0
285.6
284.6
284.6
284.3
284.1
282.6
278.2 | 194.2
190.9
185.7
201.0
216.5
218.5 | 216.5
212.9
204.7
198.0 | 334.3 | 336.7
338.1
338.1
339.1
338.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-28 | 88.0
89.4
102.6 | 123.4 | 87.5 | 83.5
80.5
77.5 | 76.5
776.9
778.2
78.2
8.9 | 137.3
140.6
145.8
130.5
115.0 | 115.0
118.6
0
126.8
133.5 | 57.7
n
56.8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | DATE | 101 | 2-24-64
3-23-64
4-21-64
5-18-64
6-22-64 | 9-30-63 | 7-25-63 | 9-25-63
10-21-63
12-02-63 | 12-24-63
1-21-64
2-24-64
3-26-64
4-22-64
5-19-64
6-22-64 | 7-25-63
8-29-63
9-25-63
10-21-63
12-02-63
12-24-64 | 2-24-64
3-25-64
4-22-64
5-19-64
6-22-64 | 7-25-63
8-29-63
9-25-63 | 10-21-63
12-02-63
12-24-63
12-24-64
2-24-64
3-25-64
4-22-64 | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 360.0 | 341.0 | 362.5 | | | 331.5 | | 392.0 | | | STATE WELL
NUMBER | LINDMORE IRR | 205/26E-01P01 M
CONT. | 20S/26E-22C02 M | 20S/26E-24K01 M | | | 205/26E-32A01 M | | 20S/27E-29E01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | 6001 | 6001 | | 6001 | 1004 | | | WATER
SURFACE
ELEVATION
IN FEET | | 284.2
282.8
279.0
274.6 | 254.8 | | 310.4 | 301.1
297.9
307.9
309.9
310.3 | 309°5
308°0
307°6
307°6
308°1 | 6 6
6 6
6 6
6 6
7 6
7 6
7 6
7 7 7 7 7 7 | [172 | 259.4
266.9
266.8
277.0
277.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.26 | 90.8
E
92.2
96.0 | 104.2 | 5-22.27 | 74.6 | 70.9
74.1
64.1
62.1
62.7
61.3 | 00000000000000000000000000000000000000 | 52.7 | 5-22.28 | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | DATE | | 2-24-64
3-23-64
4-20-64
5-18-64
6-22-64 | 9-26-63 | TS10 | 9-23-63 | 7-26-63
8-30-63
9-25-63
10-16-63
12-02-63 | 1-21-64
2-04-64
2-24-64
3-23-64
4-21-64
5-18-64 | 9-23-63 2-04-64 9-23-63 | RICT | 10-21-63
9-30-63
9-21-63
10-21-63
12-23-63
1-20-64
2-04-64 | | GROUND
SURFACE
ELEVATION
IN FEET | TION DISTRIC | 375.0 | 359.0 | | 385.0 | 372.0 | | 414.0 | IRRIGATION DISTRICT | 0.000 | | STATE WELL
NUMBER | EXETER IRRIGATION DISTRICT | 195/26E-14E01 M
CONT. | 195/26E-23E01 M | LINDSAY-STRATHMORE IRRIG | 195/27E-29D01 M | 205/27E-06801 M | | 20S/27E-21F01 M
20S/27E-29J01 M | | 20S/26E-01P01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | 6001 | | | | 6001 | | | 6001 | | |---|---------------------------------|---------------------------
--|-------------------------|-----------------|---|-------------------------|---|---|------------|---|--|----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 361.8 | 368-1
368-1
372-6
371-0
372-1
371-8 | 376.9 | 390.0 | 393.7
393.6
397.6 | 390°7
390°6
394°0 | 391.3 | 301.0
312.6
307.0 | 313.2 | 310•3
309•7
299•7 | 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | *** | | GRDUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-29 | 47.2 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 59.1 | 30°0 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 29.9
26.0
20.0 | 28.7 | 9 9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 81.8 | 88 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 119.2
118.5
102.0
141.2* | 112.0 | | DATE | ISTRICT | 9-23-63 | 12-23-63
12-23-63
1-21-64
2-24-64
3-25-64
5-19-64 | 9-23-63 | 7-29-63 | 9-23-63
10-21-63
11-22-63
12-20-63 | 3-02-64 | 5-21-64 | 7-29-63
8-20-63
9-23-63 | 11-22-63 | 3-02-64
3-25-64
3-25-64
5-27-64
6-22-64 | 8-20-63
9-23-63
11-22-63
2-06-64
3-25-64 | † 9 - 9 7 L C | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION D | 0.604 | | 436.0 | 420.0 | | | | 395.0 | | | 467.0 | | | STATE WELL
NUMBER | PORTERVILLE JRRIGATION DISTRICT | 21S/27E-21E01 M
CONT. | | 21S/27E-23N01 M | 215/27E-28E01 M | | | | 22S/26E-01J01 M | | | 225/27E-10R01 M | | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | 6001 | | | | | 1000 | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 335.1 | 267.8
257.1
278.1
289.9
300.2
298.8 | 297.6
280.3
281.7 | 271.3 | 390 8
393 7
395 9 | 393.1
393.7 | 392.7
393.6
392.2 | 392.9
396.6
392.6 | | 303.4
303.4
313.8
5.5
5.8 | 318.0
317.5
317.5
307.9 | 361.8
360.9 | | œ | | | | | | | | | | | | | | | GROUND SUR
FACE TO
WATER
SURFACE
IN FEET | 5-22-28 | п
56.9 | 104.2
114.9
93.9
82.1
71.8 | 91.7 | 100.7 | 38 .2
33 .3
1 . | 35°9
35°9
11°3 | 2 | 36.1
32.4
36.4 | 5-22.29 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 47.2
48.1 | | GROUND SU
FACE TO
WATE
SURFACE
IN FEET | | 5-19-64 n
6-22-64 56.9 | | | | | | | | Ş | | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | | IRRIGATION DISTRICT 5-22.28 | | 104-2
114-9
93-9
82-1
71-8
72-7 | | | | | 2 4 8 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | N DISTRICT | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 47.2
48.1 | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | | | | | 6001 | | | | | | | | | , | 6001 | | | | | | | | | 6001 | 6001 | |---|-------------------------------|---------------------------|-----------------|---------------------|--------------------------|---------|---------|---------|---|-----------------|---------|------------|----------|---------|---------|---------|------------|---------|-------|-----------------|--------------------|---------------------------|----------|----------|---------|----------------------------|---------|---------|-----------------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 242.0
239.3 | 205.5 | 219.5 | 241.5
243.5 | 243.5 | 219.5 | 220.5 | 1 | | | 297.0 | 270-0 | 277.0 | 281.0 | 284.0 | | 286.0 | | 0 | 124.0 | 0 | 120.0 | 125.0 | 119.0 | 131.0 | 135.0 | 121.1 | 96.5 | 182.5 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.30 | 49.0
51.7 | 116.5 | 102.5 | 80.5
78.5 | 78.5 | 102.5 | 101.5 | 000 | | 9 10 | 62.0 | 0 0 0 | 82.0 | 78.0 | 75.0 | = | 73.0 | | n , c , | 120.0 | - 3 | 124.0 | 119.0 | 125.0 | 113.0 | 109.0 | 122.9 | 155.0 | 111.5 | | DATE | ON DIST | 5-01-64
6-03-64 | 7-02-63 | 9-30-63
11-08-63 | 12-02-63 | 2-01-64 | 4-03-64 | 5-01-64 | 0000 | 7-02-63 | 9-03-63 | 9-28-63 | 10-21-63 | 1-05-64 | 2-01-64 | 3-02-64 | 4-03-64 | 5-01-64 | | 7-02-63 | 8-04-63 | 9-28-63 | 10-27-63 | 12-05-63 | 1-02-64 | 3-02-64 | 5-01-64 | 6-03-64 | 9-26-63 | 7-01-63 | | GROUND
SURFACE
ELEVATION
IN FEET | RIVER IRRIGATION DIST | 291.0 | 322.0 | | | | | | | 359.0 | | | | | | | | | | 244.0 | | | | | | | | | 251.5 | 294.0 | | STATE WELL
NUMBER | LOWER TULE R | 215/25E-16A01 M
CDNT. | 21S/26E-06G02 M | | | | | | | 21S/26E-10H01 M | | | | | | | | | | 225/24E-09A01 M | | | | | | | | | 225/24E-15A01 M | 225/25E-10E01 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | | | | | | | | 6001 | | | | | | | | | | 6001 | | 6001 | 0 | | | | | | | | | | | | 00 | 000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 118•2
137•7 | | 143.5 | 145.5 | 146.5 | 148.5 | 147.5 | 148.5 | 148.5 | • | 154.0 | 154.0 | 154.0 | 157.0 | 158.0 | 161.0 | 164.0 | 160.0 | 159.0 | 1007 | 162.5 | 7.707 | 253.0 | 242.0 | 254.0 | 255.0 | 250.0 | 234.0 | 244.0 | | FACE TO SURFACE SURFACE IN FEET | 5-22.30 | 103.3 118.2
83.8 137.7 | | | 84.5 145.5
84.5 145.5 | | | | | 81.5 148.5 | • | 97.0 154.0 | -1 - | • ~ | - | | 90.0 161.0 | | | 92.0 159.0 | | 122.5 162.5
82.6 202.6 | | | | 37.04 254.0
23.0* 268.0 | | | , 6, 6 | 47.0 244.0 | | - | | | 9-30-63 п | 86.5 | 84.5
84.5 | | 81.5 | | 81.5 | | C 20 | ٦, | 97.0 | 97.0 | 94.0 | 93.0 | 90.0 | | 91.0 | -1 - | . • > . | | 650 | 38.0 | 0.64 | | 36.0 | | 57.0 | 47.0 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | RIVER IRRIGATION DIST 5-22.30 | 103.3
83.8 | | 86.5 | 84.5
84.5 | 83.5 | 81.5 | 82.5 | 81.5 | 81.5 | C 20 | 97.0 | 97.0 | 97.0 | 94.0 | 93.0 | 90.0 | 87.0 | 91.0 | 92.0 | 10-50-0
10-50-0 | 122.5 | 650 | 38.0 | 0.64 | 37.0 | 36.0 | 41.0 | 57.0 | 47.0 | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | | | 6001 | 6001 | | 6001 | |---|-------------------------------|---|--|----------------------------|-------------------------------|---|--|---|--| | WATER
SURFACE
ELEVATION
IN FEET | | | 4 4 5 8 8 6 5 8 8 6 5 8 8 8 8 8 8 8 8 8 8 8 | 415.4
416.0 | | 260.1
277.8
278.6
286.3
279.2
274.8 | 225.
227.
237.
236.
239.
241.
241.
235.
235. | 234.0 | 1336
1336
1336
1412
1344
1344
1344
1344
1344
1344
1344 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22•31 | B | 131.3
140.0
137.4
118.2
108.7
105.4
105.2 | 119.6 | 5-22-32 | 135.9
118.2
117.4
109.7
116.8 | 145.5
143.1
138.3
134.5
131.5
129.3
125.7 | 137•0
n | 204.3
208.6
202.4
207.0
197.5
197.3
203.3 | | DATE | 10.1 | 6-22-64 | 7-25-63
8-29-63
9-23-63
10-21-63
12-02-63
12-24-64
2-24-64 | 5-19-64
5-19-64 | RICT | 8-20-63
9-23-63
11-22-63
2-07-64
3-25-64
5-26-64 | 7-25-63
8-29-63
9-24-63
10-21-63
12-02-63
12-24-64
2-24-64
3-25-64 | 4-22-64
5-19-64
6-22-64 | 7-25-63
8-29-63
9-24-63
10-21-63
12-03-63
12-24-63
2-24-64 | | GROUND
SURFACE
ELEVATION
IN FEET | VANDALIA IRRIGATION DISTRICT | 524.0 | 535.0 | | SAUCELITO IRRIGATION DISTRICT | 396.0 | 371.0 | | 339.0 | | STATE WELL
NUMBER | VANDALIA IRR | 225/28E-07001 M
CONT. | 225/28E-18A01 M | | SAUCELITO IR | 225/26E-12R02 M | 22S/26E-15J01 M | | 22S/26E-32E01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 1009 | 6001 | 6001 | | 6001 | | | `≅ | | | | | • | • | | • | | | WATER
SURFACE
ELEVATION
IN FEET | | | 178.5
197.5
185.5
185.5
189.5
179.5 | 170.0 | 219.7 | | 215.5
216.5
215.5
213.5
206.5
193.7 | | 3997.00
3997.00
3997.00
3997.00 | | | 5-22.30 | | | | | 225.5
198.5
205.5
203.5
211.5
214.5 | 115.5
114.5
115.5
115.5
117.5
117.5
124.5
137.3
193.7 | 394.4
392.6
392.4 | | | WATER
SURFACE
ELEVATION
IN FEET | | 174.5
179.5
178.5 | 115.5
1106.5
108.5
1108.5
1112.5
114.5
114.5 | 170.0
159.0 | 219•7
215•5 | 105.5 225.5
132.5 198.5
127.5 205.5
127.5 203.5
119.5 211.5 | -05-64 115.5
-04-64 114.5
-02-64 115.5
-03-64 117.5
-01-64 124.5
-03-64 137.3 | 129.6 394.4
131.4 392.6
131.6 392.4 | | | GROUND SUR- FACE TO WATER SURFACE SURFACE IN FEET IN FEET | RIVER IRRIGATION DIST 5-22.30 | 119.5 174.5
114.5 179.5
115.5 178.5 | 115.5
1106.5
108.5
1108.5
1112.5
114.5
114.5 | 130.5 170.0
141.5 159.0 | 117•3 219•7
121•5 215•5 | 105.5 225.5
132.5 198.5
127.5 205.5
127.5 203.5
119.5 211.5 | 115.5
114.5
115.5
117.5
124.5
137.3 | 129.6 394.4
131.4 392.6
131.6 392.4 | 126.4
125.2
122.5
127.0
128.2
131.7 | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | | 6001 | | 6001 | 2000 | | |---|-------------------------------|--|-----------------|-------------------------------|--|--------------------|----------------------------|---|--------------------
--| | WATER
SURFACE
ELEVATION
IN FEET | | 100.3
101.5
97.6
95.9 | 94.3 | | 1266.5
1228.3
1220.3
1200.5
1020.5 | 217.0 | 224.5 | 899.0
84.9
94.8
96.7
133.3
1129.6
1159.6 | 66.7 | 68.6
88.6
107.0
118.4
124.6
102.8 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-33 | 121.7
120.5
124.4
126.1 | 12/0/ | 0RY
□ □ | 171 5
154 6
169 6
169 7
165 6 7
115 6 7 | DRY
083.0 | 75.5 | 20202020200200000000000000000000000000 | 196.3 | 1946.4
1746.4
1186.0
1138.4
1194.3 | | DATE | | 1-20-64
2-24-64
3-26-64
4-23-64 | 5-20-64 | 7-25-63
8-29-63
9-20-63 | 10-22-63
11-23-63
11-23-63
11-20-64
2-24-64
4-22-64 | 6-22-64 | 1-31-64 | 7-25-63
8-29-63
10-22-63
12-23-63
12-23-64
1-20-64
3-26-64
4-22-64
5-19-64
5-19-64 | 7-17-63 | 9-12-63
10-10-63
11-04-63
12-04-63
1-06-64
2-04-64
3-03-64 | | GROUND
SURFACE
ELEVATION
IN FEET | PIXLEY IRRIGATION DISTRICT | 222.0 | | 278•0 | | 300.0 | | 291.0 | 263.0 | | | STATE WELL
NUMBER | PIXLEY IRRIG | 235/24E-16R01 M
CONT. | | 23S/25E-09G02 M | | 23S/25E-14C01 M | | 23S/25E-15J02 M | 235/25E-16N03 M | | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | | | | 6001 | 6001 | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 146.5
135.5
134.8 | 239.5
248.2 | 194.4 | 2088
203.0
203.0
203.0
203.0
203.0
203.0 | 202.4 | | 1000.3
1000.3
11000.3
1125.0
1123.0
1123.0
1123.0
1123.0
1123.0
1123.0
1123.0
1123.0
1123.0
1123.0 | | 94.2
91.5
91.3
92.0
97.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22•32 | 192.5
203.5
204.2
n | 157.5
148.8 | 186.6
187.4 | 188.7
173.0
165.5
165.5
177.2
177.5 | 178.6
178.6 | 5-22+33 | 207.5
209.7
200.3
191.9
181.9
181.0
196.6
196.6
197.8
212.5 | 0 0 | 127.8
130.5
130.7
130.0
125.0 | | DATE | 1CT | 3-25-64
4-22-64
5-19-64
6-22-64 | 9-25-63 2-05-64 | 7-25-63 | 9-19-63
10-22-63
12-24-63
12-24-64
1-21-64
3-25-64 | 5-19-64
6-22-64 | | 7-25-63
8-29-63
10-22-63
12-03-63
12-23-63
11-20-64
3-25-64
4-25-64
5-19-64 | 9-24-63
1-30-64 | 7-26-63
8-30-63
9-23-63
10-22-63
12-03-63 | | GROUND
SURFACE
ELEVATION
IN FEET | SAUCELITO IRRIGATION DISTRICT | 339•0 | 397.0 | 381.0 | | | PIXLEY IRRIGATION DISTRICT | 310.0 | 207.0 | 222.0 | | STATE WELL
NUMBER | SAUCELITO IR | 22S/26E-32E01 M
CONT. | 235/26E-02R01 M | 23S/26E-03R01 M | | | PIXLEY IRRIC | 225/25E-25N01 M | 235/23E-02B01 M | 235/24E-16R01 M | | AGENCY
SUPPLYING
DATA | | 6001 | | 6001 | | 6001 | | 6001 | |---|----------------------------|---|--|---|---|---|--|---| | WATER
SURFACE
ELEVATION
IN FEET | | 1000
10407
111108 | 130.0
131.0
126.8
103.8
99.2
94.7
70.1 | 196.2
196.3
196.6
196.3 | 1966.7
1966.5
1966.5
1966.2
1966.2 | 136.3
134.5
134.5
134.3 | 1354-3
1354-3
137-8
137-8
137-8 | 88 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.34 | 95.0
90.3
89.7 | 65.0
68.2
68.2
91.2
95.8
100.3
87.3 | 13.8
13.7
13.7
13.7 | | 73.7
75.2
75.5
75.5 | 72224 | 123.0
125.1
127.5
127.0
127.8 | | DATE | | 7-26-63
8-30-63
9-23-63
10-22-63 | 12-04-63
12-23-63
1-20-64
2-25-64
3-26-64
4-23-64
5-19-64
6-23-64 | 7-26-63
8-30-63
9-24-63
10-22-63 | 12-23-63
12-23-63
1-20-64
2-24-64
3-26-64
4-23-64
5-19-64 | 7-26-63
8-30-63
9-24-63
10-22-63 | 12-23-64
12-23-64
2-24-64
3-26-64
4-23-64
5-19-64 | 7-26-63
8-30-63
9-24-63
10-22-63
12-04-63 | | GROUND
SURFACE
ELEVATION
IN FEET | ALPAUGH-ALLENSWORTH AREA | 195•0 | | 210.0 | | 210.0 | | 210.0 | | STATE WELL
NUMBER | ALPAUGH-ALL | 22S/23E-28L01 M | | 235/23E-33A01 M | | 235/23E-33A04 M | | 235/23E-33A05 M | | AGENCY
SUPPLYING
DATA | | 2000 | 2000 | | 5 000 | | 6001 | | | WATER
SURFACE
ELEVATION
IN FEET | | 102.8
100.4
82.0 | 157.7
157.5
159.1
161.8
165.6
165.6 | 167.5
167.3
166.0
161.2 |
10660
10660
10660
10663
10663
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683
10683 | 169.4
169.1
168.2
164.0 | 1666
1666
1666
1666
1666
1666
1666
166 | 161.0
165.9
164.7
156.6 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-33 | 160.2
162.6
181.0 | 1005.3
1001.2
990.2
990.2 | 95.5
95.7
97.0
101.8 | 108.2
108.2
107.4
105.4
103.6
100.4 | 99.6
99.6
100.8
105.0 | 1996
19986
19986
18886
18836
1986
1986
1986
1986
1986
1986
1986 | 1810-1
1700-5
1880-4 | | DATE | Ε. | 3-18-64
3-31-64
5-01-64
6-26-64 | 7-17-63
8-14-63
9-12-63
10-10-63
11-04-63
12-04-64 | 3-03-64
3-31-64
5-01-64
6-26-64 | 7-17-63
8-14-63
9-12-63
10-10-63
11-04-63
12-04-64 | 3-03-64
3-31-64
5-01-64
6-26-64 | 7-25-63
8-29-63
9-19-63
10-22-63
12-03-63
12-24-63 | 21-24-04
31-25-64
41-25-64
51-19-64
6-22-64 | | GROUND
SURFACE
ELEVATION
IN FEET | PIXLEY IRRIGATION DISTRICT | 263.0 | 263.0 | | 269.0 | | 345.0 | | | STATE WELL
NUMBER | PIXLEY IRRIG | 235/25E-16N03 M
CONT. | 235/25E-16N04 M | | 235/25E-17003 M | | 235/26E-08R01 M | | | AGENCY | SUPPLYING | | 6001 | | 6001 | | 6001 | 6001 | 6001 | 6001 | | | |---|---------------------------------|----------------------------------|--|-------------------------------|---|-----------------------------|-----------------------------|--------------------------|--------------------------|-------------------------------|--------------------------|--| | WATER | SURFACE
ELEVATION
IN FEET | | 148.5
150.2 | | 988822
1112
1118
1118
1118
1118
1118
111 | | 191.0 | 158.0 | 114.1 | 215.2
216.8
217.0 | 219.5 | 219.0
218.4
217.7
217.6 | | GROUND SUR- | WATER
SURFACE
IN FEET | 5-22 • 34 | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 133.3
143.6
136.4
126.2
113.2
100.0
100.0
100.6
1127.1
116.2
127.1 | 5-22.35 | 105.0
98.0 | 198.5
188.5 | 419.2 | 104.8
103.2
103.0 | 100.5 | 101.6
102.3
102.4 | | | DATE | | 10-22-63
12-03-63
12-23-63
1-20-64
2-24-64
3-26-64 | 4-23-64
5-20-64
6-23-64 | 7-26-63
8-30-63
9-19-63
10-22-63
12-03-63
1-20-64
1-20-64
2-25-64
3-26-64
4-23-64
6-23-64 | ST | 9-23-63 | 9-24-63 | 9-20-63 | 7-25-63
8-29-63
9-19-63 | 12-03-63 | 1-20-64
2-24-64
3-26-64
4-22-64 | | GROUND | ELEVATION
IN FEET | ALPAUGH-ALLENSWORTH AREA | 249.0 | | 226.0 | DELANO-EARLIMART IRRIG DIST | 296.0 | 356.5 | 533.3 | 320.0 | | | | 1 A T T A T T T T T T T T T T T T T T T | NUMBER | ALPAUGH-ALL | 245/24E-25F01 M
CONT. | | 245/24E-32K04 M | DELAMO-EARL | 235/25E-27J02 M | 235/26E-29P01 M | 235/27E-28J01 M | 245/25E-02H01 M | | | | AGENCY | DATA | | 6001 | 6001 | 6001 | 6001 | 6001 | | | | 6001 | 6001 | | | | | | | | | | | | | | | | WA
SURI | ELEVATION
IN FEET | | 88 88 98 98 98 98 98 98 98 98 98 98 98 9 | 152.4 | 1288.
11288.
11288.
11288.
11288.
11288.
11288.
11288.
11288. | 43.6
50.6 | 18.7
- 1.8
8.0 | 51.6
63.5 | 73•1
69•3 | 23.4 | 188.8 | | | GROUND SUR. WA | | 5-22.34 | 124.9 85.1
122.7 87.3
121.7 88.3
121.2 88.8
121.4 88.6
122.0 88.0 | 51.6 152.4
52.3 151.7 | | 162.4 43.6
155.4 50.6 | 7 | 166.4 51.6
154.5 63.5 | 144.9 73.1
148.7 69.3 | п
п
194•6 23•4 | 46.2 188.8
47.5 187.5 | מטמ | | | SURFACE
IN FEET | 5-22.34 | | | 76.8
81.7
81.7
81.7
81.2
73.6
73.6
73.6
73.6
80.1
80.1 | | | | | | | 7-26-63 | | GROUND SUR. | SURFACE
IN FEET | ALPAUGH-ALLENSWORTH AREA 5-22.34 | 124.9
122.7
121.7
121.2
121.4
122.0 | 51.6
52.3 | 7-26-63 76-8
8-30-63 81-7
9-16-63 81-7
10-22-63 81-2
12-23-63 76-0
12-23-64 74-7
2-24-64 74-7
3-26-64 78-9
6-23-64 78-9 | 162.4
155.4 | 199.3 1
219.8 –
210.0 | 166.4
154.5 | 144.9
148.7
n | п
п
194•6 | 46.2 | | | AGENCY
SUPPLYING
OATA | | 6001 | 2000 | | | | 6001 | 5000 | | | 6001 | | 0000 | |---|-----------------------------|--------------------------|-----------------|----------------------------------|-----------------|-----------------|-------------------------|---|--------------------------------|--|--------------------|-----------------|--| | WATER
SURFACE
ELEVATION
IN FEET | | 157.5 | 112.0 | 163.2 | 159.6 | 102.5 | 191.5 | 270.0
270.9
272.5
273.5 | 274.7
275.0
274.1 | 273.4
273.4
275.0
278.5 | 369.8 | | 11111111111111111111111111111111111111 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22-35 | 396.0 | 393°5
385°5 | 342.3 | 331.0
345.9 | 403.0
500.6 | 238.5 | 118.0
117.1
115.5 | 113.3
113.0
113.9 | 115.0
114.6
113.0
109.5 | 380.2 | 5-22 • 36 | 107.2
109.6
110.6
99.5
95.4
87.2
96.6 | | DATE | 3T | 9-19-63 | 7-17-63 | 10-10-63
11-05-63
11-05-64 | 2-05-64 | 5-01-64 | 9-26-63 2-11-64 | 7-18-63
8-16-63
9-12-63
10-11-63 | 11-14-63
1-27-64
2-18-64 | 3-16-64
4-20-64
5-18-64
6-24-64 | 9-19-63
1-30-64 | | 7-18-63
8-16-63
9-12-63
11-11-63
11-17-63
12-10-64
1-27-64
3-16-64
4-20-64 | | GROUND
SURFACE
ELEVATION
IN FEET | MART IRRIG DIST | 526.5 | 505.5 | | | | 430•0 | 388.0 | | | 750•0 | JOAQUIN MUD | 253.0 | | STATE WELL
NUMBER | DELANO-EARLIMART IRRIG | 245/27E-31P01 M | 255/26E-01A02 M | | | | 255/26E-10803 M | 255/26E-16P01 M | | | 255/27E-22H01 M | SOUTHERN SAN | 255/24E-12A02 M | | AGENCY
SUPPLYING
DATA | | 6001 | 6001 | 6001 | 6001 | 6001 | 2000 | 5000 | 6001 | | 6001 | 2000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 217.5 | 163.5
183.5 | 214.5 | 186.0 | 194.0 | 242.3 | 250.0
260.5
264.6
260.0 | 261.4
258.0
257.7 | 253.1
250.4
244.5
241.5 | 263.5
270.5 | 171.4 | 179.0
189.3
189.3
201.8
208.9
204.9
197.3
189.7
161.1 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.35 | 102.5 | 140.5 | 77.0 | 190.0
182.0 | 184.0
156.0 | 157.7 | 150.0
139.5
140.0 | 138.6
142.0
142.3 | 146.9
149.6
155.5
158.5 | 132.5
125.5 | 273.6 | 2566.0
2243.0
2443.0
2443.0
2255.0
3.0
2555.0
3.0
6 | | DATE | ST | 5-20-64 6-22-64 | 9-23-63 | 9-19-63 | 9-24-63 2-05-64 | 9-24-63 | 7-18-63 8-16-63 9-12-63 |
9-24-63
10-11-63
11-14-63
12-10-63 | 1-27-64
2-06-64
2-18-64 | 3-16-64
4-20-64
5-18-64
6-24-64 | 9-26-63 | 7-17-63 | 10-10-63
11-05-63
11-05-63
1-05-64
2-05-64
3-04-64
3-04-64
5-01-64
6-25-64 | | GROUND
SURFACE
ELEVATION
IN FEET | DELANO-EARLIMART IRRIG DIST | 320.0 | 304.0 | 291•5 | 376.0 | 378.0 | 0.004 | | | | 396•0 | 445.0 | | | STATE WELL
NUMBER | DELANO-EARL I | 245/25E-02H01 M
CONT. | 245/25E-10A01 M | 24S/25E-33J01 M | 245/26E-05R01 M | 245/26E-20H01 M | 24S/26E-29R02 M | | | | 245/26E-32601 M | 245/26E-34F01 M | | | AGENCY
SUPPLYING
DATA | | 2000 | | 2000 | 1009 | 2000 | | 8700 | | |---|--------------|--------------------------|------------|--|----------------------------|---|-----------------------------|---|---| | WATER
SURFACE
ELEVATION
IN FEET | | 196.1
196.0
174.9 | 176.5 | 130
1186.8
1186.5
1186.7
1180.6
120.6
120.6
120.6 | 135.5 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | 129.7
84.07
98.07
78.07
183.07 | 183.7
148.7
173.7 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-36 | 139.9 | 159.5 | 372.2
384.5
384.5
367.9
362.6
375.2
375.2
375.2 | 307.5 | 262.9
276.9
274.8
268.2
262.5
257.1
259.1
259.8 | 5-22.37 | 222.6*
267.6*
253.6*
271.6*
273.6* | 168.6*
203.6*
178.6* | | DATE | | 2-18-64 3-16-64 | 5-18-64 | 7-18-63
8-16-63
9-12-63
10-11-63
11-14-63
12-10-63
2-18-64
4-20-64
5-18-64 | 9-20-63 | 7-18-63
8-16-63
9-12-63
10-11-63
11-14-63
12-10-63
1-27-64
2-18-64
4-20-64 | 5-19-64
DIST | 7-01-63
7-15-63
8-01-63
8-19-63
9-04-63 | 1-15-64
2-03-64
2-17-64 | | GROUND
SURFACE
ELEVATION
IN FEET | JOAQUIN MUD | 336.0 | | 503.
• 0 | 443.0 | 411.0 | STORAGE | 352.3 | | | STATE WELL
NUMBER | SOUTHERN SAN | 26S/25E-02001 M
CONT. | | 265/26E-10R01 M | 265/26E-16P01 M | 26S/26E-29C01 M | NORTH KERN WATER | 26S/25E-15R01 M | | | AGENCY
SUPPLYING
DATA | | 2000 | 6001 | 2000 | 6001 | 0000 | | 2000 | 2000 | | 7 | | | | m a + m > 0 - m a a a a | | | | | | | WATER
SURFACE
ELEVATION | | 156.5 | 177.7 | 107.8
90.2
86.4
103.3
1126.7
141.0
152.1
1123.9
1123.9
1118.9 | 130.0 | 2117
2218.2
2221.6
2224.6
22318.3
2310.5
2310.5
2310.6
2310.6 | 229.7 | 226.0
226.0
208.1
206.9 | 197.2
198.5
199.7 | | œ | 5-22.36 | 96.5 156.5 | 81.3 177.7 | 178.2
195.8
199.6
182.7
159.3
145.0
133.9
145.0
152.1
162.1
167.1
118.2
174.1
118.2 | 192.0 130.0
149.6 172.4 | 176.6 217.4
175.8 218.2
172.6 221.4
169.4 224.6
170.4 223.6
175.7 218.3
163.5 230.5
162.4 231.6
166.1 223.6 | | 125.4 208.1
126.6 206.9 | 138.8 197.2
137.5 198.5
136.3 199.7 | | œ <u>ë</u> | | | | | | | 170.2 | , | 444 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | | 96•5 | 81.3 | 178.2
195.8
199.6
182.7
159.3
145.0
133.9
136.7
167.1
174.1 | 192.0
149.6 | 176.6
175.8
172.6
169.4
175.7
163.5
165.1
165.1 | 5-18-64 164.3 6-24-64 170.2 | 188.0 2
125.4 2
126.6 2 | 138.8
137.5
136.3 | | AGENCY
SUPPLYING
DATA | | 2000 | | 8 7 0 0 | 6001 | 8700 | 5000 | |---|--------------------------|--------------------------|---|---|-------------------------------|---|--| | WATER
SURFACE
ELEVATION
IN FEET | | | 132.5
144.6
152.4
160.4
161.1
142.5 | 1360.1
1360.1
1370.1
1370.1
1370.1
1580.1
1580.1
1590.1
1590.1 | | 149.0
161.0
165.0
170.0
171.0 | 175.0
176.0
177.0
152.0
221.9
2219.7
2219.7 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22-37 | םם | 314.3
3902.2
2904.4
2894.4
2895.7
285.7
304.3 | 335.6*
209.6*
305.6*
301.6*
318.6*
277.6*
275.6*
276.6* | 5 5 | 212.1*
200.1
196.1*
191.1*
190.1*
187.1* | 186.1#
184.1#
184.1#
166.1
168.3
168.3 | | DATE | DIST | 7-18-63 | 9-12-63
10-11-63
11-10-63
12-10-64
2-18-64
4-20-64
5-18-64
6-24-64 | 7-05-63
7-18-63
8-06-63
8-06-63
9-09-63
9-23-63
12-00-64
1-06-64
1-06-64
2-06-64
2-06-64
5-05-64 | 9-18-63
1-27-64 | 7-08-63
7-16-63
8-06-63
8-26-63
9-04-63
12-00-63 | 1-15-64
2-03-64
2-16-64
6-15-64
7-18-63
8-15-63
9-12-63 | | GROUND
SURFACE
ELEVATION
IN FEET | NORTH KERN WATER STORAGE | 446.8 | | 4.35.7 | 527.0 | 361.1 | 388.0 | | STATE WELL
NUMBER | NORTH KERN | 275/26E-20001 M | | 275/26E-20E01 M | 27S/27E-30H02 M | 285/25E-13L01 M | 285/26E-21H01 M | | AGENCY
SUPPLYING
DATA | | 8700 | 8 700 | 8700 | 6001 | 2000 | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 144.7 | 103.
73.55
64.55
74.55
1256.55
1155.55
1681.55
60.55 | 135.0
135.0
135.0
126.0
164.0
164.0
163.0 | 76.0
317.8
327.5 | 266.3
266.3
272.6
272.6 | 278.3
278.5
278.5
274.6
274.0
269.3
144.5 | | GROUND SUR.
FACE TO
WATER
SURFACE | 5-22.37 | 207.6 | 233.
262.
262.
262.
186.
181.
181.
185.
26.
26.
26. | 2557
2557
2559
2666
2266
2228
2238
2239
2239
2239
2239
2239
2239 | 316.0
83.2
73.5 | 129.1
129.5
128.9
127.7
121.4 | 115.7
115.0
115.0
120.0
124.7
124.7 | | DATE | DIST | 4-03-64 | 7-01-63
8-20-63
9-04-63
9-26-63
1-15-64
2-04-64
2-04-64
6-15-64 | 7-15-63
8-01-63
8-17-63
8-17-63
9-04-63
12-00-64
1-15-64
2-03-64
2-17-64 | 6-15-64
9-17-63
1-29-64 | 7-18-63
8-15-63
9-12-63
10-11-63
11-14-63 | 1-27-64
2-18-64
3-16-64
4-20-64
5-18-64
6-24-64
9-17-63
1-27-64 | | GROUND
SURFACE
ELEVATION
IN FEET | NORTH KERN WATER STORAGE | 352.3 | 336.
• 6 | 392.0 | 401.0 | 394.0 | 416.0 | | | ERN W | 265/25E-15R01 M
CONT. | 26S/25E-31R01 M | 26S/26E-30P01 M | 275/25E-01A01 M | 27S/25E-01N01 M | 275/26E-06H02 M | | AGENCY
SUPPLYING
DATA | | 2000 | | | | 2000 | | | | | | | | | | 1 | 2000 | | | | | | | | | | | 6001 | | | | | | 8700 | |---|---------------------------------|----------------------------|----------------------------|---------|---------|-----------------|---------------------------------------|------------|----------|---------|-------------|---------|--------------------|---------------------------|--------------------|------------|-----------------|-------------|----------------|----------|----------|----------|---------|---------|---------|---------|---------|------------|-----------------|---------|----------|----------|---------|------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 161.5 | 121.9 | 132.8 | 106.6 | 147.7 | 155.3 | 150.0 | 156.3 | 158.5 | 158.4 | 150.1 | 149.8 | 142.2 | | | 122.6 | 117.8 |) • Q T T | 125.5 | 1010 | 132.0 | 132.6 | 126.9 | 127.9 | 126.0 | 110.1 | 176.0 | 174.0 | 168.0 | 176.0 | 171.0 | 177.0 | 182.9 | | GRDUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.38 | 213.5 | 253.1 | 247.2 | 268.4 | 187.3 | 179.7 | 185.0 | 178.7 | 176.5 | 176.6 | 184.9 | 183.8 | 192.8 | 5-22.40 | | 186.4 | 191.2 | 190.3 | | | 1,001 | 176.4 | 182.1 | 181.1 | 183.0 | 192.9 | 150.0 | 152.0 | 158.0 | 150.0 | 155.0 | 149.0 | 166.1*
165.1* | | DATE | DIST | 12-10-63 | 3-16-64 | 4-20-64 | 6-24-64 | 7-18-63 | 8-15-63 | 10-11-63 | 12-10-63 | 1-27-64 | 2-18-64 | 3-16-64 | 4-20-64
5-18-64 | 6-24-64 | | | 7-18-63 | 8-15-63 | 9-15-63 | 10-11-63 | 11-14-63 | 12-10-63 | 3-18-64 | 3-17-64 | 4-20-64 | 5-18-64 | 9-54-94 | 7-15-63 | 8-14-63 | 9-16-63 | 11-14-63 | 12-12-63 | 2-06-64 | 7-08-63 | | GROUND
SURFACE
ELEVATION
IN FEET | SHAFTER-WASCO IRRIGATION | 375.0 | | | | 335.0 | | | | | | | | | DELTA ARFA | | 309.0 | | | | | | | | | | | 0 300 | 25000 | | | | | 349.0 | | STATE WELL
NUMBER | SHAFTER-WASC | 275/25E-28A01 M
CONT. | | | | 285/25E-16003 M | | | | | | | | | A AREA OFFITA AREA | NEWN MINEN | 285/24E-23D01 M | | | | | | | | | | | | 285/25E-34JUI M | | | | | 285/26E-29L01 M | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | 2000 | | | | | | | | | | 8 700 | | | | | | | | | | | 000 | 2000 | | | | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA | | | 232•4
232•8 | 231.4 | 227.7 | 224.4 | | | 4000 | 65.9 | 126.3 | 133.5 | 136.4 | 129•/
92•8 | 104.2 | 53.2 | 1 | 73.2 8700 | 97.2 | 90•2 | 77.2 | 88.2 | 100.2 | 128.2 | 129.2 | 128.2 | 127.2 | 84.2 | | 0.211 | 170-0 | 150.4 | 159.5 | | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.37 | 224.3 | 155.6 232.4
155.2 232.8 | | | 163.6 224.4 | 5-22.38 | 63.0 | | | 195.7 126.3 | | | 192.3 129.1
229.2 92.8 | 7 | | | 73.2 | 218.8* 97.2 | | | 227.8* | 215.8* | 18/08 | • ~ | | 3* | 231.8 84.2 | | 26.0 | 0.002 | 222.1 | 215.5 | | | R- WATER
SURFACE
ELEVATION
IN FEET | | 163.7 224.3
159.9 228.1 | | 156.6 | 160.3 | | 5-22 | 63.0 | 268.6 | | 195.7
| 188.5 | | 192.3 | 217.8 | | | 73.2 | 218.8* | 225.8* | | 227.8* | - ' | 18/08 | 186.8* | 187.8* | 188.8* | 231.8 | | 26.0 | 0.002 | | 215.5 | | | GROUND SUR- FACE TO SURFACE WATER SURFACE IN FEET | KERN WATER STORAGE DIST 5-22.37 | 163.7 224.3
159.9 228.1 | 155•6
155•2 | 156.6 | 160.3 | 163.6 | SHAFTER-WASCO IRRIGATION DIST 5-22.38 | 259.0 63.0 | 268.6 | 225.7 | 195.7 | 188.5 | 185.6 | 192.3 | 217.8 | 268-2 | | 242.8* 73.2 | 7-17-63 218.8* | 225.8* | 238.8* | 227.8* | 215.8* | 18/08 | 186.8* | 187.8* | 188.8* | 231.8 | 1 | 26.0 | 0.002 | 222.1 | 215.5 | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | 8700 | | | | | | | | | 4640 | | | | | | | | | | | | 5120 | | 2000 | |--|--------------------|------------------------------|---------------------|--------------|--------------|---------|--------------|---------|-----------------|---------|---------|---------|-------------|---------|---------|----------|----------------|-----------------|---------|---------|----------|------------|---------|---------|---------|---------|--|-------------|-----------------|-----------------|---------|-------------------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 300.5 | 303.4 | 307.9 | 310.2 | 310.9 | 310.4 | 307.0 | 185.6 | 203.0 | 216.6 | 197.6 | 233.6 | 230.6 | 206.6 | 220.6 | 202•6
193•6 | 246.2 | 247.7 | 249.5 | 249.4 | 7 6 6 7 7 | 249.6 | 255.1 | 248.0 | 247.8 | 245.6 | 245.0 | | 275.1 | | 258.2
257.1
260.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.40 | 84.5 | 81.6 | 77.1 | 74.8 | 74.2 | 74.6 | 78.0 | 133.7* | 10% | 102.7* | 121.7* | 85.7* | 88.7* | 112.7* | *2** | 116.7* | 62.3 | 60.8 | 59.0 | 59.1 | 0 • 0 | 00 CC | 53.4 | 60.5 | 60.7 | 62.9 | 63.5
7.E | 1 | 64.0 | • | 79.8
80.9
78.0 | | DATE | | 8-15-63 | 10-11-63 $11-14-63$ | 12-10-63 | 1-27-64 | 2-18-64 | 4-20-64 | 6-24-64 | 7-12-63 | 69-67-1 | 8-30-63 | 9-11-63 | 12-00-63 | 1-22-64 | 2-11-64 | 2-28-64 | 4-23-64 | 7-04-63 | 8-05-63 | 9-07-63 | 10-02-63 | 13 03 63 | 1-03-64 | 2-03-64 | 3-05-64 | 4-01-64 | 5-04-64 | 5-28-64 | * 0-06-0 | 9-19-63 | 10-07-1 | 7-17-63
8-15-63
9-12-63 | | GROUND
SURFACE
ELEVATION
IN FEET | DELTA AREA | 385.0 | | | | | | | 319.3 | | | | | | | | | 308.5 | | | | | | | | | | | | 339.1 | | 338.0 | | STATE WELL
NUMBER | KERN RIVER DE | 295/27E-34N01 M
CONT. | | | | | | | 305/25E-03H01 M | | | | | | | | | 305/25E-22D01 M | | | | | | | | | | | | 30S/26E-16J01 M | | 30S/26E-22P02 M | | | | | | | _ | | | | | _ | _ | | | | | | | | _ | | _ | | | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 8700 | 6001 | 8700 | | | | | 5 000 | | | | | | | | | 5000 | | | | | | | | | | | 9009 | | | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA
IN FEET | | | | | 206.9 | 207.9 | 192.9 | 183.9 | 180.3 5000 | 179.1 | 181.7 | 185.6 | 188.5 | 189.8 | 187.4 | 185.6 | 177.2 | | 295.2 | 303.5 | 308.6 | 0 1 10 | 311.1 | 307.6 | 305.4 | 302.3 | 288 4 | 0.007 | 301.9 5000 | | | | | | 5-22.40 | * 180.9 | 185.9 | * 204.9 | 142.1* 206.9 | | 156.1* 192.9 | | | | | | 141.5 188.5 | | | | n eo | | | | | , c | | | | | 23.4 250 4 200 4 2 | * | | | | | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.40 | 168.1* 180.9
169.1* 179.9 | 163.1 185.9 | 144.1* 204.9 | | 141.1* | | 165.1 | 180.3 | 150.0 | 148.3 | 144.4 | | 140.2 | 142.6 | . | 152.8 | 87.3 294.7 | 86.8 | 78.5 | 13.4 | | 70.07 | 74.4 | 76.6 | | 0.50 L | #00K | 301.9 | | | | | GROUND SUR- WATER FACE TO SURFACE SURFACE IN FEET IN FEET | DELTA AREA 5-22.40 | 168.1* 180.9
169.1* 179.9 | 163.1 185.9 | 144.1* 204.9 | 142.1* | 141.1* | 156.1* | 165.1 | 149.7 180.3 | 150.0 | 148.3 | 144.4 | 141.5 | 140.2 | 142.6 | 14404 | 152.8 | 87.3 294.7 | 86.8 | 78.5 | 13.4 | *** | 70.07 | 74.4 | 76.6 | 1.60 | 0.50 L | #00K | 83.1 301.9 | | | | | AGENCY
SUPPLYING
DATA | | 5120 | 8700 | | | | 2000 | | | | | | 5120 | | 6001 | 8700 | | | | | | |--|-------------------------------|--------------------------|-------------------------------|---|---------|--|-----------------|----------------|----------|------------------------------|-------------|---|--------------|-----------------|-----------------|-----------------|---------|--------------|------------|----------|--------------------------| | WATER
SURFACE
ELEVATION
IN FEET | | 233.3 | 196.5
194.5
194.5 | 193.5
201.5
226.5
240.5 | 219.5 | 218.5
220.5 | 201.6 | 216.1 | 228.1 | 241.6 | 223.9 | 227.2 | 241.1 | 247.6 | | 235.7 | 238.7 | 236.7 | 247.7 | 250.7 | 244.7 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22.40 | 61.2 | 144.6* | 147.6*
139.6*
114.6 | 121.6* | 122.6*
120.6 | 108.4 | 93.9 | 81.9 | 68 0
4 0 1 | 86.1 | 82.8 | | 64.5 | ** | 79.0* | 76.0* | 18.0* | 110.0* | 64.0 | *0.07 | | DATE | | 9-18-63 | 7-08-63
7-19-63
8-13-63 | 8-26-63
9-10-63
12-00-63
1-08-64 | 1-22-64 | 2-20-64
5-26-64
6-22-64 | 7-17-63 | 8-14-63 | 10-10-63 | 12-11-63 | 3-17-64 | 5-19-64 | 18 - 0 | 1-22-64 | 9-16-63 | 7-08-63 | 8-14-63 | 9-11-63 | 10-03-63 | 12-20-63 | 1-22-64 2-10-64 | | GROUND
SURFACE
ELEVATION
IN FEET | RIVER DELTA AREA | 294•5 | 341.1 | | | | 310.0 | | | | | | 1 515 | 316.1 | 321.1 | 314.7 | | | | | | | STATE WELL
NUMBER | KERN RIVER D | 31S/26E-35D01 M | 31S/27E-04L01 M | | | | 315/27E-28H01 M | | | | | | M (0) 00 300 | 313/2/E+28301 m | 315/28E-17P02 M | 31S/28E-30M01 M | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | | | 8700 | | | _ | | | 5120 | .007 | 7000 | 2000 | | | | | | | 5120 | | ₹ 5 | WATER A SURFACE SUF | | 267.3 | 269.9
265.2
261.6 | 265.5
265.1
258.9 | 250.0 |
242.0
254.0
252.0 | 255.0 | 255.0 | 267.0 | 259.0 | 255.0 | 2 | 255.0 | 254.6 | 256.6 | 265.8 | 268.9 | 261.4 | 262.4 | 258.4 | 247.1 | | | 5-22.40 | 70.7 267.3
68.5 269.5 | | | | | | | | 89.7* 249.0
79.7* 259.0 | 104.0 255.0 | | | 104.4 254.6 | | | | | 96.6 262.4 | | 85.9 247.1
81.4 251.6 | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.40 | 70.7 | 68.1
72.8
76.4 | | 88.7* | */************************************ | 83.7* | 83.7*
68.7* | | | | 0 0 0 | 4.66 | 104.4 | | 93.5 | 90.1 | 93.1
97.6 | 96.6 | 100.6 | | | GROUND SUR-
FACE TO SURFACE
WATER ELEVATION
IN FEET IN FEET | KERN RIVER DELTA AREA 5-22.40 | 70.7 | 72.8
76.4
76.4 | 72.9
79.1 | 88.7* | */************************************ | 83.7* | 83.7* | 71.7* | -30-64 89.7*
-22-64 79.7* | 104.0 | 0 0 0 | 1-27-64 99.4 | 104.4 | 102.4 | 93.5 | 90.1 | 93.1
97.6 | 96.6 | 100.6 | 85.9 | | AGENCY
SUPPLYING
DATA | | 2000 | | | 5050 | 6001 | 2000 | | | | 6001
5050 | 6001 | 6001 | 6001 | 5120 | 6001 | 2000 | |---|-----------------------|--|-------------------------------|---------|-------------------------------|-------------------------------|-----------------|-------------------------|----------------------|--------------------|-----------------|-------------------------------|-------------------------|-------------------------|---------------------------------------|-----------------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 220.6
223.3
225.7 | 221.6
220.0
217.3 | 209.3 | 174.5 | 172.7 | 292.2 | 291°4
290°8
290°8 | | | 595.0
598.5 | 183.1 | 254.8 | 139.0 | 211.5 | 119.7 | 151.7 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.41 | 151.4
148.7
146.3 | 150°4
152°0
154°7 | 162.7 | 340.5
331.0 | 455•3
n | 128.8 | 129.6 | on t | 3 11 % | 196.5
193.0 | 289.4
305.4 | 145.2
n | 397.0
360.5 | 231.0
181.0 | 267.0 | 318.3* | | DATE | | 11-13-63
12-11-63
1-28-64
2-19-64 | 3-17-64
4-21-64
5-19-64 | 6-25-64 | 9-17-63 | 9-16-63 | 7-17-63 | 9-11-63 | 12-11-63 | 2-19-64
3-17-64 | 9-18-63 | 9-18-63 | 9-17-63 | 9-19-63 | 9-17-63 | 9-18-63 | 7-17-63 | | GROUND
SURFACE
ELEVATION
IN FEET | OPA AREA | 372.0 | | | 515.0 | 628.0 | 421.0 | | | | 791.5 | 472.5 | 0.004 | 536.0 | 442.5 | 386.7 | 470.0 | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 30S/28E-10N04 M
CONT. | | | 30S/29E-05F01 M | 30S/29E-26A01 M | 30S/29E-31R01 M | | | | 305/30E-20R01 M | 31S/29E-09A01 M | 31S/29E-29A01 M | 315/30E-21601 M | 32S/25E-35N02 M | 325/28E-23R01 M | 32S/29E-16R02 M | | AGENCY
SUPPLYING
DATA | | 8700 | 5120 | 8700 | | | | 1009 | | 6001 | 6001 | 2000 | | | | 2000 | | | WATER
SURFACE
ELEVATION
IN FEET | | 162.7
166.7
162.7 | 201.8
196.8 | | 119.3 | 115.3 | 153.3 | 251.1 | | 125.5 | | 332.7
341.5
341.9 | 335°4
336°8
747°7 | 9999
9989
9989 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 212.1 | 212.2 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.40 | 152.0*
148.0*
152.0* | 176.2
181.2 | | n
n
173,3* | 177.3*
109.3 | 139,3* | 51.9 | 5-22.41 | 452.5 | n n | 39.3
30.5
30.1 | 35.6 | 34°0
37°0
38°0 | 333 | 159.9 | 159.8
158.0 | | DATE | | 2-26-64
6-04-64
6-23-64 | 9-16-63 | 7-22-63 | 8-14-63
8-27-63
1-09-64 | 1-22-64
2-10-64
2-26-64 | 6-24-64 | 9-18-63 | | 9-18-63 | 9-18-63 | 7-17-63
8-15-63
9-10-63 | 10-10-63 | 1-28-64 2-19-64 3-17-64 | 5-19-64
5-25-64 | 7-17-63 | 9-11-63 | | GROUND
SURFACE
ELEVATION
IN FEET | KERN RIVER DELTA AREA | 314.7 | 378.0 | 292.6 | | | | 303.0 | EDISON-MARICOPA AREA | 578.0 | 410.0 | 372.0 | | | | 372.0 | | | | <u>ارا</u> | | | | | | | | 1.1 | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | 6001 | 6001 | 6001 | 000 9 | | 8700 | | 6001 | 8700 | |---|------------------------------|--|---|-------------------------|----------------------------|---|-------------------------------|---|---|--|--| | WATER
SURFACE
ELEVATION
IN FEET | | 262.9
261.1
261.5
262.1 | | 735.3 | 165•1 | 168.7
209.0
215.2
216.2
216.2
218.4
219.1
219.2
213.1 | 208.8
212.6
246.2 | - 110.6
- 115.6
- 115.6
- 66.4 | | 135.2 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.41 | 210.1
211.9
211.5
210.9 | ממ | 114.7 | 410.8 | 00000000000000000000000000000000000000 | 466.2
462.4
428.8 | 562.9#
567.9#
567.9#
385.9# | | 349.5 | 000 | | DATE | | 3-17-64
4-21-64
5-19-64
6-25-64 | 9-17-63 | 9-17-63 | 9-18-63 | 7-17-63
8-15-63
9-11-63
10-10-63
11-13-63
12-13-64
2-19-64
3-17-64 | 4-21-64
5-19-64
6-25-64 | 7-24-63
8-15-63
8-28-63
9-13-63 | 2-12-64
2-27-64
3-02-64
6-03-64
6-10-64 | 6-24-64
9-16-63
1-27-64 | 7-10-63
7-24-63
8-15-63 | | GROUND
SURFACE
ELEVATION
IN FEET | DPA AREA | 473.0 | 657.0 | 850.0 | 575.9 | 675.0 | | 452.3 | | 484.7 | 730.2 | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 325/29E-21P01 M
CONT. | 11N/18W-06P01 S | 11N/18W-28D01 S | 11N/19W-04H01 S | 11N/19W-07R03 S | | 11N/20W-07001 S | | 11N/20W-18F01 S | 11N/20W-24A01 S | | | | | | | | | | | | | | | AGENCY
UPPLYING
DATA | | 2000 | | | 5000 | | 5000 | | | 2000 | | | WATER AGENCY
SURFACE SUPPLYING
ELEVATION DATA | | | 152.2
151.7
150.9 | 190.1
149.9
148.1 | | 216.0
216.2
216.2
215.8
215.8
216.7
216.7 | | 69.4
90.1
1126.6
122.4
121.4 | 102-1
102-1
16-8
46-3 | | 262.6
262.4
262.4
262.4
262.4 | | | 5-22.41 | 149.3
148.5
150.7
151.1 | 317.8 152.2
318.3 151.7
319.1 150.9 | | 217.1 | 198.0 218.0
199.9 216.2
199.8 216.2
199.6 216.2
200.2 215.8
199.3 216.0
199.3 216.7 | 52•2
46•6 | | 325.9 00.1
333.1 82.9
339.2 76.8 | 259.3
269.7
261.3
260.6 | 210.4 262.6
210.6 262.4
210.6 262.4
210.6 262.4 | | WATER
SURFACE
ELEVATION
IN FEET | 5-22•41 | 320.7 149.3
321.5 148.5
319.3 150.7
318.9 151.1 | 317.8
318.3
319.1 | | 198.9 217.1
189.7 226.3 | | 363.8 52.2
369.4 46.6 | | 325.99
339.1
339.7
369.7 | 259.3
269.7
261.3
260.6 | 210.4
210.6
210.6
210.6 | | GROUND SUR- FACE TO SURFACE WATER SURFACE IN FEET IN FEET | EDISON-MARICOPA AREA 5-22.41 | 320.7 149.3
321.5 148.5
319.3 150.7
318.9 151.1 | 317.8
318.3
319.1 | 320.1
321.9 | 198.9 217.1
189.7 226.3 | 19860
1998
1998
1998
1998
1999
1999 | 363.8 52.2
369.4 46.6 | 346.6
325.9
299.4
294.6
294.6 | 325.99
339.1
339.7
369.7 | 213.7 259.3
203.3 269.7
211.7 261.3
212.4 260.6 | 210.4
210.6
210.6
210.6 | | AGENCY
SUPPLYING
DATA | | 5120 | | 2000 | | | | | | 5120 | | 2000 | | | | | | | | 2000 | | | | | | | | 5120 | |---|------------------------------|--------------------------|---------------------------|-----------------|-----------|----------|---------|---------|------------------------|-----------------|-----------|------------------------|---------------------------------------|----------|--------------|---------|------------|---------|-----------|-----------------|---------|----------|-------------------------|---------|-----------|----------|---------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 229.0 | | 158.4 | 159.1 | 167.6 | 164.8 | | 150.5 | 200.0 | 202•0 | 147.8 | 138.2 | 141.7 | 145.2 | 144.4 | 132.0 | 135.4 | 137.7 | 186.5 | 195.2 | 196.6 | 203.2 | 2002 | 195.4 | 195.2 | 222.1 | 217.3 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22-41 | 269.0 | 5-22.42 | 79.6 | 78.9 | 70.4 | 73.2 | םנ | 87.5 | 0.04 | 38.0 | 93.2 | 102.8 | 99.3 | 95.8 | 9.96 | 109.0 | 105.6 | 103•3 | 58.5 | 8.64 | 4.84 | 42.1 | 44.8 | 49.6 | 49.8 | 22.9 | 27.7 | | DATE | | 1-21-64 | 0157 | 7-17-63 | 9-11-63 | 11-13-63 | 1-28-64 | 3-16-64 | 4-21-64 | 9-25-63 | 1-27-64 | 7-17-63 | 9-11-63 | 11-13-63 | 12-11-63 | 2-19-64 | 3-18-64 | 5-19-64 | 6-25-64 | 7-17-63 | 9-11-63 | 10-10-63 | 12-11-63 | 1-28-64 | 2-19-64 | 4-21-64 | 6-25-64 | 9-25-63 | | GROUND
SURFACE
ELEVATION
IN FEET | OPA AREA | 498.0 | BUENA VISTA WATER STORAGE | 238.0 | | | | | | 240.0 | | 241.0 | | | | | | | | 245.0 | | | | | | | | 245.0 | | STATE WELL
NUMBER | EDISON-MARICOPA AREA | 12N/23W-28P01 S
CONT. | BUENA VISTA | 275/22E-16801 M | | | | | | 275/22E-21F02 M | | 275/22E-32H01 M | | | | | | | | 28S/22E-09D01 M | | | | | | | | 285/22E-10002 M | | AGENCY
SUPPLYING
DATA | | 8700 | | | 8700 | | | | | | | 8700 | | | | | | | | 6001 | | 6001 | | 5120 | | 5120 | | | | WATER
SURFACE
ELEVATION
IN FEET | | 219•6 | 221.6 | 215.6 | | | 45.8 | | | | | | 7 | 1.7 | 78•7
80•7 | | | | | 121.4 | | | | 63 | m
m | 205.0 | | ١ | | | | ~ | | | | | | | | | | | ľ | ι • | | | | | | 12 | í | | | 100.3 | 109.3 | 20 | | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.41 | 510.6 | 9 4 | | n 0 | ומי | 473.1 | מכ | םם | 00 | n | 0 0 | D D D D D D D D D D D D D D D D D D D | | 450.3 | п | a 2 | םנ | n | 241.6 12 | | □ ¥ | • | | 314.0 109 | 293.0 20 | | 1 | | GROUND SUR. FACE TO WATER SURFACE IN FEET | 5-22.41 | | 508.6 | 514.6 | 7-10-63 n | | | | 2-11-64 D
2-28-64 D | | п +9-60-9 | 7-10-63 n
7-24-63 n | 0 417.3 | 467.3 | | | 3-02-64 0
 | 6-24-64 п | | | 9-17-63 | +0 -0 7 - | 323.0 | | | | 1 | | | EDISON-MARICOPA AREA 5-22.41 | 510.6 | 508.6 | 514.6 | | | | | | | | | 0 417.3 | 467.3 | 450.3 | | | | | 241.6 | | | +9-07-T | 323.0 | 314.0 | 293.0 | | | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |--------------------------|---|--|---|---|-----------------------------|--------------------------|---|---|---|--|-----------------------------| | ATOTA ANGUA | BIENA VISTA WATER STORAGE DIST | E DIST | 5-22.42 | | | BUENA VISTA | BUENA VISTA WATER STORAGE | DIST | 5-22.42 | | | | 285/22E-10D02 M
CONT. | 245.0 | 1-27-64 | 26.8 | 218.2 | 5120 | 295/23E-10P01 M
CONT. | 263.5 | 10-03-63
11-01-63
12-02-63 | 42.5
46.9
41.8 | 221.0
216.6
221.7 | 4640 | | 28S/22E-36P01 M | 253.2 | 7-03-63
8-01-63
9-06-63
10-03-63
11-01-63
12-02-63
1-03-64 | 4446666
646666666666666666666666666666 | 207.8
207.9
206.4
214.5
221.2
219.0
220.7 | 0494 | | | 1-02-64
2-03-64
3-02-64
4-01-64
5-04-64
6-28-64 | 184
402.4
403.4
10.00
10.00 | 231.8
220.9
186.1
202.0
219.8
218.2 | | | | | 2-01-64
3-02-64
4-01-64
5-04-64
5-28-64 | 63 4
66 0 4
66 0 3 4
10 0 5 | 189.8
206.9
206.7 | | 29S/23E-27M01 M | 270.0 | 7-17-63
8-14-63
9-11-63
10-10-63
11-13-63 | 4444
00440
0000 | 223.1
223.4
225.0
225.4
227.2 | 2000 | | 285/23E-31R01 M | 257.8 | 7-03-63
8-02-63
9-06-63
10-02-63
11-01-63 | 77.00
9.70.00
9.70.00
9.90.00
9.90.00 | 184.9
208.6
205.4
220.6
214.7
228.5 | 4640 | | | 12-11-63
1-28-64
2-19-64
3-17-64
4-21-64
5-19-64
6-25-64 | 44 4440
64 6444
70 | 22 (+5)
225 + 8
223 + 1
223 + 4
224 - 1
215 - 7 | | | | | 1-02-10
3-02-164
3-02-164
4-02-164
5-05-164 | 500.1
500.1
420.2
500.1 | 215.9
215.6
207.7 | | 295/24E-32001 M | 280.7 | 7-03-63
8-01-63
9-06-63
10-02-63 | 80.9
62.7
57.1
56.2 | 199.8
218.0
223.6
224.5 | 0494 | | 295/23E-08A01 M | 260.3 | 7-04-63
8-06-63
9-06-63
10-03-63
11-02-63
12-03-63 | 6 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 198.3
208.0
225.2
225.8
222.2 | 0494 | | | 12-02-63
1-02-64
2-01-64
3-03-64
4-01-64
5-04-64
5-28-64
6-28-64 | 500
57.0
700.0
62.0
62.0
62.0 | 214.5
223.1
200.8
218.3
218.3 | | | | | 3-03-64
4-03-64
4-03-64
5-03-64
5-28-64
6-28-64 | 444
0 • • • • • • • • • • • • • • • • • • • | 212.3
216.9
213.0 | | 30S/23E-01C01 M | 276.8 | 7-03-63
8-02-63
9-06-63
10-02-63 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 207.2
216.0
210.7
226.6
227.0 | 4640 | | 295/23E-10P01 M | 263.5 | 7-04-63
8-01-63
9-06-63 | 64.0 | 199.5 | 4640 | | | 1-02-64 | 57.9 | 218.9 | | | ### GROUND PACKET OF THE COUNTY | AGENCY
SUPPLYING
DATA | | 9000 | | | | | | | | | 5120 | | 5120 | 5000 | | | | | | | | | | 5 000 | | | | | | | | | | 1004 | 1000 | |--|---|---------------|------------------------------|---------|------------|----------|---------|---------|---------|---------|--------------|---------|---------|----------|---------|---------|---------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|---------|---------|---------|---------|-------|---------|---------| | CANADE C | WATER
SURFACE
ELEVATION
IN FEET | | 150.9 | 149.4 | 141.8 | 143.0 | 141.5 | 142.3 | 142.7 | 142.2 | 139.9 | 28.5 | 81.0 | | 131.7 | 127.4 | 124.4 | 127.6 | 131.3 | 136.6 | 133.0 | 132.5 | 131.6 | 127.4 | 48.7 | | | 37.0 | 57.1 | 68.3 | 0.49 | 41.1 | 48.7 | 15.6 | 30 30 | 00071 | | CANADE C | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22.43 | 61.1 | 62.6 | ×0°69 | 0.69 | 70.5 | 69.7 | 69.3 | 8.69 | 72•1 | 186.5 | 133.5 | ₩ | 85.3 | 89.6 | 95.6 | 49.68 | 85.7 | 80.4 | 84.0 | 84.5 | 85.4 | 9.68 | 168.3 | 213.7 | 219.5 | 180.0 | 159.9 | 148.7 | 153.0 | 175.9 | 168.3 | 201.4 | 103 3 | 106.62 | | STA WATER STORAGE DIST STORAGE | | 01ST | 7-18-63 | 9-12-63 | 10-10-63 | 12-11-63 | 1-28-64 | 3-18-64 | 4-21-64 | 5-19-64 | 6-25-64 | 9-30-63 | 1-31-64 | 10-01-63 | 7-18-63 | 8-16-63 | 9-12-63 | 11-13-63 | 12-11-63 | 1-28-64 | 3-18-64 | 4-21-64 | 5-19-64 | 6-25-64 | 7-18-63 | 8-16-63 | 9-12-63 | 11-13-63 | 12-11-63 | 1-28-64 | 2-19-64 | 3-18-64 | 4-21-64 | | 0-30-43 | 60-03-6 | | STA WATER STORAGE DIST STORAGE | GRDUND
SURFACE
ELEVATION
IN FEET | HATER STORAGE | 212.0 | | | | | | | | | 215.0 | | 209.0 | 217.0 | | | | | | | | | | 217.0 | | | | | | |
| | | 0 000 | 0.623 | | STA WATER STORAGE DIST DISTA DISTA STA DISTA STA DISTA STA DIST | STATE WELL
NUMBER | SEMITROPIC N | STA WATER STORAGE DIST DISTA DISTA STA DISTA STA DISTA STA DIST | AGENCY
SUPPLYING
DATA | | 0494 | | | | 0494 | ! | | | | | | | | | 2000 | | | | | | | | | 0000 | 2000 | | | | | | | | | | | STA WATER STORAGE DIST STA WATER STA MATER MATE | | | 13.7 | 20.3 | 212.7 | | | | 212.3 | 216.2 | 218.7 | 219.0 | 209.7 | 216.0 | 208•2 | | 214.2 | 212.8 | 222.8 | 222.9 | 205-7 | 197.2 | 208.3 | 210.9 | 201.1 | , , | 256 1 | 257.0 | 248.0 | 254.7 | 257.5 | 259.6 | 248.1 | 250.7 | 255.8 | | | STA WATER STORAGE DIST M 276.8 2-01-64 5-02-64 5-03-64 | SUF. | | 14 14 | 0,0 | STATE WELL GROUND SURFACE ELEVATION IN FEET BUENA VISTA WATER STORAGE 305/23E-01C01 M 276.8 CONT. 305/24E-02C01 M 282.0 315/25E-27F01 M 283.0 | οż | 5-22.42 | | | | | | ם | 74.7 | 70.8 | 68•3
68•1 | 68.0 | 77.3 | 71.0 | 78.8 | | 67.8 | 62.3 | 59.2 | 59.1 | 76.3 | 84.8 | 73.7 | 71.1 | 80.9 | , | 55.0 | 26.0 | 35.0 | 28.3 | 25.5 | 23.4 | 40.45 | 32.3 | 27.2 | | | STATE WELL
NUMBER
305/23E-01C01 M
CONT.
305/24E-04C01 M
315/25E-27F01 M | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | 63.1 | 56.5 | 56.
64. | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | 2-01-64 63.1
3-03-64 72.8 | 56.5 | 56.
64. | | 7-04-63 | 8-02-63 | | | | | | | | | 7-17-63 | | | | | | | | | | 0-1/-63 | | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 2000 | 5120 | 5120 | 5120 | 8700 | | | 5120 | 2000 | | 0006 | |---|----------------------------|--------------------------|-----------------|---|-----------------|--|-------------------------------|--|---|--|--|---| | WATER
SURFACE
ELEVATION
IN FEET | | 147.4 | | 130.9 | | 60 CA | - 6.3
113.7
129.7 | 76.7
123.7
61.7
4.7 | 208.5 | 154.3
154.0
153.7
153.0
155.0 | 156.0
155.0
155.1
155.1 | 153.7
153.7
103.9
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.43 | 77.6 | 0 D | 104.0 | םם | 259.8*
273.8*
293.8*
304.8* | 301.8*
181.8*
165.8* | 218.8*
171.8*
233.8*
290.8* | 56.5
52.5 | 112.7
113.0
113.3
114.0 | 1111.0
1111.9
1113.2 | 113.3
114.9
2643.1*
256.5*
250.4
219.3
1183.7 | | DATE | DIST | 6-25-64 | 9-30-63 | 10-01-63 | 10-01-63 | 7-02-63
7-16-63
8-02-63
8-20-63 | 9-05-63
1-03-64
1-17-64 | 2-01-64
2-04-64
4-22-64
6-16-64 | 9-25-63 | 7-18-63
8-16-63
9-12-63
10-11-63 | 12-10-63
1-27-64
2-18-64
3-16-64
4-20-64 | 5-18-64
6-24-64
7-18-63
8-16-63
9-12-63
10-11-63
11-14-63 | | GROUND
SURFACE
ELEVATION
IN FEET | WATER STORAGE | 225.0 | 253.0 | 234.9 | 258.0 | 295.5 | | | 265.0 | 267.0 | | 267.0 | | STATE WELL
NUMBER | SEMITROPIC W | 265/22E-10G02 M
CONT. | 265/22E-35E01 M | 265/23E-02R01 M | 265/23E-36F01 M | 265/24E-23H01 M | | | 27S/22E-02001 M | 275/23E-01R01 M | | 275/23E-01R04 M | | AGENCY
SUPPLYING
DATA | | 6001 | 2000 | | | | 6 00 1 | 2000 | | | 5120 | | | AGI
SUP P | | | | | | | | | | | | | | WATER AGI
SURFACE SUPP
ELEVATION D. | | 139.9 | 158.5 | 159.0 | 160.9 | 160.5
159.8
159.8 | 37.4
62.8 | 204.9
202.9
205.1
205.7 | 206.2 | 205.0
203.1
203.1
205.4
205.5 | 216.5
225.0 | 153.2
152.0
151.7
152.6 | | | 5-22.43 | 88.1 139.9 | | | | 87.5 160.5
87.6 160.4
88.2 159.8 | 200.0 37.4
174.6 62.8 | | | 39.0 205.0
40.9 203.1
38.6 205.4
38.5 205.5 | 20.5 216.5
12.0 225.0
u | D
D
D
1.8
73.0
73.3
72.4
152.6
72.5 | | WATER
SURFACE
ELEVATION
IN FEET | | | 89.5
90.1 | | 00000 | 87.5
87.6
88.2 | | | 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 W 4 W W | | 71.8
73.9
73.3
72.4 | | GROUND SUR- WATER FACE TO SURFACE WATER SURFACE IN FEET IN FEET | WATER STORAGE DIST 5-22.43 | 88.1 | 89.5
90.1 | 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 87.5
87.5
88.2 | 200.0 | 999.1
988.0
98.0
98.0 | 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1 W 4 W W | 20.5
12.0
u | 71.8
73.9
73.3
72.4 | | AGENCY
SUPPLYING
DATA | | 2000 | | 5050 | 5050 | 5050 | 2050 | 5050 | 5120 | 2000 | | | | | | 5120 | 5120 | | 5120 | |---|--------------------------|---|--|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------------------|----------|----------------------|---------|---------|--------------------|-----------------|------------------------|-----------------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 7 | 450
450
450
450
450
450
450
450
450
450 | | | | | | 314.2
316.3 | 351.0 | 350 1 | 9000
0000
0000 | 349.8 | 349.3 | 342.4 | 205.0 | 747.5 | 19167 | 520.0
519.0 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.44 | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 133.7
133.5
133.5
137.7 | u | 1 | * | а | DRY | 107.8
105.7 | 129.0 | 129.8 | | 130.2 | 130.7 | 137.6 | 63.0 | 162.5 | 116.3 | 165.0
166.0 | | DATE | | 9-11-63
10-10-63
11-13-63
12-11-63
1-28-64
2-19-64 | 3-18-64
4-21-64
5-19-64
6-25-64 | 1-21-64 | 1-21-64 | 1-24-64 | 1-21-64 | 1-21-64 | 9-27-63 | 7-16-63 | 10-10-63 | 12-11-63 | 2-19-64 | 3-18-64 | 5-19-64
6-25-64 | 1-30-64 | 9-26-63 | *0-67-T | 9-27-63 | | GROUND
SURFACE
ELEVATION
IN FEET | TRICK AREA | 9 60 0 0 | | 235.0 | 267.0 | 470.0 | 0.669 | 625.0 | 422.0 | 480.0 | | | | | | 268.0 | 910.0 | | 685.0 | | STATE WELL
NUMBER | AVENAL-MCKITTRICK AREA | 235/18E-29E02 M
CONT. | | 235/19E-14R01 M | 235/19E-26M01 M | 245/18E-11D01 M | 24S/18E-30D01 M | 245/18E-33N01 M | 255/19E-15G01 M | 255/19E-20002 M | | | | | | 255/20E-04C01 M | 265/17E-13L02 M | | 26S/18E-16H01 M | | AGENCY
SUPPLYING
DATA | | 2000 | 5120 | 7 | | | | | | 0494 | | | | | | 5120 | | 5050 | 2000 | | WATER
SURFACE
ELEVATION
IN FEET | | 95.7
85.8
51.8
68.1
57.9 | 208.0 | 221.6
224.6 | 222.6 | 224.0 | 224.4 | 229.2 | 224•0 | 124•1 | 132.1 | 138.2 | 131.2 | 132.6 | | 193.5
191.0 | | 0.96 | 426.6
426.5 | | GROUND SUR-
FACE TD
WATER
SURFACE
IN FEET | 5-22-43 | 171.3
181.2
215.2*
198.9
209.1
249.1 | 0.00 | 0 M M | 32.4 | 31.0 | 30•6
30•1 | 25.8
25.0 | 31.0 | n
177.0 | 169.0 | 162.9 | 169.9 | 168.5 | 1 12 | 96.5 | 5-22.44 | 159.0 | 133.4
133.5 | | DATE | DIST | 1-27-64
2-18-64
3-16-64
4-20-64
5-18-64
6-24-64 | 9-25-63 | 8-01-63
9-06-63 | 10-02-63 | 12-02-63 | 2-01-64 | 4-01-64 | 5-28-64 | 7-04-63
8-02-63
9-07-63 | 11-01-63 | 1-03-64 | 3-02-64 | 4-01-64 | 5-28-64 | 9-20-63 | | 1-21-64 | 7-16-63 | | GROUND
SURFACE
EL EVATION
IN FEET | SEMITROPIC WATER STORAGE | 267.0 | 258.0 | | | | | | | 301.1 | | | | | | 290•0 | TRICK AREA | 255.0 | 560.0 | | STATE WELL
NUMBER | SEMITROPIC N | 275/23E-01R04 M
CONT. | 275/23E-06L01 M | | | | | | | 28S/24E-28A01 M | | | | | | 295/24E-14R01 M | AVENAL-MCKITTRICK AREA | 225/19E-18P02 M | 23S/18E-29E02 M | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | 5050 | 5050 | | | | | | 5050 | | | | 0404 | | 5050 | | | | | | | | | |---|------------------------|--------------------------|-----------------|-------------------------------|--------------------|------------------------------|-----------------------------|-----------------|----------|----------------|----------|--------------------|---------|-----------------|---------|---------|-----------------|-----------------|----------|-----------------|----------|----------|----------|----------|---------|---------|-------------------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | 112.7 | 105.1 | 1110.1 | 109.8 | | | 151.8 | 153.2 | 153.4 | 151.3 | 150.5 | 148.8 | 179.8 | 179.5 | 179.8 | | | | 150.7 | 152.8 | 15165 | 157.8 | 157.9 | 156.0 | 157.5 | 157.5 | 156.4 | | GROUND SUR.
FACE TD
WATER
SURFACE
IN FEET | 5-22.45 | 104.3 | 1111.9 | 105.5 | 107.2 | 5-22-46 | = * | T.44 | 43.3 | 43.1 | 45.2 | 40.04 | 47.7 | 16.7 | 17.0 | 16.7 | * | | ľ | 45.3 | 43.2 | 48.0 | 38.2 | 38.1 | 0.04 | 78.5 | 9 6
9 6
5 6 | 39.6 | | DATE | AREA | 8-14-63 | 11-13-63 | 2-19-64
3-18-64
3-21-64 | 5-19-64
6-25-64 | 11CT | 7-29-63 | 11-27-63 | 12-30-63 | 2-24-64 | 3-31-64 | 5-25-64 | 6-24-64 | 7-29-63 | 8-29-63 | 9-27-63 | 11-12-63 | 2-05-64 | 70.00 | 7-29-63 | 8-29-63 | 10-28-63 | 11-27-63 | 12-30-63 | 2-03-64 | 2-24-64 | 4-27-64 | 5-25-64 | | GROUND
SURFACE
ELEVATION
IN FEET | LAKE-LOST HILLS AR | 217.0 | | | | CORCORAN IRRIGATION DISTRICT | 204.0 | 196.5 | | | | | | 196.5 | | | | 200-0 | | 196.0 | | | | | | | | | | STATE
WELL
NUMBER | TULARE LAKE-I | 255/21E-22H01 M
CONT. | | | | CORCORAN IRR | 21S/22E-10J03 M | 215/22E-16L02 M | | | | | | 215/22F-16001 M | | | | 215/22F=24K01 M | | 215/22E-27A01 M | | | | | | | | | | AGENCY
SUPPLYING
DATA | | 5120 | 5120 | 5120 | 5120 | 9050 | | 2000 | | - | | 5050 | 2000 | | | | 2000 | | | | | 5050 | 2000 | | | | | 2000 | | WATER
SURFACE
ELEVATION
IN FEET | | 715.0 | 524.5 | | 1182.0
1182.0 | | | 1.2 | 9.1 | 13.3 | 24.1 | 20.7 | 24.0 | 17.2 | 5.5 | - 1.5 | | 1 14.5 | 4.1 | 10.7 | 15.8 | 1000 | 11.8 | | - 19.5 | - 21.9 | | 112.9 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22.44 | 160.0
153.0 | 205.5 | D D | 38.0* | * | 5-22.45 | 179.8 | 171.9 | 167.7
159.8 | 156.9 | 155.9 | 157.0 | 163.8 | 175.5 | 182.5 | | 192.5* | 173.9 | 167.3 | 162.2 | 176.5 | 166.2 | | | 183.6 | | 104.1 | | DATE | | 9-26-63 | 9-26-63 | 9-27-63 | 9-26-63 | 7-01-63 | REA | 7-16-63 | 9-10-63 | 10-09-63 | 12-12-63 | 1-29-64
2-06-64 | 2-19-64 | 3-18-64 | 5-20-64 | 6-26-64 | 7-16-63 | 8-13-63 | 10-09-63 | 11-12-63 | 12-12-63 | 2-06-64 | 2-19-64 | 3-18-64 | 4-25-64 | 5-20-64 | | 7-17-63 | | GROUND
SURFACE
ELEVATION
IN FEET | RICK AREA | 875.0 | 730•0 | 530.0 | 1220.0 | 370.0 | OST HILLS AF | 181.0 | | | | | | | | | 178.0 | | | | | | | | | | | 217.0 | | STATE WELL
NUMBER | AVENAL-MCKITTRICK AREA | 265/18E-19802 M | 26S/18E-27F01 M | 26S/19E-12L01 M | 27S/18E-15R01 M | 285/21E-13E01 M | TULARE LAKE-LOST HILLS AREA | 215/20E-12M01 M | | | | | | | | | 21S/20E-27A01 M | | | | | | | | | | | 255/21E-22H01 M | | AGENCY
SUPPLYING
DATA | | 6001
5050
6001 | 6001
5050
6001 | 6001
5050
6001 | 6001
5050
6001 | 6001
5050 | 6001 | 6001
5050 | 6001
5050 | 5050 | 5000 | | | | | | | 2000 | | | |---|---------------------|--------------------------|---|--|--|-----------------|-----------------|-------------------------|----------------|-----------------|-------------------------------|-----------------|--------------|----------------|---------|--------------|---------|-----------------|---------|----------| | WATER
SURFACE
ELEVATION
IN FEET | | - 55.0
11.0 | 91.0
110.3 | 1.9 | 179.4
177.6
177.7 | - 20.5 | - 26.4 | | | | 133.2
128.0
127.1 | 129.3 | 135.2 | 136.9
136.6 | 132.5 | 134.0 | 133.6 | 186.0 | 184.9 | 185.1 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.47 | 302.0
236.0 | 189.0
169.7
n | 212.9
210.6 | ພບບ
• • •
ብ 4 ሠ | 242.5 | 248.4 | DRY
DRY | □ ⊕ | ם | 87.8
93.0
93.9 | 91.7 | 85.8 | 84.1 | 88.5 | 87.0 | 87.4 | 62.0 | 63.1 | 62.9 | | DATE | | 9-03-63 | 9-13-63
12-23-63
3-17-64 | 10-01-63
12-20-63
3-18-64 | 10-01-63
12-20-63
3-18-64 | 10-01-63 | 3-18-64 | 10-02-63 | 10-03-63 | 12-27-63 | 7-16-63
8-13-63
9-11-63 | 11-04-63 | 12-19-63 | 1-07-64 | 3-05-64 | 4-30-64 | 6-23-64 | 7-16-63 | 9-10-63 | 10-09-63 | | GROUND
SURFACE
ELEVATION
IN FEET | N AREA | 247.0 | 280•0 | 211.0 | 183.0 | 222.0 | | 164.0 | 225.0 | 321.0 | 221.0 | | | | | | | 248.0 | | | | STATE WELL
NUMBER | MENDOTA-HURON AREA | 135/12E-05001 M | 135/12E-22N01 M | 135/13E-10R01 M | 135/13E-12A01 M | 135/13E-15R01 M | | 135/14E-09J01 M | 13S/14E-32Q1 M | 145/13E-15M01 M | 14S/14E-05H01 M | | | | | | | 145/14E-28E02 M | | | | AGENCY
SUPPLYING
DATA | | 9050 | 5050 | | | 9050 | 5050 | | | | | 5050 | | 1 | | | | 1 | | _ | | WATER
SURFACE
ELEVATION
IN FEET | | 155.0 | 175.2
175.7
173.8
177.3 | 178.0 | 177.5 | | 38.5 | 23.1 | 25.1 | 1.40 | 46.0 | 55.5
55.1 | 53.7
55.6 | 61.3 | 71.3 | 70°9
66°5 | 62.1 | 48.8 | | | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22.46 | 41.0 | 25.8
25.3
27.2
23.7 | 23.0
23.0 | 23.6
23.6
24.0
24.0 | ** | 149.5 | 164.9
166.6
170.3 | 162.9
133.6 | 128.9 | 150.5
142.0
E | 135.5 | 137.3 | 129.7 | 119.7 | 120.1 | 128.9 | 142.2 | | | | DATE | 101 | 6-24-64 | 7-29-63
8-29-63
9-27-63
10-28-63 | 11-27-63
12-30-63
2-03-64
2-24-64 | 3-31-64
4-27-64
5-25-64
6-24-64 | 7-29-63 | 7-29-63 | 9-27-63 | 12-30-63 | 3-31-64 | 5-25-64
6-24-64 | 7-29-63 | 9-27-63 | 11-27-63 | 2-03-64 | 3-31-64 | 4-27-64 | 6-24-64 | | | | GROUND
SURFACE
ELEVATION
IN FEET | IRRIGATION DISTRICT | 196.0 | 201.0 | | | 188.0 | 188.0 | | | | | 191.0 | | | | | | | | | | STATE WELL
NUMBER | CORCORAN IRR | 215/22E-27A01 M
CONT. | 225/22E-01802 M | | | 22S/22E-05L01 M | 22S/22E-08L01 M | | | | | 22S/22E-15C01 M | O SUR- TO WATER AGENCY EN SURFACE SUPPLYING CCE ELEVATION OATA IN FEET | |--| | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | GROUND
SURFACE
ELEVATION
IN FEET | | STATE WELL
NUMBER | | AGENCY
SUPPLYING
DATA | | WATER
SURFACE
ELEVATION
IN FEET | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | | | DATE | | GROUND
SURFACE
ELEVATION
IN FEET | | AGENCY
SUPPLYING
DATA | | 2000 | 2000 | | 5050 | 2 000 | 5050 | 5050 | 2000 | |---|----------------------------|---|---|--|------------------|--|--|---|--| | WATER
SURFACE
ELEVATION
IN FEET | | 224.4
223.3
223.5
223.5
224.0 | - 97.8
- 107.2
- 85.7
- 76.2
- 89.4
- 73.0 | - 83.0
- 81.9
- 79.1
- 80.9
- 81.3 | - 35.0
- 89.0 | 1 | - 66.2 | - 160.0 | - 116.4
- 141.7 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.47 | 65.6
66.7
66.5
66.0 | 387.8
397.2
375.7
366.2
379.4 | 373.0
371.9
369.1
370.9
371.3 | 261.0
315.0 | 837.2 * 1899.0 * 1899.0 * 1899.0 * 1899.0 * 1899.0 * 1899.0 * 1999.0
* 1999.0 * 1999 | а19•2 | 465.0
u | 483.4 | | DATE | | 2-20-64
3-19-64
4-22-64
5-20-64
6-26-64 | 7-16-63
8-13-63
9-10-63
10-09-63
11-12-63 | 1-29-64
2-20-64
3-19-64
4-22-64
5-20-64
6-26-64 | 12-22-63 6-24-64 | 7-16-63
8-13-63
9-10-06-3
10-09-63
11-12-63
11-12-63
12-12-64
4-22-64
5-20-64
6-26-64 | 12-17-63 | 12-18-63 | 7-17-63
8-13-63 | | GROUND
SURFACE
ELEVATION
IN FEET | 4 AREA | 290.0 | 290.0 | | 226.0 | 453 .
453. | 451.0 | 305.0 | 367.0 | | STATE WELL
NUMBER | MENDGTA-HURON AREA | 175/16E-30A03 M
CONT. | 175/16E-30A05 M | | 175/17E-21N02 M | 185/15E-02N01 M | 185/15E-13N01 M
185/17E-12N01 M | 185/17E-29N01 M | 195/17E-35N01 M | | AGENCY
SUPPLYING
DATA | | 5000
6001 | 5050 | 5050
6001
5050
6001 | 5050 | 6001
5000
5050
5000 | 000 | 200 | | | | | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 118.0
113.5
112.9
114.7 | 18.9
- 20.5
- 20.5
- 20.0
143.0 | 83.3
51.4
157.2
148.5 | | 2 8 4 0 0 m m m m m m m m m m m m m m m m m | 36 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 223.9
223.7 | 223.2
223.9
224.4 | | 1 | 5-22.47 | | 111 | 107.7 83.3
139.6* 51.4
75.8 157.2
84.5 148.5 | | 205.3
193.6* 38.9
197.6 34.9
201.9 34.9
179.2* 55.0
165.5 66.0
167.2 65.3
182.5 56.0 | r | | 66.8 223.2
66.1 223.9
65.6 224.4 | | WATER
SURFACE
ELEVATION
IN FEET | 5-22.47 | 1 1 1 1 1 1 | 193.9 195.5 195.0 76.0 1 | * | п п | | 184.2 | 108.8*
66.1
66.3 | | | GROUND SUR- FACE TO WATER WATER SURFACE IN FEET | MENDOTA-HURON AREA 5-22.47 | 193.0 192.0 188.5 187.9 192.8 | 193.9 195.5 195.0 76.0 1 | 107.7
139.6*
75.8
1 | n n | 205.3
193.6 *
201.9 *
187.5
1165.5
1165.5
1162.5
1195.8 * | 184.2 | 8-13-63 108.8*
9-10-63 66.1
10-09-63 66.3 | 66.8
66.1
65.6 | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | | 2000 | | 0 | 5000 | | | 5050 | 5050 | 5050 | | 0606 | 5050 | 5050 | 5050 | 5050 | 5000 | | |---|--------------------|-----------------|--------------------|----------------|--------------------|---------|--------------------|--------------------|------------------|------------------|----------------|------------------|-----------------|------------------|-----------------|---------|---------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------| | WATER
SURFACE
ELEVATION
IN FEET | | | | - 158.6 | | | - 183.2
- 185.0 | - 162.0
- 163.9 | | - 34°7
- 34°2 | | - 27.6 | | 31.3 | 427.3 | | | | | | | - 59.5 | | 24.1 | 23.5 | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.47 | 435.4 | 44898 | 44/•5 | 428.2 | 444.7 | 453.2
455.0 | 432.0
433.9 | 290.7* | | | | 292.3 | 291.3 | 195.7 | | | 1 | 1 | п | п | 484.5 | п | 335.9 | | | DATE | | 7-17-63 | 9-12-63 | 11-05-63 | 12-03-63 | 2-06-64 | 3-05-64 | 4-30-64 | 7-16-63 | 9-10-63 | 12-12-63 | 1-29-64 | 3-18-64 | 5-20-64 | 1-21-64 | 1-20-64 | 1-21-64 | | 1-20-64 | 1-20-64 | 12-17-63 | 12-17-63 | 12-18-63 | 7-16-63 | 8-13-63 | | GROUND
SURFACE
ELEVATION
IN FEET | N AREA | 270.0 | | | | | | | 260.0 | | | | | | 623.0 | 570.0 | 634.0 | | 682.0 | 526.0 | 415.0 | 425.0 | 278.0 | 360.0 | , | | STATE WELL
NUMBER | MENDOTA-HURON AREA | 205/18E-11001 M | | | | | | | 20S/18E-36D01 M | | | | | | 216/14F_01F01 M | | | | 21S/16E-35D01 M | 21S/17E-06N01 M | 215/17E-11E01 M | 215/17E-24G01 M | 215/18E-02M01 M | 215/18F-28M02 M | | | AGENCY
SUPPLYING
DATA | | 2000 | | | | | | 5050 | 5000 | | | | | | 5050 | 5050 | 2000 | | | | 5050 | 2000 | | | 0503 | | WATER
SURFACE
ELEVATION
IN FEET | | - 122.7 | - 111.3
- 114.3 | | - 131.5
- 128.5 | | | 0.06 - | - 73.8
- 82.0 | - 83.6
- 85.4 | | - 84.1
- 92.5 | | - 78.1
- 84.4 | | 426.0 | 457.7 | 456.4 | 455.9 | 455.0 | 455.1
455.1 | 455.1
454.9 | 454.7 | 453.4 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.47 | 489.7 | 478.3
481.3 | 452.6
482.6 | 498.5 | 492.5 | 466.3
481.6 | 364.0 | 354.8
363.0 | 364.6
366.4 | 361.9
357.7 | 365.1
373.5 | 378.7
365.1 | 359.1
365.4 | 妆 | 193.0 | 217.3 | 218.6 | 219.1 | 220.0 | 219.9
219.9 | 219.9 | 220•3
220•8 | 221.6 | E | | DATE | | 9-12-63 | 10-09-63 | 12-05-63 | 2-06-64 | 3-31-64 | 4-30-64 | 12-18-63 | 7-16-63 | 9-10-63 | 11-12-63 | 1-29-64 2-19-64 | 3-18-64 4-22-64 | 5-20-64 | 7-01-63 | 1-21-64 | 7-17-63 | 8-14-63
9-12-63 | 10-09-63 | 12-05-63 | 1-06-64 | 2-06-64 | 3-31-64 | 6-25-64 | 12-18-63 | GROUND
SURFACE
ELEVATION
IN FEET | MENDOTA-HURON AREA | 367.0 | | | | | | 274.0 | 281.0 | | | | | | 806.0 | 619.0 | 675.0 | | | | | | | | 0 777 | | The property and the property are already as a series of the property and the property and the property are already as a series of the property and the property and the property and the property are already as a series of the property and the property and the property and the property and the property are already as a series of the property and propert | STATE WELL
NUMBER | GROUND
SURFACE
EL EVATION
IN FEET | DATE | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |--|----------------------|--|----------|---|--|-----------------------------|----------------------|---|----------|---|--|-----------------------------| | March Marc | MENDOTA-HURC | ON AREA | | 4 | | | SOIL | | ISTRICT | 5-22.48 | | | |
11-12-05 12-12-12-12-12-12-12-12-12-12-12-12-12-1 | | 360.0 | 9-10-63 | 326.5 | 33.5 | 5000 | | 126.0 | 8-19-63 | 8•6 | 116.2 | 5529 | | 12-12-64 324.6 | CONT | | 10-09-63 | 321.2 | 38°8
45°6 | | CONT. | | 9-24-63 | 9°6 | 116.6 | | | 12-25-64 377, 375, 375, 375, 375, 375, 375, 375, | | | 12-12-63 | 321.6 | 38.4 | | | | 11-19-63 | 9.5 | 116.5 | | | Harry 12-16-46 358.7 3 | | | 1-29-64 | 324.9 | 35.1 | | | | 12-23-63 | 8 6 | 116.2 | | | H 447.0 12-17-63 12-26-64 333.4 26.65 12-27-64 13.5 | | | 2-19-64 | 327.3 | 32.7 | | | | 1-25-64 | 9.5 | 116.5 | | | Harry G-26-64 333-4 28.9 28.9 126-13-01 M 140.0 7-28-63 10.9 115.1 | | | 4-22-64 | 325.6 | 34.4 | | | | 5-04-64 | 10.2 | 115.8 | | | H 447-0 12-17-63 1 | | | 5-20-64 | 331.1
333.4 | 28.9 | | | | 9-03-64 | 10.9 | 115.1 | | | H 1747.0 12-17-63 10 5050 10 10-26-63 10.8 129-2 L CONSERVATION DISTRICT 5-22-48 10.8 129-2 L CONSERVATION DISTRICT 5-22-48 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10. | | | | | | | | 140.0 | 7-28-63 | 11.9 | 128.1 | 5529 | | H 787.0 1-20-64 298.0 489.0 5050 110-20-64 208.0 1-20-64 2 | | 447.0 | 12-17-63 | 0 | | 5050 | | | 9-24-63 | 10.8 | 129.2 | | | L CONSERVATION DISTRICT C CONSERVATION DISTRICT L C C C C C C C C C C C C C C C C C C | | 787.0 | 1-20-64 | 298.0 | 489.0 | 5050 | | | 11-19-63 | 10.1 | 129.9 | | | H 110.0 9-24-63 7.2 102.8 5529 H 110.0 9-24-63 7.7 102.3 1.7 102.3 1.28.8 111.2 128.8 111.2 128.8 111.2 128.8 111.2 128.8 111.2 102.3 1.0 1.28.8 11.2 102.3 1.0 1.28.8 11.2 102.2 1.28.8 11.2 102.3 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 | POSO SOIL CO | ONSFRVATION | DISTRICT | 5-22.48 | | | | | 12-23-63 | 10.0 | 130.0 | | | M 110.0 10-25-63 7.2 1002.8 5529 M 117.0 10-25-63 7.2 1002.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10 | | | | , | | | | | 4-00-4 | 13.4 | 126.6 | | | 117.0 117.0 8-19-63 8.4 101.6 101.6 125.2 117.0 117.0 8-19-63 8.4 101.6 101.6 125.2 101.6 101. | | 110.0 | 9-24-63 | 7.2 | 102.8 | 5529 | | | 5-04-64 | 11.2 | 128.8 | | | 12-23-63 8.4 101.6 101.6 101.6 101.6
101.7 101 | | | 11-19-63 | - v | 101.4 | | | | t015010 | 0.11 | * • 0 7 T | | | The control of | | | 12-23-63 | 0 00 | 101.6 | | TERRA BELLA | IRRIGATION D | ISTRICT | 5-22.50 | | | | 4-06-64 6.3 103.7 225/27E-25JO3 M 532.0 7-25-63 140.8 391.2 6-03-64 6.4 104.6 5.4 104.6 5.4 104.6 391.2 6-03-64 6.4 104.6 5.4 104.6 5.2 10.2 4.0 12.2 4.2 7.4 4.0 8.7 4.2 7.2 4.2 7.4 7.2 4.2 7.2 7.2 7.2 7.2 7.2 7.2 | | | 1-25-64 | φ
φ | 101.2 | | | | | | | | | M 117.0 8 19-63 7.6 109.4 5529 M 117.0 8 19-63 7.6 109.4 5529 M 117.0 8 19-63 7.6 109.4 5529 M 117.0 8 19-63 7.6 109.4 5529 M 128.0 9-24-63 109.3 422.7 M 128.0 9-24-63 109.3 422.7 M 128.0 9-24-63 109.3 422.7 M 128.0 9-24-64 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 | | | 4-06-64 | 6.3 | 103.7 | | | 532.0 | 7-25-63 | 140.8 | 391.2 | 6001 | | M 117.0 8-19-63 7.6 109.4 5529 10-21-63 121.2 410.8 10-25-63 6.6 110.4 5529 100.4 424.7 422.7 11-19-63 6.5 110.4 5529 110.4 12-02-63 109.3 422.7 11-19-63 6.5 110.4 5529 110.4 12-02-64 107.8 422.7 11-23-64 10.9 100.4 100.4 100.4 100.4 12-24-64 107.8 424.2 4-06-64 10.0 100.4 100.4 100.4 412.0 412.0 412.0 5-04-64 10.6 100.4 100.4 100.4 100.4 410.5 410.5 410.5 410.5 410.5 410.5 117.0 410.5 | | | 6-03-64 | 7 • 4 | 104.6 | | | | 9-24-63 | 127.5 | 404.5 | | | M 117.0 8-19-63 7.6 109.4 55.29 12-02-63 109.3 4.22.7 12-02-63 109.2 4.22.8 11-19-63 6.6 110.4 55.29 12-24-64 109.2 4.22.8 11-19-63 6.6 110.4 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 12-24-64 110.0 110.0 110.0 12-24-64 14.7 26.8 26.0 26.0 12-24-64 8.9 119.1 110.0 12-24-64 246.8 26.0 26.0 12-24-64 246.8 26.0 26.0 26.0 12-24-64 246.8 246.8 246.8 246.8 26.0 26.0 26.0 22.24-64 246.8 246. | | | | | | | | | 10-21-63 | 121.2 | 410.8 | | | M 128.0 9-24-64 10.05 110.04 424.2 M 128.0 9-24-64 10.05 110.05 412.0 M 128.0 9-24-64 10.05 110.05 | | 117.0 | 8-19-63 | 7.6 | 109.4 | 5529 | | | 12-02-63 | 109.3 | 422.7 | | | M 128.0 9-24-64 10.5 110.5 5529 225/27E-36N01 M 513.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.8 7-25-64 117.0 7-25-63 10.2 117.0 7-25-64 117.0 7- | | | 10-25-63 | 0.0 | 110.4 | | | | 12-24-63 | 109.2 | 422.8 | | | 1-25-64 7.3 109.7 1-25-64 111.0 421.0
421.0 42 | | | 12-23-63 | 9.9 | 110.4 | | | | 2-24-64 | 120.0 | 412.0 | | | # 128.0 9-24-64 10.8 106.2 M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-64 117.0 415.0 M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-64 117.0 415.0 10-25-63 10.2 117.8 5529 225/27E-36NO1 M 513.0 7-25-63 294.0 219.0 11-19-63 10.0 1118.3 10.0 117.5 9-24-63 308.0 205.0 118.0 12-23-64 10.5 117.5 118.3 12.2 56.0 255.0 12.2 56.0 12.2 56.0 12.2 56.0 119.1 10.0 117.0 12.0 5.0 4-06.4 8.9 119.1 21.5 5529 7-22-64 246.8 246.0 267.0 22-24-64 246.8 266.2 44.7 268.3 3-25-64 246.8 266.2 | | | 1-25-64 | 7.3 | 109.7 | | | | 3-25-64 | 1110 | 421.0 | | | M 128.0 9-24-64 10.6 106.4 6-03-64 138.7 393.3 6-03-64 138.7 393.3 6-03-64 138.7 108.3 6-03-64 138.7 108.3 6-03-64 138.7 108.3 111.5 5529 225/27E-36NO1 M 513.0 7-25-64 117.0 219.0 219.0 112.2 117.8 118.3 10.0 118.3 118.3 117.5 117.5 117.5 117.5 117.5 118.3 117.5 117.5 117.5 117.5 117.0 117.5 117.0 117.5 117.0 117.5 117.0 117.5 117.0 1 | | | 79-90-7 | 10.8 | 106.2 | | | | 4-25-64 | 112.5 | 419.5 | | | M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-63 294.0 219.0 110-25-63 10.2 117.8 118.3 111.9 1 111.9 1 126.0 7-28-63 10.2 117.8 118.3 118.3 118.3 119.1 119.1 119.1 119.1 119.1 126.0 7-28-64 246.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12 | | | 5-04-64 | 10.6 | 106.4 | | | | 5-19-64 | 138.7 | 393.3 | | | M 128.0 9-24-63 16.5 111.5 5529 225/27E-36NO1 M 513.0 7-25-63 294.0 219.0 219.0 10-25-63 10.2 117.8 118.0 11-19-63 10.0 118.0 118.0 11-19-63 10.0 118.0 118.0 118.3 11-19-64 10.0 117.5 118.3 117.5 11 | | | | • | • | | | | 10-37-0 | | | | | 10-25-63 10.2 110.8 8-29-63 322.5 8-29-63 322.5 110.0 118.0 110.2 118.0 10-21-63 10.0 118.0 10-21-63 208.0 10-21-63 298.0 10-21-63 298.0 10-21-64 11.0 117.0 117.0 12-24-64 246.0 12-24-64 244.7 117.0 | | 128.0 | 9-24-63 | 16.5 | 111.5 | 5529 | | 513.0 | 7-25-63 | 294.0 | 219.0 | 2000 | | 12-23-63 9-7 118-3
1-25-64 10-5 117-5
4-06-64 11-0 117-0
5-04-64 6-5 121-5
6-03-64 8-9 119-1
M 126-0 7-28-63 9-5 116-5 5529 | | | 10-25-63 | 10.0 | 118.0 | | | | 8-29-63 | 322.5 | 205.0 | | | 1-25-64 10.5 117.5
4-06-64 11.0 117.0
5-04-64 6.5 121.5
6-03-64 8.9 119.1
M 126.0 7-28-63 267.0
12-24-63 258.0
1-20-64 246.0
2-24-64 246.0
3-25-64 246.8
4-22-64 251.1 | | | 12-23-63 | 7.6 | 118.3 | _ | | | 10-21-63 | 298.0 | 215.0 | | | 4-06-64 11.0 117.0 12-24-63 258.0 12-24-64 246.0 1-20-64 246.0 1-20-64 246.0 1-20-64 246.0 1-20-64 246.7 119.1 126.0 7-28-63 9.5 116.5 5529 | | | 1-25-64 | 10.5 | 117.5 | | | | 12-05-63 | 267.0 | 246.0 | | | M 126.0 7-28-63 9.5 116.5 5529 | | | 79-90-7 | 11.0 | 117.0 | | | | 12-24-63 | 258.0 | 255.0 | | | M 126.0 7-28-63 9.5 116.5 5529 4-22-64 251.1 | | | 6-03-64 | 0 00 | 119.1 | | | | 1-20-64 | 244.7 | 268.3 | | | M 126.0 7-28-63 9.5 116.5 5529 4-22-64 251.1 | | | | | | | | | 3-25-64 | 246.8 | 266.2 | | | | | 126.0 | 7-28-63 | 9.5 | 116.5 | 5529 | | | 4-55-64 | 251.1 | 261.9 | | | AGENCY
SUPPLYING
DATA | | 5050 | 5050 | | | | | | | 200 | 0000 | | | | | | | | | | | | 6001 | | | | | | 1004 | >>>> | | |---|---|-------------------------|-----------------------|------------------------|-----------------------------|---------|---------------|---------|---------|-------------|----------------|---------|--------------|-------------|---------|---------|---------|---------|-------------------------------------|---------|----------------|------|----------------------------------|----------|---------|---------|---------|---------|-----------------|-------------|------------------------------| |
WATER
SURFACE
ELEVATION
IN FEET | | 100.6 | 127.9
96.1
94.9 | 96.9 | 128.4 | 134.0 | 130.0 | 11101 | 102.4 | 147.4 | 147.9 | 147.8 | 148.0 | 146.4 | 145.5 | 145.8 | 145.5 | 145.5 | 145.4 | 14041 | | | 274•1
274•8
277•0 | 275.5 | 277.7 | 0.012 | 274.8 | 273.3 | 2,010 | 211.5 | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | 5-22.54 | 79.4 | 52°1
83°9 | 83.1
58.2 | 51.6 | 46.0 | 50.0 | 68,9 | 77.6 | 33.6 | 32.1 | 32.2 | 32.0 | 33.6 | 34.5 | 34.2 | 34.5 | 34.5 | 34.6 | 6 + 6 | 5-22.65 | | 115.9
115.2
113.0 | 114.5 | 112.3 | 112.0 | 115.2 | 116.7 | 105.2 | 194.0 | | | DATE | | 6-04-64 | 7-02-63 | 10-04-63 | 12-04-63 | 2-05-64 | 3-02-64 | 5-04-64 | 6-04-64 | 7-03-63 | 8-05-63 | 9-04-63 | 10-04-63 | 11-05-63 | 1-02-64 | 2-05-64 | 3-02-64 | 4-05-64 | 5-04-64 | 1011010 | | | 10-06-63
10-31-63
11-30-63 | 12-31-63 | 1-31-64 | +0-CI-7 | 4-01-64 | 6-01-64 | 10-07-63 | 10-31-63 | | | GROUND
SURFACE
ELEVATION
IN FEET | MS | 180.0 | 180.0 | | | | | | | 0 | 0.081 | | | | | | | | | | ER DISTRICT | | 390.0 | | | | | | 400 |)
)
} | | | STATE WELL
NUMBER | MERCED BOTTOMS | 95/14E-01B01 M
CONT. | 95/14E-01802 M | | | | | | | | 45/I4E-DIBUS M | | | | | | | | | | GARFIELD WATER | | 12S/20E-13A01 M | | | | | | M 50470_B167361 | | | | AGENCY
SUPPLYING
DATA | | 2000 | 6001 | | 5050 | | | | | | | | | 5050 | | | | | | | | _ | | 5050 | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | 254.5 | 266.0
292.5 | | 74.4 | 64.9 | 60.9 | 67.4 | 70.0 | 73.0 | 73.8 | 71.3 | 68.8 | 76.2 | 75.5 | 75.2 | 75.0 | 75.3 | 75.5 | 75.6 | 75.7 | 76.1 | 76•3
76•2 | 27.2 | 94.4 | 76.5 | 20.0 | 27.2 | 130.5 | 129.4 | 121.0
108.6 | | 1 | 1 | | 77 | - | ο ο | , , | , ; | · ~ | | | | | GRDUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22.50 | 258.5
266.0 | 252.0 2
225.5 2 | 5-22.54 | 5.6 | 15.1 | 19.1 | 12.6 | 10.0 | 0.7.2 | 6.2 | 8.7 | 11.2 | 60
00 | 4.5 | 4°8 | 5.0 | 4.7 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 4 | 4.3 | 3°0 | ~ αο
• •
• • | - | 85.6 | | | | 49.5 | 50.6 | 59.0 | | GRDUND SUR. FACE TO WATER SURFACE IN FEET | | | | 5-22.54 | 7-02-63 5.6
8-05-63 11.9 | | 10-04-63 19-1 | | | 3-02-64 7.0 | | | 6-04-64 11.2 | 7-02-63 3.8 | | | | | 12-04-63 4.5 | | | | | 52.8 1 | | | 0.09 | 52.8 | | | 4-02-64 59.0
5-04-64 71.4 | | | TERRA BELLA IRRIGATION DISTRICT 5-22.50 | 258.5 | 252.0
225.5 | MERCED BOTTOMS 5-22.54 | | | | | | | | | | | 8-05-63 | | | | | | | | 5-04-64 3.7
6-04-64 3.8 | 52.8 1 | 85.6 | | 0.09 | 52.8 | 49.5 | | | ## **GROUND WATER LEVELS AT WELLS** | AGENCY
SUPPLYING
DATA | | | |---|-------------------------|--| | WATER
SURFACE
ELEVATION
IN FEET | | | | GROUND SUR-
FACE TO
WATER
SURFACE
IN FEET | | | | DATE | | | | GROUND
SURFACE
ELEVATION
IN FEET | | | | STATE WELL
NUMBER | | | | AGENCY
SUPPLYING
DATA | | 6001 | | WATER
SURFACE
ELEVATION
IN FEET | | 213.7
216.4
218.3
218.8
219.5
221.9 | | GROUND SUR.
FACE TO
WATER
SURFACE
IN FEET | 5-22.65 | 191.8
189.1
187.2
186.7
186.0
183.6 | | DATE | | 11-30-63 191.8
12-31-64 187.2
2-16-64 186.7
4-01-64 186.0
5-01-64 183.6
6-01-64 184.2 | | GROUND
SURFACE
ELEVATION
IN FEET | ER DISTRICT | 405.
5. | | STATE WELL
NUMBER | GARFIELD WATER DISTRICT | 125/21E-07A02 M
CONT. | 6001 390.5 125/21E-18A03 M 278.5 278.8 280.3 273.0 280.1 281.5 278.9 275.4 1112.0 1111.0.7 1110.2 1110.4 110.4 110.4 111.6 1111.6 10 - 06 - 63 10 - 31 - 63 11 - 31 - 63 12 - 31 - 64 2 - 16 - 64 5 - 01 - 64 6 - 01 - 64 APPENDIX D SURFACE WATER QUALITY Specific conductance is a measure of the capacity of water to conduct a current of electricity. Coliform is a group of organisms whose presence is an indicator of bacteriological contamination or pollution of water. Most probable number (MPN) is an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests. <u>Hardness</u> is a characteristic of water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather. 221 #### TABLE OF CONTENTS | | | Page | |------------------|--|------| | INTRODUC | TION | 220 | | Explanat: | ion of Tables | 220 | | Explanat: | ion of Plates | 220 | | Explanat | ion of Terms and Abbreviations | 220 | | | LIST OF TABLES | | | Table
Number | | | | D-1 | Sampling Station Data and Index for Surface Water | 227 | | D-2 | Analyses of Surface Water | 228 | | D-3 | Spectrographic Analyses of Surface Water | 259 | | D-4 | Radioassays of Surface Water | 260 | | | LIST OF FIGURES | | | Figure
Number | | | | D-1 | Location of Surface Water Sampling Stations | 223 | | D-2 | Weekly Mean Specific Conductance at Selected Stations (3 sheets) | 224 | #### INTRODUCTION This appendix contains data pertaining to the quality of surface waters during the 1964 water year (October 1, 1963, to September 30, 1964). The data are presented as tables and graphs and represent the observed physical, chemical, and bacteriological characteristics of the waters collected at the surface water quality monitoring stations. These characteristics are analyzed according to "standard methods" and accuracy of the measurements are contained therein. The stations are sampled periodically (monthly, quarterly, or semiannually), depending on past records, need, and the type of data required for each station. Samples collected and the field data obtained at the stations are as follows: - 1. Partial mineral analysis--1/2 gallon - 2. Bacteriological analyses (coliform) -- 2 samples in 4 oz., sterilized bottles - 3. Dissolved oxygen--D. O. - 4. pH - 5. Temperature - 6. Gage height - 7. Time - 8. Visual observation of water conditions In May and September, the partial mineral analysis is replaced by a complete mineral analysis and the following are added to the list above: - 1. Radiological analysis - 2. Phosphate, arsenic, and detergents (ABS) - 3. Spectrographic analysis of heavy metals (for ten selected stations) Continuous conductivity recorders are installed at nine of the surface water quality monitoring stations. The recorders measure specific electrical conductance, a characteristic of water which provides an approximation of the quantity of minerals in solution. #### Explanation of Tables An alphabetical listing of all stations in the surface water monitoring program is found in Table D-1 along with information concerning station number, location, period of record, frequency of sampling, and agency responsible for collection of samples. Results of mineral analyses can be found in Table D-2, where mineral concentrations, dissolved oxygen, and ABS are expressed in parts per million (ppm). Discharges are expressed as cubic feet per second (cfs) and bacteriological determinations are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample. Results of spectrographic analyses for heavy metals, found in Table D-3, are expressed as parts per hillion. Table D-4 contains results of radiological analyses, expressed as picocuries per liter (pc/1). #### Explanation of Plates Locations of surface water quality stations and recorder sites are depicted on Figure D-1. Figure D-2 presents, in graphical form, data obtained from electrical conductivity recorders in terms of mean weekly values of electrical conductivity (EC \times 10 6 micromhos) plotted against time (week). #### Explanation of Terms and Abbreviations <u>Cubic foot per second (cfs)</u> is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second. <u>Dissolved oxygen (DO)</u> is the amount of free oxygen contained in water. It is one of the most important indicators of the condition of a water supply. Total dissolved solids (TDS) represents the quantity of dissolved mineral constituents in water. <u>Specific conductance</u> is a measure of the capacity of water to conduct a current of electricity. <u>Coliform</u> is a group of organisms whose presence is an indicator of bacteriological contamination or pollution of water. Most probable number (MPN) is an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests. <u>Hardness</u> is a characteristic of water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather. | Station name | Station number | |---
--| | San Joaquin River at Friant Dam Salt Slough at San Luis Ranch San Joaquin River near Mendota San Joaquin River at Fremont Ford Bridge ² San Joaquin River at Maze Road Bridge ² San Joaquin River at Crows Landing Bridge San Joaquin River near Vernalis ² San Joaquin River at Patterson Bridge ² San Joaquin River at Fatterson Bridge ² Stanislaus River at Koetitz Ranch ² Stanislaus River below Tulloch Dam Tuolumne River at Hickman Bridge ² Tuolumne River at Tuolumne City ² Tuolumne River below Don Pedro Dam Merced River near Stevinson ² Merced River below Fxchequer Dam Kings River below Pine Flat Dam Kings River below Poples Weir Kaweah River below Terminus Dam Kaweah River near Three Rivers Kern River near Bakersfield Kern River at Kernville Tule River below Success Dam Tule River near Springville Delta-Mendota Canal near Mendota | 24 24 c 25 25 26 26 26 26 27 27 a 29 29 a 30 31 31 a 32 32 a 33 b 33 c 33 d 34 35 36 a 36 b 91 91 b 92 | | Delta-Mendota Canal near Tracy ¹ , ² Fresno River near Daulton Chowchilla River near Raymond | 93
113
114 | - 1 Not shown on plate, station is outside of branch boundary. Originally monitored by Delta Branch transferred to San Joaquin District as of July 1, 1963. - 2 Conductivity recorder installed at this surface water station. WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY 1964 TUOLUMNE RIVER NEAR HICKMAN BRIDGE STA. No. 30 RIVER MILE 29.3 MERCED RIVER NEAR STEVINSON STA. No. 32 RIVER MILE 1.8 STANISLAUS RIVER AT KOETITZ RANCH STA. No. 29 RIVER MILE 9.5 WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY SAN JOAQUIN RIVER AT MAZE RD. BRIDGE STA. No. 26a RIVER MILE 82.9 TUOLUMNE RIVER NEAR TUOLUMNE CITY STA. No. 31 RIVER MILE 2.9 DELTA MENDOTA CANAL NEAR TRACY STA. No. 93 CANAL MILE 3.5 WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY 1964 #### SAMPLING STATION DATA AND INDEX FOR SURFACE WATER | Station | Station
Number | Location | Period b
af
Record | Frequency ^C
of
Sampling | Sampled ^d
by | Analysis
an
page | |--|-------------------|------------|--------------------------|--|----------------------------|------------------------| | | | | | | | | | Big Creek above Pine Flat Dam | 33d | 125/25E-4 | July 1960 | М | USACE | 224, 256 | | Chowchilla River near Raymond | 114 | 8s/18E-1 | January 1962 | s | DWR | 225, 256 | | Delta-Mendota Canal near Mendota | 92 | 13S/15E-19 | July 1952 | М | DWR | 226, 255, 256 | | Delta-Mendota Canal near Tracy | 93 | 1S/4E-30 | July 1952 | М | DWR | 227, 255, 256 | | Fresno River near Daulton | 113 | 9S/19E-34 | January 1958 | s | DWR | 228, 256 | | Kaweah River below Terminus Dam | 35 | 175/27E-25 | September 1961 | М | USACE | 229, 256 | | Kaweah River near Three Rivers | 350 | 175/28E-27 | April 1951 | М | USACE | 230, 256 | | Kern River near Bakerafield | 36 | 295/28E-9 | April 1951 | м | KCPR | 231, 256 | | Kern River below Isabella Dam | 36a | 265/33E-30 | September 1955 | Q | USACE | 232, 255, 256 | | Kern River at Kernville | 36ъ | 25S/33E-15 | September 1955 | Q | USACE | 233, 256 | | Kings River below North Fork | 33c | 125/26E-21 | September 1955 | Q | USACE | 234, 256 | | Kinga River below Peoples Weir | 34 | 175/22E-1 | April 1951 | М | DWR | 235, 255, 256 | | Kings River below Pine Flat Dam | 3310 | 13S/24E-2 | September 1955 | Q | USACE | 236, 257 | | Merced River below Exchequer Dam | 32a | 4s/15E-13 | April 1959 | Q | DWR | 237, 257 | | Merced River near Stevinson | 32 | 6s/9E-36 | April 1951 | М | DWR | 238, 255, 257 | | Salt Slough at San Luis Ranch | 24c | 9S/11E-7 | November 1958 | м | DWR | 239, 257 | | San Joaquin River at Crows Land Bridge | 2610 | 6s/9E-7 | January 1962 | м | DWR | 240, 257 | | San Joaquin River at Fremont Ford Bridge | 25c | 7s/9E-24 | July 1955 | М | DWR | 241, 257 | | San Joaquin River at Friant Dam | 24 | 115/21E-7 | April 1951 | Q | DWR | 242, 255, 257 | | Sen Joaquin River near Grayson | 26 | 4s/7E-24 | April 1959 | м | SF | 243, 257 | | San Joaquin River at Maze Road Bridge | 26a | 3S/7E-33 | April 1951 | м | SF | 244, 257 | | San Joaquin River near Mendota | 25 | 13S/15E-7 | April 1951 | м | DWR | 245, 257 | | San Joaquin River at Patterson Bridge | 27a | 55/8E-15 | January 1962 | М | DWR | 246, 257 | | San Joaquin River near Vernalia | 27 | 3s/6E-13 | April 1951 | м | DWR | 247, 255, 258 | | Stanialaus River at Koetitz Ranch | 29 | 3s/7E-2 | April 1951 ^e | м | DWR | 248, 255, 258 | | Stanialaus River below Tulloch Dam | 29a | 1S/12E-1 | July 1956 | Q | DWR | 249, 258 | | Tule River near Springville | 916 | 21S/29E-15 | November 1963 | м | USACE | 250, 258 | | Tule River below Success Dam | 91 | 215/286-35 | July 1952 ^f | М | USACE | 251, 255, 258 | | Tuolumne River below Don Pedro Dam | 3le | 3S/14E-20 | April 1951 | Q | SF | 252, 258 | | Tuolumne River at Hickman Bridge | 30 | 3S/11E-34 | April 1951 | м | SF | 253, 258 | | Tuolumne River at Tuolumne City | 31 | 4s/8E-12 | April 1951 | м | SF | 254, 255, 258 | | | | | | | | | a. Locations are in reference to Mt. Diablo Base and Meridian b. Beginning of record c. M - Monthly, B - Bimonthly, Q - Quarterly, S - Semiannually d. DWR - Department of Water Resources USACE - United States Army Corps of Engineers SF - City & County of San Francisco KCPR - Kern County Parks and Recreation e. Prior to 2-7-64 station was located at river mile 1.9, location 3S/TE-17, and was called Stanislaus River near Mouth. f. Formerly called Tule River near Porterville ANALYSES OF SURFACE WATER TABLE D-2 BIG CREEK ABOVE PINE FLAT DAM (STA. NO. 33d) | | Anolyzed
by i | | USGS | | | | | | - | | | | | | | | | |--|---|------------|--------|------------------|-----------------|------------|------|------|-----------------|------------|--------------|---|-------------|-------------|----------|--|--| | , | de CaCO ₃ ity MPN/mi | | Median | 4.5
Maximum | Minimum
0.23 | | | | | | | | | | | | | | اِ | - 24 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | 1 | | N | н | 72 | | m | ~ | CV . | N | н | н | ч | | CV CV | | | | 200 N | Edd | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | 1 | 1 | ₩ DD W | | 38 | 33 | 53 | | 31 | 32 | 88 | 21 | 17 | 56 | 33 | | 45 | | | 8 | 2 P P P P P P P P P P P P P P P P P P P | | _ | 37 | 32 | 36 | | gg. | 38 | 38 | 9 | 37 | 38 | 4 | | 37 | | | Torol | solved
solids
In ppd | | | 113 ^e | 95 e | 83. | | 89 | 75 ^e | 81e | 59e | 588 | 16e | 95e | | 124 ⁸ | | | | Other constituents d | | | | | | | | | | | ABS 0.00
Po _t 0.05
As 0.00 | | | | ABS 0.0
PO ₁ 0.05
AB 0.00 | | | | Silica
(SiO ₂) | \top | | | | | | | | | | ଥା | | | | প্লা | | | lian | Boron
(B) | | | 0.0 | 0.0 | 0.1 | | 0.0 | 0.0 | 0.0 | 0:0 | 0.1 | 0.0 | 0.0 | | 0.3 | | | million
per mil | Fluo-
ride | • | | | | | | | | | | 0.01 | | | | | | | parts per million
equivalents per million | rote
NO. | n i | | | | | | | | | | 0.02 | | | DRY | 0.0 | | | equiva | Chlo- | | | 0.31 | 8.5 | 4.5 | | 5.0 | 6.0 | 6.0 | 3.5 | 0.04 | 4.5
0.13 | 0.20 | TAKEN - | 0.51 | | | <u>=</u> | Sul -
fate | 1 | | | | | | | | | | 0.02 | | | SAMPLE T | 0.08 | | | stituents | Bicar -
bonate | P. Company | | 53 | 148
0.79 | 42
0.69 | | 0.77 | 39 | 41
0.67 | 33 0.54 | 30 | 42
0.69 | 146
0.75 | NO S | 0.93 | | | Mineral constituents | Corbon – | <u> </u> | | 0.00 | 0.0 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | | 0.0 | | | Min | Patos- | | | | | | | | | | | 0.03 | | | | 2.7
0.07 | | | | Sodium
(No) | | | ्रों त | 7.1 | 0.33 | | 8.7 | 0.32 | 8.1 | 6.5 | 0.22 | 0.33 | 9.8 | | 0.57 | | | | Colcium Magne- | is in | | | | _ | | | | | | 0.08 | | | | 0.10 | | | | Colcium
(Co) | | | 0.76 | 99.0 | 0.58 | | 0.62 | 0.53 | 0.56 | 0.42 | 5.2 | 0.53 | 0.62 | | 0.80 | | | | E al | | | 7.0 | 7.5 | 7.0 | | i. | 7.3 | 7.4 | 7.0 | 7.7 | 7.3 | 7.7 | | 7.7 | | | Specific | conductonce
(micromhos | | | 132 | 7 | 97 | | 104 | 88 | 95 | 69 | 99 | 89 | Ħ | | 164 | | | | | 1000/ | | 117 | 101 | 8 | | 83 | 98 | 87 | 100 | 105 | 011 | 117 | | 104 | | | | | Edd | | 10.7 | 10.8 | 10.7 | | 10.2 | 10.2 | 10.4 | 10.0 | 10.0 105 | 10.7 | 9.0 | | 10.2 104 | | | | Temp
in OF | | | 70 | 42 | 94 | | 143 | 1,2 | 772 | 9 | 79 | 62 | 85 | | 70 | | | | Discharge Temp
in cfs in oF | | | 2.0 | 15.5 | 94 | | 21 | 53 | 1,4 | 56 | 52 | 22.5 | ~ | | | | | | and time | 1.5.1 | 1963 | 10/1 | 11/12 | 12/3 | 1964 | 1/13 | 2/3 | 3/9 | 4/13
1120 | 5/11
0111 | 6/8
1050 | 7/13 | | 9/14 | | b Laboratory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), alkyl benzene sulfanate (ABS), and pliasphote (PO4) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health, Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Lobarotories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. h Annual medion and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. TABLE D-2 (Cont.) CHOWCHILLA RIVER NEAR RAYMOND (STA. NC. 114) ANALYSES OF SURFACE WATER | |
Anolyzed
by i | | USGS | | | | | |----------------------|---|-----------------------|--|--|------|------|------| | | Hordness bid - Coliform | | Median
2.3
Maximum
6.2
Minimum | 50. | | | | | | - page 1 | | | н | | | | | | 800 | D E dd | 58 | 0 | | | | | | Hord | Total N.C.
ppm ppm | 147 | 56 | | | | | | Sod - | | 04 | 37. | | | | | | Solved
solids | mdd ui | 355? | 124E | | | | | | Other constituents | | ABS 0.0
F04, 0.00
As 0.00 | ABS 0.0
PO _L 0.10
As 0.00 | | | | | | Shice | 3 | 8 | 881 | |
 |
 | | | 5 | 6 | 0.1 | 0.0 | | | | | million | Fluo- | (F) | 0.3 | 0.00 | | | | | ports per million | iblo- Ni- Fluo- Boro | (NO ₃) | 1.1 | 0.08 | | | | | ١ | Chlo- | (i) | 3.36 | 12 0.34 | | | | | ē | Sul - | (\$0. | 2.0 | 0.12 | | | | | stituent | Bicar | (HCO ₃) | 109 | 76 | | | | | Mineral constituents | Carbon | ((00) | 0.0 | 0,03 | | | | | ĕ. | Potas- | (¥ | 3.0
0.08 | 0.04 | | | | | | Sodium | (NO) | 12.04
2.04 | 14
0.51 | | | | | | Mogne- | (Mg) | १.8
ं | 3.3 | | | | | | Calcium Mogne- | (BD) | 2.30 | 17
0.85 | | | | | | F. | ماه | 8.1 | 8.3 | | | | | | Specific conductonce pH (micromhos pH C | 2 2 | 577 | 188 | | | | | | P | ppm %Sat | 92 | ı | | | | | | Dissolved | шdd | т.т | | | | | | | Te an | | 179 | 99 | | | | | | Oischorge Temp
in cfs in 9F | | 1 | 39.4 | Pr | | | | | Oote
ond time | P.S.T. | 1963
10/7
0720 | 1961
5/11
0910 | 41/6 | | | b Laboratory pH. c Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfonote (ABS), and phosphote (PO.) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD), Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Lang Bacch, Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. ANALYSES OF SURFACE WATER TABLE D-2 (cont.) DELLIA-MENDOTA CANAL NEAR MENDOTA (STA. NO. 92) | | | Anolyzed
by i | | USGS | | | | | | | | | | | | | | |-------------------|-------------------------|--------------------------------|---------------------|--------|-----------------------------------|----------------|------------|------|-------------|--------------|------------------|--------------|---|---------------------|------------------|------------------|---------------------------------| | | A | bid - Coliform | | Median | 6.2
Maximum | Minimum
90. | | | | | | | | | | | | | | Tur- | bid-
ity
nppm | | | 25 | 15 | 10 | | 2 | 15 | 20 | 04 | 8 | 04 | 8 | 91 | 8 | | | | 000 c | N | | 145 | 53 | 51 | | 195 | 11 | 29 | 83 | 20 | 16 | 13 | 23 | 24 | | | | | Total
ppm | | 161 | 143 | 131 | | 284 | 168 | 139 | 120 | 137 | 82 | 85 | お | 120 | | | Par | T pos | | | 72 | 20 | 52 | | 26 | 64 | 94 | 1 | 7 | 77 | 143 | 55 | 55 | | | Total | spilos
solids | Edd u | | 382° | 354° | 329° | | 784° | 428° | 311 ^e | 240° | 324 ⁸ | 159 ^e | 174 ^e | 261 ^e | 335 ^g | | | | Other constituents | | | | | | | | | | | ABS 0.10
Po ₁ 0.35
As 0.00 | | | | ABS 0.1
Pol, 0.25
As 0.00 | | | | Silico | 2
OIC) | | | | | | | | | | 13 | | | | 村 | | | Illion | Boron | | | 0.1 | 0.3 | 0.3 | | 1.6 | 7:1 | 0.2 | 0.2 | 0.2 | 1.0 | 0:0 | 0.2 | 2.0 | | millio | per m | Fluo- | (F) | | | | | | | | | | 0.0 | | | | | | ports per million | equivolents per million | N-IN- | (NO ₃) | | | | | | | | | | 6.8 | | | | 0.02 | | ٩ | • quiv | Chlo- | (i) | | 2.96 | 2.54 | 86 | | 3.50 | 3.13 | 76 | 53
1.50 | 86
2.43 | 29.0 | 34 | 80
2.26 | 2.93 | | | UI S | Sul - | | | | | | | | | | | 96.0 | | | | 45
0.94 | | | stifuent | Bicar- | (HCO ₃) | | 2.31 | 011 | 1.61 | | 1.70 | 1.93 | 1.4 | 1.488 | 106
1.74 | 1.3 | 1.488 | 1.34 | 35 | | | Mineral constituents | Corban- | (co) | | 0.00 | 0.00 | 0.00 | | 2.0
0.07 | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | | | Win | Potos- | (K) | | | | | | | | | | 2.2 | | | | 0.07 | | | | Sodium | (0 N) | | 3.13 | 66 2.87 | 65
2.83 | | 168 | 3.26 | 54
2.35 | 38 | 56
2.44 | 71.1 | 30 | 52
2.26 | 3.04 | | | | Mogne- | (Mg) | | | | | | | | | | 1.24 | | | | 1.25 | | | | Calcium | (00) | | 3.22 | 2,86 | 2,62 | | 5.68 | 3.36 | | 2.40 | 30 | 1.64 | | 1.88 | 23
1.15 | | | | I o | ماء | | 7. ¹ / ₈ .1 | 7.3 | 8.1 | | 8.7 | 8.2 | 7.7 | 8.0 | 8.1 | 8.0 | 4.7 | 7.6 | 4.7 | | | Specific | (micramhas | | | 678 | 628 | 583 | | 1390 | 759 | 551 | 426 | 559 | 282 | 308 | 1463 | 599 | | | | | %Sot | | 78 | 87 | 95 | | 126 | 8 | 96 | 93 | 76 | 85 | 88 | 85 | 8 | | | | Dissolved | mdd | | 6.9 | 8.5 | 9.8 | | 15.2 | 9.8 | 10.6 | 9.0 | 9.1 | 7.7 | 6.9 | 7.3 | 7.3 | | | | Temp
in oF | | | 7 | 79 | 83 | | 54 | 53 | 25 | 63 | 99 | 69 | = | †L | 10 | | | | Orschorge Temp
in cfs in oF | | | | | | | | | | | | | | | | | | | Oate
ond time | P.S.T. | 1963 | 10/8
0710 | 11/4 | 12/9 | 1964 | 1/13 | 2/10
0950 | 3/9 | 4/13
0900 | 5/11 | 6/8
094 5 | 7/13
0845 | 8/10
0640 | 9/14
0700 | b Laboratory pH. c Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfonate (ABS), and phosphata (PO.) Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves. g Gravimetric determination. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Beach, Service (USPHS); San Bernardina County Flood County District (SBCFCD); Metropolitan Water District of Sauthern California (WMD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR), as indicated. h Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) DELTA-MENDOTA CANAL NEAR TRACY (STA. NO. 93) | | | Anolyzed
by i | | SUSIT | | | | | | | | | | | | | | |---|------------|--------------------------------|----------|--------|----------------|----------------|------------|------|------------------|-----------------|-------------|-----------------------|-------------------|------------------|-------|--|-------------| | | - | MPN/ml | | Median | 23.
Maximum | Minimum
2.3 | | | | | | | | | | | | | Tur-Coliformh
CO3 11y MPN/mil
n ppm | | | | 15 | 6 | 8 | | 15 | 2 | 9 | 35 | 9 | 20 | 35 | 20 | 8 | | | Hordnass
os CoCO3
Total N C | | E | | 26 | 62 | 37 | | 777 | 8 | 82 | 04 | 8 | 15 | 6 | 32 | 72 | | | | | Edd | | 186 | 152 | זֶר
דר | | 116 | 155 | 157 | 109 | 82 | 98 | 8 | 101 | 180 | | | Per-
cent | | | | 20 | 17 | 22 | | 73 | 54 | 147 | Ş. | 37 | 145 | 775 | 52 | 75 | | | Total
dis-
a solved
In ppm | | | | 461e | 383 | 294e | | 305 | 392 ^e | 389e | 216 | 164 ⁸ | 17^{h} e | 162 ^e | 264° | 9 ⁴ 181 | | | Other constituents | | | | | | | | | | | | ABS 0.00
Polt 0.15 | | | | ABS 0.0
PO ₀ , 0.30
As 0.01 | | | | - | Silico
(SiO ₂) | _ | | o.l | | ~~ | | - Lou | | | 011 | ᆌ | | | | ri - | | parts per million | ilion
I | Boron
(B) | _ | | 0.2 | 5.5 | 0.3 | | 0.3 | 7.0 | 0.3 | 0.2 | 0.1 | <u>0.1</u> | 0.1 | 7.0 | ्।
 | | | per . | Fluo-
ride
(F) | | | | | | | | _ | | | 0.1 | | | | | | | | trote | è c | | | | | | | | | | 0.05 | | | | 0.03 | | | edniv | Chio- | | | 3.75 | 3.02 | 2.12 | | 82 2.31 | 3.05 | 59
2.51 | 1.24 | 30 | 36 | 30 | 84
2.37 | 165 | | 9 | - 1 | Sul -
fate | (Page) | | | | | | | | | | 27
0.56 | | | | 63
1.31 | | tuentite a | | Bicar-
bonate | (1003) | | 158
2.54 | 1.80 | 94 | | 1.44 | 98 | 87 | 8th
1.38 | 76 | 86 | 85 | 8th
1.38 | 132
2.16 | | Money Constituents | | Carbon- | (600) | | 0.00 | 0.00 | 0.0 | | 0.0 | 8
0.27 | 2.0
0.07 | 0.00 | 0.00 | 0.00 | 10.03 | 0.0 | 0.00 | | Ž | | Potas-
Sium
(K) | | | | | | | | | | | 1.8 | | | | 3.3 | | | | Sodium
(Na) | | | 3.74 | 73
3.18 | 57
2.46 | | 2.39 | 82
3.57 | 64
2.78 | 34 | 23 | 32 1.39 | 27 | 50 | 100 | | | | Magne- | <u>}</u> | | | | | | | | | | 10 | | | | 1.70 | | | | Colcium
(Co) | | | 3.72 | 3.03 | 2.28 | | 25.32 | 3.10 | 3.14° | 2.18 | 16 | 1.72 | 1.80 | 2.02 | 38 | | | | H a | ۵ | | 8.2 | 7.4 | 7.1 | | 8.0 | 7.4 | 7.4 | 8.1 | 7.6 | 7.4 | 8.3 | 7.14 | 7.8 | | | Specific | (micromhos
of 25°C) | | | 818 | 0890 | 522 | | 537 | 969 | 691 | 383 | 275 | 309 | 287 | 6911 | 1798 | | | | Jen
Jen | 1000/ | | 88 | 89 | 35 | | 82 | 1 00 | 95 | お | 94 | 83 | 82 | 81 | 83 | | | | Disco | mad. | | 7.8 | 9.0 | 4.3 | | 9.5 | 9.5 | 10.4 | 9.5 | 7.6 | 7.9 | 7.1 | 6.9 | 7.4 | | | | Ten
in
PF | | | 20 | 59 | ∄ | | 84 | 50 | 53 | 28 | 28 | 79 | 73 | 75 | 7.0 | | | | Oischorge Temp
in cfs in oF | | | 1640 | 0 | 0 | | 0 | 860 | 2510 | 1704 | 3320 | 3248 | 4075 | 1 | 2510 | | | | somotimes | | 1963 | 10/9 | 11/5 | 12/3 | 1961 | 1/7 | 2/5
0930 | 3/3 | 11/8
0845 | 5/6
9/5 | 6/9 | 7/7 | 8/4
1310 | 9/1
1345 | o Field pH b Laboratory pH. c. Sum of calcium and magnesium in epm. d. Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PO_4). e
Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Labaratories, or United States Public Health Service. Canneal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureou of Reclamation (USBR); United States Public Health Service (USPHS), Son Bernardino County Flood Canneal District as Southern California (WMD), Los Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LBDPH); City of Long Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR), as indicated. ANALYSES OF SURFACE WATER FRESNO RIVER NEAR DAULTON (STA. NO. 113) TABLE D-2 (Cont.) | | Anolyzed
by i | USGS | | | | | | | | | | |--|--|--|--|-------|------|---|------|------|------|------|--| | 4 | Hordness bid - Coliform os CoCO ₃ ity MPN/mi fotal N C. | Median
.62
Maximum
6.2
Minimum | | | | | | | | | | | 1 25 | - bid
Yti
Edd c | н | - | | | | | | | | | | | 200 Ng
00 Ng
00 Ng | - | 0 | | | | | | | | | | | Total
Ppm | 89 | 7/2 | | | | - | | | | | | g
F | sod - | 20 | 37 | | | | | | | | | | Toto | solide
in ppm | 201 ^e | 249 | | | | | | | | | | | Other constituents | ABS 0.0
P04, 0.00
As 0.01 | ABS 0.0
PO ₄ 0.10
As 0.00 | | | | | | | | | | | Silica
(SiO ₂) | ଷା | 13 | | | | | |
 | | | | Hion | Boron Silico
(B) (SiO ₂) | 0,0 | ं | |
 | | | | | | | | million
oer mi | Fluo-
ride
(F) | 0.0 | 0.00 | | | | | | | | | | ports per million
equivolents per million | Ni-
trote
(NO ₃) | 1.0 | 1.8 | | | | | | | | | | equiv | Chlo-
ride
(CI) | 53 | 4.5 | |
 | | | |
 | | | | E . | Sul -
fote
(\$0 ₄) | \$ <u>.0</u> | 0.0 | | | | | | | | | | netifuen | Bicar-
bonate
(HCO ₃) | 68 | 36 | | | | | | | | | | Mineral constituents | Corbon-
ore
(CO ₃) | 000 | 0.0 | | | | | | | | | | ¥. | Potos-
sium
(x) | 0.0 | 0.03 | | | | | | | | | | | Sodium
(No) | 30 | 6.8 | | | | | |
 | | | | | Magne-
sium
(Mg) | 0.21 | 0.7 | |
 | |
 | | |
 | | | | Colcium
(Ca) | 21 0 | 8 4 0 0 42 | | | | | | | | | | | 를 alo | 8.0 | 7-10 | |
 | | |
 | | | | | | conductonce pH (C) a of 25°C) a | 592 | * | | | | | | | | | | | gen (| 98 | 103 | | | · | | | | | | | | Dissolved oxygen ppm %Sot | 8.7 | 10.0 | | | | | | | | | | | | 5,0 | 5 | | | | | | | | | | | Orschorgs Temp
in cfs in oF | ŧ | 28 | 720 | | | | | | | | | | ond time
sampled | 1.96 <u>3</u>
0630 | 5/11
0800 | 5/1/6 | | | | | | | | o Field pH. b Labaratory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.) Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Gravimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (MWD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Mater Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Divisian of Laboratories, or United States Public Health Service. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) KAWEAH RIVER BELOW TERMINOUS DAM (STA. NO. 35) | _ | | _ | | | | | | | | | | | | | | | | |--|----------------------|--------------------------------|------------------|-----------------|-------|--------------|-----------------|--------------|-------------|----------|-----------------|--------------|---|-----------------|--------------|---------------|---| | h Anolyzed | | USGS | | | | | | | | | | | | | | | | | Tur-
bid-Coliform
ity
MPN/mi | | Median | 0.62
Maxd mum | Minimum
0.62 | | | | | | | | | | | | | | | Turning Turnin | | | - | ч | Q | - | CV | - | 2 | 4 | ٦ | 0 | ٦ | - | 7 | | | | Γ | N 00 3 | | S E | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | ٦ | 0 | 0 | | Hordi
Totol | | | | <u></u> | 145 | 37 | | 2 | 45 | 1171 | 35 | 23 | 15 | ನ | 32 | 94 | | | Per-
cent
sod - | | | | 81 | 17 | 27 | | 23 | 8 | 22 | 56 | 27 | 25 | ದ | 8 | 2 | | | Totol
dis-
solved
In ppm | | | 19 | 8 8 | 174 e | | 75 ⁸ | 85e | 19 <u>6</u> | 999 | 47 ⁸ | 31 | 1 ¹ 1 e | 52 ⁸ | 869 | | | | | | Other constituents d | | | | | | | | | | | ABS 0.00
PO _t 0.10
As 0.00 | | | | ABS 0.0
Po _{tt} 0.05
As 0.00 | | | ŀ | Silica | (%) | | | | | | | | | | সা | | | | 7.9 | | | 6 | Boron | <u> </u> | | 0.1 | 0.0 | 0.0 | | 0:0 | 0:0 | 0.0 | 0.0 | 0.1 | 0:0 | 9 | 0.0 | 0.3 | | million | per million | Fluo-Beride (F) | | | | | | | | | | | 0.00 | | | | | | ports per million | | | | | | | | | | | | | 0.0 | | | | 4.3
0.07 | | å | aquivalents | Chio- | (10) | | 3.2 | 5.2 | 3.0 | | 3.5 | 0.15 | 5.0 | 1.5 | 0.03 | 1.0 | 0.03 | 2.0 | 3.6 | | | Ē | Sul - | (80, | | | | | | | | | | 0.02 | | | | 3.0 | | | tituents | Bicor- | (HCO3) | | 53 | 59
0.97 | 0.77 | | 0.9 | 0.93 | 0.92 | 0.70 | 33 | 0.33 | 25 | 179°0 | 53 | | | Mineral constituents | 1 | (502) | | 000 | 0.00 | 0.0 | | 0.00 | 0.0 | 000 | 0.00 | 0.00 | 0.0 | 0.0 | 000 | 0.0 | | | Mino | | (X) | | | | | | | | | | 0.03 | | | | 2.1
0.05 | | | | Sodium | <u></u> | | 0.17 | 4.4 | 0.50 | | 5.5 | 0.25 | 5.8 | 5.1 | 2.9
0.13 | 0.10 | 2.6 | 3.7 | 5.2 | | | | | (6Mg) | | | | | | | | - | | 0.0 | | | | 53
0.20 | | | | Calcium | (င၁) | | 0.80 | 0.0 | 0.74° | | 0.80 | 8.
9. | 3 <u>88</u> 0 | 0.64 | 0.10 | 0.30 | 0.12
0.12 | 0.63 | ध
छ:0 | | | | Į. | D C | | 6.9 | 7.2 | 7.7 | | 8.1 | 7.0 | 7.5 | <u>7</u> | 7.5 | 7:0 | 6.7 | 7.0 | 7.5 | | | Specific | conductance
(micromhos | () -62 to | | 104 | 7711 | 8 | | 105 | 113 | TIT | 87 | 89 | 1 77 | 45 | 82 | 108 | | | | | %Sot | | 55 | 85 | 63 | | 95 | 76 | 21 | Ħ | 145 | 134 | 125 | 130 | 150 | | | | Oissolvs d | maa | | 5.2 | 4.8 | 6.5 | | n.5 | 0.11 | 13.5 | 13.0 | 15.0 | 13.5 | 9.11 | 0.11 | 12.8 | | | | | - | | 62 | 61 | \$ 1 | | 1,5 | 77 | 45 | 74 | 2.5 | 9 | 65 | 92 | 92 | | | | Dischorge Temp
in cfs in oF | | | & | ; | 500 | | 011 | 170 | ঃ | 1 | 1 | 739 | 1038 | & | 9%
98. | | Dote ond time sompled P.S.T. | | P.S.T. | 1963 | 10/7 | 11/4 | 12/5
0915 | 1964 | 1/6
51115 | 2/4
1330 | 3/13 | 4/6
1015 | 5/11
0830 | 6/10
0715 | 7/6
1200 | 8/10
0820 | 9/1#
60/1# | | o Field pH. Laboratory pH. Sum of calcium and magnesium in epm. Arsenic (As), olkyl benzone sulfonate (ABS), and phosphote (PO.) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Annuol median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lobaratories, or United States Public Health Service. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Sauthern California (WMD); Las Angeles Department of Water and Power (LADMP);
City of Los Angeles, Department of Water District (SBCFCD); Metropolitan Water District of Sauthern California Department of Water Resources (DWR); as indicated. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) KAWEAH RIVER NEAR THREE RIVERS (STA. NO. 35b) | | | Analyzed
by i | USGS | | | | | | | | | | | | | | |--|----------|---|--------|------------------------------------|-------------|------|-------------|-----------|------------|-------------|--|------------|-----------------|--------------|--------------------------------|--| | | 2 | MPN/ml | Median | 0.38
Maximum
0.60
Minimum | ٥,
٥ | | | | | | | | | | | | | Total Part Cent Hardness bid Coliform Solved sod - Ge CoCO ₃ Ity MPN/mil In ppm | | | ч | 2 | | 0 | N | 10 | C) | Н | 0 | N | ч | ٦, | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 74 | 35 | | 07 | 38 | 0† | 33 | 19 | 15 | 54 | 88 | 917 | | | | | Sod - Fui | | R | 8 | | 25 | 25 | 25 | 25 | 23 | 25 | 8 | 777 | 55 | | | | 2010 | solved
solids
in ppm | | 82e | 62° | | 74° | 89 | 20e | 57e | 108 | 28e | 55 ⁸ | a 69 | 85 ^K | | | | | Other constituents | | | | | | | | | ABS 0.0
PO ₄ 0.10
As 0.00 | | | | ABS 0.0
PO4 0.00
As 0.00 | | | | | Silica
(SiO ₂) | | | | | | | | | 阳 | | | | 김 | | | is in aquivalents per million | uoll | Boron
(B) | | 0:0 | 0.1 | | 0.0 | 0.0 | 0.0 | 0.0 | 0-1 | ं | 0.0 | 0.0 | 0.1 | | | | 180 | Fluo-
ride
(F) | | | | | | | | | 0.0 | | | | | | | | Slug | rrote
(NO ₃) | | | | | | | | | 0.0 <u>7</u> | | 000 | | 9.3 | | | | AINDB | Chio- | | 5.8 | 2.5 | | 0 14 | 4.6 | 0.1 | 2.5 | 1.0 | 0.5 | 0.03 | 0.1 | 6.8 | | | | | Sut -
fats
(SO ₄) | | | | | | | | | 1.0 | | | | 1.0 | | | stituents | | Bicor-
bonate
(HCO ₃) | | 1.03 | 1,6
0.75 | | 54 | 08°0 | 52
0.85 | 42 | 25 | 21
0.34 | 33 | 52
0.85 | 86.0 | | | Mineral constituents | | Corbon-
ofe
(CO ₃) | | 000 | 000 | | 000 | 000 | 0.0 | 000 | 000 | 000 | 0000 | 0000 | 0.00 | | | Min | | Potos-
sium
(K) | | | | | | | | | 0.0 | | | | 1.9 | | | | | Sodium
(No) | | 5.2 | 4.2
0.18 | | 6.1
0.27 | 5.7 | 6.0 | 0.21 | 2.7 | 2.4 | 3.8 | 5.5 | 0.32 | | | | | Mogne-
sium
(Mg) | | | | | | | •** | | 1.0 | | | | 0.0 | | | | | Calcium
(Ca) | | 26.0 | 0.70 | | 08.0 | 0.70 | 0.80 | 0.64 | 0.30 | 0.30 | 0.18° | o <u>.76</u> | 17
0.85 | | | | | I alo | | - 12:
- 13: | 7.1 | | 8.2 | 7:1 | 7.5 | 7.7 | 7:5 | 6.9 | 7.3 | 8.0 | 7.8 | | | | Specific | (micromhos)
at 25°C) | | ाटा | 었 | | 109 | 100 | 103 | ₹ | 20 | 1,1 | 99 | 101 | 131 | | | | | | | 88 | 19 | | 76 | 8 | 118 | 114 | 128 | 130 | 123 | 135 | 143 | | | | i | oxygen
ppm %Sc | | 0.6 | 7.4 | | 12.8 | 11.0 | 14.5 | 14.0 | 13.2 | 14.0 | 11.5 | 11.3 | 13.1 | | | | | Eo
Eo | | 28 | 75 | | 39 | 77 | 71 | 77 | 59 | ₹5 | 99 | 87 | 89 | | | | | Oischarge 18mp
in cfs in off | | 8 | 500 | | 75 | 170 | 210 | , | 1 | 739 | 250 | & | 38 | | | | 400 | and time
sompled
P.S.T. | 1963 | 11/4 | 12/5 | 1964 | 1/6
1025 | 2/4 | 3/13 | 4/6
1055 | 5/11 0910 | 6/10 | 7/6
1240 | 8/10
0715 | 9/14
1030 | | o Field pH. b Lobarotory pH. Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO.) Determined by addition of analyzed canstituents. Derived from conductivity vs TDS curves. Gravimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernordina County Flood Carrol District (SRCFCD); Metropoliton Water District of Southern California (MWD); Los Angeles, Department of Water and Power (LADMP); City of Los Angeles, Department of Poportment of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Deportment of Public Health, Division of Loborotories, or United States Public Health Service. KERN RIVER NEAR BAKERSFIELD (STA. NO. 36) | | | Analyzed
by i | | 0001 | 3 | | | | | | | | | | | | | | |-------------------|-------------------------|-------------------------------|----------|---------|----------------|-----------------|------------|------|-------------|-------------|------------|-------------|--|------|----------|-------------|---|--| | ľ | 4 | bid - Coliform ity MPN/ml | | Moditor | 2.4
Maximum | Minimum
0.23 | | | | | | | | | | | | | | | Į. | - pid
- yti
E00 | | | cv . | o, | 5 | | 0 | CI. | α | C) | <u>-</u> | 50 | 7 | m | - | | | | | 800 | N P | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | L | | | Totol | | 36 | 07 | 77.7 | | 45 | 148 | 53 | 25 | 20 | 7,8 | 70 | 7,2 | 747 | | | L | 9 | god - | | | 37 | 35 | 37 | | 39 | 35 | 37 | 38 | 37 | 37 | 39 | 38 | 38 | | | L | Total | solved
solids | E PPR | | 75e | 81°e | 93e | | 966 | 102e | 108e | 111e | 866 | 101 | 89° | 90e | 876 | | | | | Other constituents | | | | | | | | | | | ABS 0.0
PO ₁ , 0.10
As 0.01 | | | | ABS 0.0
PO _{1,} 0.15
As 0.01 | | | | | Silica | (2) | | | | | | | | | | 9.3 | | | | 9.6 | | | | lion | Boron | (a) | | 0.0 | 0.2 | 0.1 | | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | | | million | er mi | Fluo- | | | | | | | | | | | 0.02 | | | | | | | ports per million | equivolents per million | Ni- | _ | | | | | | | | | | 1.0 | | | | 1.1 | | | ľ | equivo | Chlo- | <u>(</u> | | 4.2
0.12 | 4.2 | 0.13 | | 5.8 | 5.8 | 6.0 | 5.5 | 0.20 | 5.5 | 0.13 | 0.11 | 11.0 | | | | <u>c</u> | Sul - | (80%) | | | | | | | | | | 0.21 | | | | 0.25 | | | | Mineral constituents | Bicar- | | | 5.6 | 59
0.97 | 68 | | 72
1,18 | 1.20 | 1.25 | 80 | 1.23 | 1.18 | 86.0 | 11:11 | 1:15 | | | | ral coms | Corbon - | (603) | | 000 | 0.00 | 0000 | | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | | | Mine | Potas- C | (X | | | | | | | | | | 0.05 | | | | 1.6 | | | | | Sodium | (0 &) | | 8.6 | 0.44 | 12
0.52 | | 13 | 25.0 | 14
0.61 | 15 | 114
0.61 | 0.57 | 0.52 | 112
0.52 | 0.61 | | | | | Magne- | | | | | | | | | | | 0.20 | | | | 2.9
0.24 | | | | | Colcium | (62) | | 0.72° | 080 | 0.88 | | 0.0 | 20.00 | 1,02 | 1.01 | 16
0.80 | 96.0 | 0.80 | 0.84 | 14
0.70 | | | | | F a | م | | 7.3
2.8 | 7.3 | 7.3 | | 8.2 | 8.0 | 8,0 | 5.7 | 7.9 | 7.2 | 6.9 | 7.7 | 8 <u>.7</u> | | | | Specific | (micrambos | | | 977 | 130 | 144 | | 154 | 158 | 168 | 172 | 166 | 157 | 138 | 140 | 158 | | | | | b cad | %Sot | | 8 | 93 | 83 | | , | | 1 | • | • | ž | • | • | , | | | | | Dissolved | mdd | | ÷.
⊗ | 9.3 | 10.1 | | , | r | 1 | 1 | • | 1 | 1 | * | 1 | | | | | Temp
in of | | | 19 | 99 | 772 | | 742 | 1,3 | 94 | 51 | 52 | 1 | 89 | 70 | 20 | | | | | Dischorge Temp
in of in of | | | 1405 | 540 | 365 | | 318 | 425 | 694 | 444 | 1447 | 845 | 1422 | 929 | 218 | | | | | ond time | P.S.T. | 1963 | 1007 | 11/6 | 12/9 0950 | 1964 | 1/7
0930 | 2/4
0945 | 3/5 | 4/7
0915 | 5/4 | 6/1 | 7/1 0930 | 8/4 | 9/3 | | a Field pH. b Lobaratory pH. c. Sum of calcium and magnesium in epm. d. Arsonic (As), alkyl benzane sulfanate (ABS), and phosphate (PO_4) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Beloagical Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclomation (USBR); United States Seological Survey, Quality of Water Branch (USCS); United States Department of the Interior, Bureau of Reclomation (USBR); United States Branch (USPR); San Bernardino Country Flood Cantrol District (SBCFCD); Metropoliton Woter District of Southern California (WMD). Los Angeles Department of Water Resources (UMR); as indicated. Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. 235 TABLE D-2 (cont.) ANALYSES OF SURFACE WATER KERN RIVER BELOW ISABELLA DAM (STA. NO. 36a) | | | Anolyzed
by i | usgs | | | | | | |---------|-------------------------
--|--|------------|--|----------------------------|--|---| | | | Hardness bid-Coliform as CoCO ₃ ily MPN/ml Totol N C. | Median
0.23
Maximum
7.
Minimum | | | | | | | | Tur- | - piq - | н | 72 | н | Q | H | | | | | # 00 × 6 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 36 | 917 | 64 | 94 | 1 | | | | Per | eod - | 32 | 36 | 37 | 38 | 38 | | | | Total | solids
solids
mdd ul | 71 ^e | 9.76 | 988 | 82 e | 948 | _ | | | | d
Other constituents | | | 7.4 ABS 0.1
PO ₁ 0.05
As 0.03 | | ABS 0.1
Po _t 0.15
As 0.02 | | | | ĺ | Silico
(SiO ₂) | | | 7.4 | | 멝 | | | _ | lion | Boron
(B) | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | | | millian | per million | Fluo-
ride
(F) | | | 0.0 | | | | | ě | | Ni-
trote
(NO ₃) | | | 0.02 | | 6.9 | | | ď | equivolents | Chlo-
ride
(CI) | 3.2 | 5.0 | 5.5 | 3.0 | 5.1 | | | , | | Sul -
fate
(SO ₄) | | | 0.0 | | 0.19 | | | 414 | 181110en | Bicor-
banate
(HCO ₃) | 52
0.85 | 69
1.13 | 76
1.25 | 36.0 | 86
H | | | | Mineral constituents in | Corbon-
ote
(CO ₃) | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | | | 3 | | Potos-
sium
(K) | | | 1.8 | | 2.5 | | | | | Sodium
(No) | 7.8 | 12
0.52 | 16 | 1
1
1
1
1
1 | 0.57 | | | | | Mogne-
sium
(Mg) | | | 2.2 | | 4.6
0.38 | | | | | Caleium
(Ca) | o.n° | 26.0 | 14
0.80 | 08.0 | 0.50 | | | | | H ala | 6.9 | 7.2 | 7.7 | 7.9 | 7.9 | | | | Specific | conductance
(micramhos
of 25°C) | 112 | 148 | 161 | 130 | 151 | | | | | | 93 | 68 | †8 | 84 | 8 | | | | | Disso
osy
osy
ppm | 4.8 | 10.4 | 0.6 | 4.8 | 4.5 | | | | | 7.0 ci | 88 | Lτ | 45 | 67 | 7 | | | | | Dischorge Temp
in cfs in oF | 1525 | m | 72 | 190 | in. | | | | | ond time
sompled
P.S.T. | 1963
10/4
1330 | 1/2 | 5/1
0915 | 7/10
1330 | 9/11
2115 | | a Field pH. b Laboratory pH. c Sum of colcium and magnesium in epm. d Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.) e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Grovimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USCS); United States Department of the Interior, Surreau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USPUS); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Paper Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); os indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Divisian of Laboratories, ar United States Public Health Service. Control District (SBCFCD), Metropoliton Wolfer KERN RIVER AT KERNVILLE (STA. NO. 36b) | | | Analyzed
by i | | USGS | | | | | |----------------------|-------------|----------------------------------|---------------------|----------------------|--------------------|---|-------------|---------------------------| | - | 4 | bid - Coliform An | | | 60. | | | | | - | | - Z | _ | | | | | | | H | ToT | P C C | υĘ | 0 10 | | 0 | 0 | 0 | | | | Hordness
os CoCO ₃ | Totol N.C. | 31 | |
& | 92 | 23 | | | | sod - | | 24 | | 37 | £4. | % | | | Total | Bolved | E 00 E | 79e | | 888 | 65 e | 9111 | | | | of the constant of | | | | ABS 0.00
PO ₁ 0.00
As 0.01 | | As 0.1
As 0.00
0.00 | | | | Silico | is one | | | 77 | | 15 | | | lion | Boron Silico | ê | 0.1 | | 0.0 | 0:1 | 2,0 | | million | par million | Fluo- | | | | 000 | | | | ports per million | equivolents | -iN | (NO3) | | | 0.0 | | 5-4
0-07 | | ă | equivo | Chlo- | قَ ا | 5.0 | EIVED | 3.5 | 2.5 | 0.20 | | 9 | | Sul - | (80%) | | NO SAMPLE RECEIVED | 7.0 | | 0.23 | | 1 | | Bicor- | (HCO ₃) | 50.00 | NO SA | 69.0 | 39 | 1.30
1.30 | | Mineral constituents | 10.0 | Carban | (co) | 0.0 | | 0.0 | 0.00 | 0.00 | | Ž. | HIM | Potos- | ξ | | | 0.03 | | 4.00 | | | | Sodium | | 10
0.4 | | 8.1 | 8.8 | 0.70 | | | | Mogne- | (Mg) | | | 0.9
0.07 | | 9.3.8
3.3 | | | | Calcium | (03) | 0.62 | | 9.8 | 0.51 | 0.75
0.75 | | | | £ « | ام | 12 | | 7.5 | 7.4 | ∞
G. | | | Specific | (micromhos | | 77. | | 93 | 93 | 180 | | | | | %Sot | 8 | | 8 | 89 | 8 | | | | Dissolved | mdd | 0.6 | | 10.0 | 8.2 | ₹ & | | | | Tamp
in OF | | 3 | | 51 | 99 | ਰੋ | | | | Dischorgs Tamp
in cfs in oF | | 295 | | 760 | 320 | 011 | | | | ond time | P.S.T. | 1963
10/4
1300 | 1961 | 5/1
0830 | 7/10 | 1030 | a Field pH. b Laboratory pH. c. Sum of calcium and magnesium in epm. d. Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PO_4) Derived from canductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Long Beach, Department of Water Resources (DWR); City of Los Angeles, Department of Public Health (LBDPH); City of Long Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) KINGS RIVER BELOW NORTH FORK (STA. NO. 33c) | | Anolyzad
by i | | USGS | | | | | |
--|---------------------------------|-----------------|----------------------------------|----------------------|---------------------------------|-------------|--|--| | | د ت
د ت | + | | η, | | | | | | | os CoCO ₃ ity MPN/mi | | Median 0.23 Maximum 0.62 Minimum | 0 | | | | | | Tur | - pid
ity
n pom | | Q. | N | 7 | ٦ | 1 | | | | COCOS | N P P | 0 | 0 | 0 | 0 | · · · · · · · · · · · · · · · · · · · | | | | | | 15 | 17 | ω | 9 | | | | - | # P 8 | E | | ₹. | 36 | 33 | N . | | | | solids | |
 | 39e | 268 | | | | | | Other constituents d | | | | ABS 0.0
POl, 0.10
As 0.00 | | A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | Silico | (2 016) | | | 8.8 | | 3 | | | illion | Baron | | ं | 0 | 0.1 | ं। | <u> </u> | | | per m | Fluo- | (E) | | | 000 | | | | | ports per million
equivalents per million | - IN | (NO3) | | | 0.02 | | 18
5'0 | | | equiv | Chlo- | وَيَ | 0.00 | 2.0 | 0.5 | 0.5 | 20°. | | | ni si | Sul - | | | | 0.00 | | 200 | | | nstituent | Bicar- | (HCO3) | %
0.33 | 23
0.38 | 0.25 | 0.20 | # To The Table 1 | | | Mineral constituents | Corban- | (603) | 0.0 | 00 | 0.00 | 0.00 | 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | Min | Potos- | ξ. | | | 0.7 | | 0.00 | | | | Sodium | (0 N) | 2.8
0.12 | 2.6 | 2.4
0.10 | 2.3
0.10 | 0.17 | | | | Mogns- | (Mg) | | | 0.02 | | 01.00 | | | | Calcium | (62) | 0.30 | 0 <u>.34</u> | 2.8 | 0.20 | 0년
*10 | | | | Ŧ . | امار | 19*9 | 7.7 | 1:1 | 6.9 | 1.0 | | | Sescritic | (micromhos | | L+ | 55 | 62 | 31 | <u></u> | | | | Dissolved no oxygan | ppm %Sot | 77 | 82 | 971 | 95 | | | | | | E dd | 10.4 | 10.6 | 12.2 | 8.5 | | | | | T OF OF | | 99 | 04 | 95 | ١,٠ | 8 | | | | Dischorgs Tamp
in cfs in oF | | 328 | 303 | 2116 | 968 | 797 | | | | Dots
ond time | P.S.T. | 1963
10/1
1220 | 1964
1/13
1150 | 5/11 0945 | 7/13 | 3/14 | | o Field pH. b Laboratory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO,) e Derived from conductivity vs TDS curves. f Determined by addition of analyzed constituents. g Grovimetric determination. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metrapolitan Water District of Southern California (AWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Colculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Labaratories, or United States Public Health Service. KINGS RIVER BELOW PEOPLES WEIR (STA. NO. 34) | - | | | _ | | | | | | | | | | | | | | | |-------------------|-------------------------|---|-----------|---------|-----------------|-----------------|---------------------|------|---------------|--------------|-------------|--------------|-------------------|------|-----------------|--------------|---| | | | Anolyzed
by 1 | | 11868 | | | | | | | | | | | | | | | | 4 | Hardness bid Coliform" as CaCO ₃ ify MPN/mi | | Meditor | 2.3
Maximum | Minimum
.002 | | | | | | | | | | | | | Γ | Tur | o ppm | | | co. | FI | 2 | | -7 | н | 5 | 7 | ч | cu . | 2 | - | ٦ | | | | \$000
\$000
\$000
\$000
\$000
\$000
\$000
\$00 | E B | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | S C C | ppd | | 97 | 1,5 | 30 | | 22 | 23 | 8 | 70 | 38 | 15 | 11 | 12 | 14 | | | Per- | sod - | | | m | 23 | 70 | | 28 | 31 | 62 | 8) | 23 | 23 | 35 | 62 | 25 | | | Totol | solved | | | 33 ^e | 82e | 55e | | ^{††} | 12e | 41e | 133e | 999 | 30e | 23 ^e | 25e | 28€ | | | | Other constituents | | | | | | | | | | | As 0.1
As 0.00 | | | | ABS 0.0
F0 _{tt} 0.05
As 0.00 | | | | Silico
(SiO ₃) | | | | | | | | | | | 13 | | | | 7.0 | | 6 | llion | Boron
(B) | | | 0.0 | 0: | 0:1 | | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0:0 | 0.0 | 0.0 | | millio | er mi | Fluo- | <u>(i</u> | | | | | | | | | | 0.1 | | | | | | ports per million | equivolents per million | trote. | (NO3) | | | | | | | _ | | | 2 4 | | | | 0.00 | | od | equivo | Chlo- | \neg | | 2.9
0.08 | 5.6 | 2.0
0.0 6 | | 2.5 | 3.0 | 0.00 | 6.8 | 1.5 | 1.5 | 1.5 | 1.0 | 0.0 | | | | Sul -
fote | (%) | | | | | | | | | | 7.0 | | | | 3.0 | | | arit Denis | Bicor-
bonote | (HCO3) | | 0.36 | 96.0 | 38 | | 28
0.46 | 26 | 26 | 93 | 52
0.85 | 0.31 | 15 | 0.26 | 0.30 | | | miliaroi constituents | Carbon- | | | 000 | 0.0 | 000 | | 0.0 | 000 | 0000 | 2.0 | 000 | 000 | 000 | 0000 | 0.00 | | M | | Potos- | (¥ | | | | | | | | | | 1.5 | | | | 0.02 | | | | Sodium
(No) | | | 3.2 | 6.1 | 4.3
0.19 | | 0.17 | 0.18 | 3.8 | 13 | 6.6 | 2.6 | 0.12 | 2.3 | 2.4
0.10 | | | | Magne-
sium | (Mg) | | | | | | | ** | | | 0.34 | | | | 0.5 | | | | (Ca) | | | 0.31 | 0.00 | 09.0 | | 0.44 | 0.41 | 0.11 | 1.10 | 8.4 | 0.30 | 0.22 | 0.24 | 4.8
0.24 | | | | E al | ٥ | | 7.0 | 7.8 | 6.8 | | 7.0 | 7.2 | 7.5 | 8.1 | 8.0 | 7.5 | 7:1 | 7.1 | 7.1 | | | Specific | (micromhos pH of 25°C) | | | 1,8 | 120 | 8,1 | | 49 | 61 | 59 | 194 | 108 | 43 | 34 | 37 | 017 | | | | 9 48 | %Sat | | 8 | 96 | 79 | | 66 | 102 | 107 | 109 | 101 | 101 | 107 | 86 | 101 | | | i | | ₩dd | | 4.8 | 4.6 | 9.5 | | 11.3 | 11.5 | 11.5 | 9.5 | 8.8 | 6.6 | 9.6 | 9.1 | 9•1 | | | | | | | 99 | 62 | 45 | | 148 | 20 | 47 | 72 | 73 | 61 | 69 | 29 | 69 | | | | Oischorge Temp | | | 732 | 95 | 58 | | 235 | 361 | 1 | , | 126 | 402 | 1356 | 1080 | 1146 | | | 400 | and time
sompled | P.S.1. | 1963 | 1250 | 11/4 | 12/9
1255 | 1961 | 1/13 | 2/10
1215 | 3/9
1340 | 4/13
1215 | 5/11
1115 | 6/8 | 7/13 | 8/10
0950 | 9/14 | a Field pH. b Labarotory pH. c. Sum of colcium and magnesium in epm. Arsenic (As), olkyl benzene sulfonate (ABS), and phosphote (PO $_{_{\Phi}}$) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernordino County Flood Cannol District (SBCFCD); Metropoliton Water District of Southern California (MMD); Los Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service. ANALYSES OF SURFACE WATER TABLE D-2 (cont.) KINGS RIVER BELOW PINE FLAT DAM (STA. NO. 33b) | | • | 2 | <u></u> | | | | | |-------------------------|-------------|--|---|-------------|---------------------------------|--------------|--| | | | Anolyzed
by i | nscs | | | | | | | - | Hardness bid - Coliform os CoCO ₃ ity MPN/ml Totol N.C. | Median
0.23
Maxdmum
4.5
Minimum | | | | | | | - 20 | - pid
- Ai
- Ai
- Lib | 91 | m | N | ٦ | Q | | | | N COS | н | н | 0 | 0 | 0 | | | | | ∞ | य | 13 | ω | ਬ | | _ | Per | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 52 | 17 | 56 | 32 | <u>k</u> | | | 101 | solide
in ppm | 17e | 25 e | 308 | 19e | 588 | | | | Other constituents | | | ABS 0.0
Po ₄ 0.05 | | ABS 0.0
Po _b
0.05
As | | | ŀ | Silico
(\$0:5) | | | 7.4 | | N. V. | | | 5 | Boron (B) | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | | million | per million | Fluo-
ride
(F) | | | 000 | | | | | | Ni-
trote
(NO ₃) | | | 0.00 | | 900
900 | | 8 | aguivolents | Chio- | 0.0 | 0.5 | 0.5 | 0.5 | 8.000 | | 2 | | Sul -
fote
(\$O ₄) | - | | 3.0 | | 0.00 | | tituents | | Bicor-
bonate
(HCO ₃) | 0.15 | 14
0.23 | 0.31 | 11.0
81.0 | 0.25 | | Mineral constituents in | | Corbon-
ofe
(CO ₃) | 0.0 | 0.0 | 0.0 | 0.0 | 0 8 | | M | | Potos-
Sium
(X) | | | 0.02 | | 0.00 | | | Ī | Sodium
(No) | 1.2 | 0.05 | 2.3 | 1.8 | 0.00 | | | | Mogne-
sium
(Mg) | | | 0.02 | | 0.00 | | | | Colcium
(Co) | 0.15 | 0.24° | 4.8 | 0.17 | 0.15 | | | | F alo | 6.6 | 7.5 | 7.3 | 7.5 | O: | | | Specific | conductance
(micromhos
at 25°C) | 23 | 33 | 38 | 25 | ₹. | | | | gen (r | 102 | 1 6 | 96 | 107 | ET . | | | | Diss | 10.2 | 10.6 | 12.0 | 10.5 | 10.1 | | | | Fo or | 99 | 20 | 47 | 8 | 20 | | | | Dischorge Temp
in offs in off | 787 | 615 | 1565 | 0194 | 1781
1 | | | | ond time
compled
P.S.T. | 1963
10/1
1400 | 1/13 | 5/11
1310 | 7/13 | 9/14
1300 | b Labarotory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO,) Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. g Gravimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Surveau of Rectamotion (USBR); United States Public Health (LADPH); Son Bernardino County Flood County Flood States Department of Water and Pawer (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); as indicated. Public Health (15 Public Health (LADPH); Terminol Testino
Laboratories, Inc. (TIL); or California Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Colculated fram analyses of duplicate monthly samples mode by Colifornia Department af Public Health, Division of Loboratories, or United Stores Public Health Service. MERCED RIVER BELOW EXCHBQUER DAM (STA. NO. 32a) | | 9 | - | | | | | | |----------------------|--|---|--|-------------|--|----------|--| | | Anolyzed | , à | nscs | | | | | | | Hordness bid - Coliformh | JE/NAM | Median
1.3
Maximum
62.
Minimum | | | | | | | - P | E 60 L | 50 | 7 | н | N | ର | | | ssup | S C C S | | - | 0 | 0 | ω | | _ | F. | Totol
Bead | | 56 | 15 | Si . | 5 | | | Can. | 9 5
9 5 | ਰੈ | | -5
 | <u> </u> | ਰ
ਹ | | | 9 9 9 | solids
mag ri | 41
41
41 | * ‡ | 338 | 18 | 1438 | | | | Other constituents d | | | ABS 0.0
PO _t 0.05
As 0.05 | | ABS 0.0
Po ₄ 0.15
As 0.00 | | | | Sitico
(SiO ₂) | | | 위 | | ជា | | | | Boron
(B) | 0.0 | 0.0 | 0.1 | कु | g 0 | | million | | Fluo- | | | 0.0 | | | | parts per million | adainal s line in a la contra con | trots
(NO ₃) | | | 0.0 | | 9.00
0.10 | | ١ | n n n | rids
(CI) | 0.05 | 2.5
0.07 | 0.03 | 0.03 | 0.19 | | ⊆ | | Sul -
fats
(SO ₄) | | | 3.0 | | 0.12 | | stituents | | Bicor-
bonots
(HCO ₃) | | 30 | 0.31 | 270 | 1.79 | | Mineral constituents | | Corbon-
ots
(CO ₃) | 30
0.49 | 0.00 | 0.0 | 0.00 | 0.00 | | M. | | Polas-
Sium
(K) | | | 0.6 | | 0.00 | | | | Sodium
(No) | 1.9
0.08 | 3.2 | 2.4 | 1.8 | 6.1 | | | | Mogns-
Sium
(Mg) | | | 0.08 | | 96.0 | | | | Calcium
(Ca) | 0.50 | 0.52 | 7.1 | 0.19 | 28
1.40 | | | I | - a o | 7.7 | 7.0 | 7.0 | 6.9 | 7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | Spacific | (Micromho)
of 25°C) | 62 | 88 | O l | 23 | 250 | | | p # > | 98 n
%Sot | 89 | 76 | | 101 | 82 | | | Dissolved | mad | 8.0 | 11.4 | | 10.4 | 7.0 | | | | | 69 | 74 | 54 | 59 | 02 | | | Dischorge Tamp | e of o | 52 | נכ | 1327 | 1816 | 94 | | | 0018 | sompled
sompled
P.S.T. | 1963
10/7
0945
1964 | 1/13 | 5/11 | 7/13 | 9/14
0910 | o Field pH. Loborotory pH. Sum of colcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO4) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Mineral Inalyses Backe by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Water and Power (LADWP); City of Los Angeles, Department of Survey, Carrior (MWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Gravimetric determination. h Annual median and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); San Bernardino County Flood in Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Geological Survey, Quality of Water Branch (USPHS); Las Angeles (LADHP); City of Los Angeles, Department of Mater District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles Department of Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan Water District of Southern California (WWD); Los Angeles District (SBCFCD); Metropalitan California (WWD); Los Angeles District (WWD); Los Angeles District (WWD); Los Angeles District (WWD); Los Angeles District (WWD); MWD); MWD (WWD); (WWD) ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) MERCED RIVER NEAR STEVINSON (STA. NO. 32) | | 1 | by i | SDSD | | | | | | | | | | | | | | | |-------------------|----------------------|---|--------|----------------|----------------|------------|------|------------------|------|-------|------------------|--------------------------------|-------------|------------------|------------------|--|-------------| | | Æ | bid Coliform Analyzed | Median | 32.
Maximum | Minimum
2.3 | | | | | | | | | | | | | | | - 25 | - piq | | 9 | N | 2 | | 2 | N | O) | - | 91 | 9 | 2 | | 6 | | | | | | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | | | | | | | 95 | 986 | | 98 | 83 | ద | 72 | 72 | % | 79 | 83 | 26 | | | | Per | o d o | | 3 | T† | 3 | | 2 | ₫ | 1,5 | 143 | 9 | 3 | 91 | <u></u> | 37 | | | | Toto | eolids
in ppm | : | 7117 | 202 e | 185e | | 191 ^e | 181 | 213 | 160 ^e | 1518 | 149e | 191 ^e | 201 ^e | 124 ⁶ | | | | | Other constituents d | | | | | | | | | | ABS 0.0
POμ 0.15
As 0.00 | | | | ABS <u>0.0</u>
PO _{lt} <u>0.15</u>
As <u>0.00</u> | | | | Ī | Silica
(SiO ₂) | | | | | | | | | | ଷ | | | | প্রা | | | | lion | Boron
(B) | | 0.0 | 0.0 | 0.1 | | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 히 | 0.1 | ं। | 000 | | | million | per million | Fluo-
ride
(F) | | | | | | | | | | 0.01 | | | | | | | ports per million | equivalents | Nı-
trate
(NO ₃) | | | | | | | | | | 5.8 | | | | 3.6 | | | d | squiv | Chlo-
ride
(CI) | | 0.37 | 0.54 | 14
0.39 | | 18 0.51 | 16 | 0.62 | 의
다. | 0.39 | 0.39 | 0.28 | 0.71 | 0.50 | | | | ء ا | Sul -
fate
(SO ₄) | | | | | | | | | | 0.21 | | | | 0.15 | | | | etituents | Bicar-
bonate
(HCO ₃) | | 104 | 143
2.34 | 2.11 | | 126
2.07 | 2.07 | 138 | 1.90 | 1.7 | 102 | 20.2 | 2.13 | % 1 : | | | | Mineral constituents | Carbon-
ate
(CO ₃) | | 0.00 | 0.0 | 2
0.07 | | 1,
0.13 | 0.0 | 0.03 | 0.00 | 0.0 | 000 | 000 | 0.00 | 0.00 | | | ; | Ē | Potos-
sium
(K) | | | | | | | | | | 0.05 | | | | 0.07 | | | | | Sodium
(No) | | 20
0.87 | 1.26 | 26 | | 26 | 8 i | 1.18g | 25 | 1.00 | 28.0 | 31 | 34,1 | 0.70 | | | | | Mogne-
sium
(Mg) | | | | | | | | | | 6.6 | | | ••• | 0.37 | | | | | Calcium
(Co) | | 1.29 | 1.84 | | | 1.72 | 1.66 | 1.82 | | | 1.32 | 1.58° | | 0.75 | | | | | T ala | | 7.1 | 7.3
8.0 | 7.3 | | 7.4 | 7.4 | 8.3 | 7.6
8.1 | 7.4 | 7.8 | 7.3 | 8.0 | 7.3 | | | | Specific | conductance
(micromhos
at 25°C) | | 224 | 37.4 | 288 | | 297 | 281 | 330 | 248 | 242 | 231 | 297 | 316 | 189 | | | | | lved
gen
%Sof | | 8 | 92 | 92 | | 87 | 96 | ま | 100 | 75 | 87 | 98 | 22 | 97 | | | | | Discolved
oxygen
ppm %So | | 8.2 | 9.5 | 4.6 | | 7.6 | 10.6 | 10.7 | 6.6 | 7.6 | η.8 | 7.7 | 9.9 | 9.5 | | | | | Fo ci | | 88 | 9 | 517 | | 22 | 52 | 64 | 19 | 58 | 63 | 72 | 77 | 65 | | |
 | Discharge Temp
in cfs in oF | | 246.4 | 977 | 172 | | 140 | 103 | 82 | 96 | 103 | 911 | 8 | 93 | 991 | | | | | ond time
eampled
P.S.T. | 1963 | 10/8 | 11/5 | 12/3 | 1964 | 1/7 0950 | 2/4 | 3/3 | 1/4 0945 | 5/5
0810 | 6/9
0800 | 7/7 | 8/4
0830 | 9/1
0480 | o Field pH. | b Lobaratory pH. c Sum of colcium and magnessum in epm. Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. 242 Mineral on Orbytes, finds of Mercopoliton Water District of Southern California (M. Canvol District (SECFCD), Mercopoliton Water Lobardaises, Inc. (TTL)) or California Printed Tanton Lobardaises, Inc. (TTL)) or California SALT SLOUGH AT SAN LUIS RANCH (STA. NO. 24c) | | | Analyzed
by i | | SDSD | | | | | | | | | | | | | | |-------------------|----------------------|-----------------------------|---------------------|--------|--------------|------------------|-------|------|-------------------|-------------------|-------------------|-------|----------------------------------|-------------|------------------|------------------|---| | | 4 | bid - Coliform" ity MPN/ml | | Median | Maximum | ž | | | | | | | | | | | | | Γ | - in | - pid
- con | | | 29 | 15 | 04 | | 15 | 8 | 8 | 25 | 20 | 8 | 017 | 25 | & | | Γ | | \$00° | 2 6 | | 172 | 146 | 197 | | 312 | 1,22 | £443 | 533 | 8 | 158 | 113 | 93 | 87 | | | | | 70f0
PØ# | | 340 | 326 | 364 | | 525 | 162h | 618 | 1,58 | 220 | 294 | 549 | 226 | 211 | | | Per | sod - | | |
2β | 58 | 57 | | 28 | 61 | 59 | 57 | 23 | 57 | 55 | 55 | 75 | | | Total | solids | | | 1064 | 998e | 1124е | | 1670 ⁸ | 1791 ^e | 1713 ^e | 1268° | 5818 | B35e | 673 ^e | 631 | 5896 | | | | Other constituents d | - 1 | | | | | | | | - " | | ABS 0.10
As 0.00
POl, 0.45 | | | | ABS 0.00
AB 0.00
PO ₄ 0.35 | | | | Silica | 2 | | | | | | | | | | 97 | | | | 221 | | E | Hion | Boron | | | 9.0 | 8.0 | 1.9 | | 2.7 | 3.9 | 3.3 | 1.8 | 2.5 | 0.9 | 7.0 | 7.0 | 7.0 | | e lilio | per million | Fluo- | Œ. | | | | | | | | | | 0.01 | | | | | | parts per million | equivolents | Ni | (NO ₃) | | | | | | | | | | 70.0 | | | | 3.3 | | 8 | equivo | Chlo- | (Ĉ | | 9.4
8.19 | 298
8.41 | 27.5 | | 370 | 428
12.07 | 13,12 | 355 | 148 | 220 | 180 | 180
5.08 | 184
5.19 | | | <u>-</u> | Sul - | (80%) | | 3.79 | | 341 | | 350 | 670
13.95 | 532
11.08 | 382 | 2.54 | 196 | 2.60 | 92
1.92 | 1.92 | | | stituents | Bicor-
banots | (HCO ₃) | | 3.38 | 3.61 | 3.74 | | 98-1 | 246 | 3.51 | 3.18 | 2.43 | 166 | 166 | 162 | 2.47 | | | Mineral constituents | Corbon- | (00) | | 000 | 0.00 | 0.0 | | 0.00 | 0.00 | 000 | 0.00 | 000 | 0.00 | 000 | 000 | 0.00 | | | Mine | Potas- C | 3 | | | | | | | | | | 1,4 | | | | 0.11 | | | | Sodium | | | 212 | 208
9.05 | 254 | | 338 | 19.23 | 415 | 280 | 5.00 | 180
7.83 | 140
6.09 | 27.5 | 119
5.18 | | | | Mogne- | (Mg) | | | | - | | | | | | 2.00
2.00 | | | | 23
1.92 | | | | Calcium | (00) | | 9.80
9.80 | - 3 <u>2</u> 5.9 | 7.68 | | 10.50 | 12.48 | 12.36 | 9.16 | 2.40 | 5.88 | .98°± | 4.52 | | | | | F & | م | | 7.3 | 8.0 | 7.9 | | 8.1 | 8.0 | 7.8 | 7.5 | 7.4 | 7.4
8.1 | 1.0 | 7
8
0
0 | 7.5 | | | Soecific | conductance
(micromhos | | | 1770 | 1660 | 1870 | - | 2500 | 2980 | 2850 | 2110 | 166 | 1390 | 1120 | 1050 | 1000 | | | | - 1 | %Sat | | 7 | 5 | 38 | | 62 | 75 | 11 | 72 | 69 | †9 | 52 | 56 | 81 | | | | Dissolvad | moo | | 6.9 | ↑° L | 7.7 | | 9.5 | 8.7 | 0.6 | 7.5 | 7.3 | 4.9 | 9.4 | 5.0 | 7.2 | | | | Tamp
in OF | | | L 9 | 28 | 84 | | 14 | 817 | 14 | 26 | 55 | 65 | 22 | 2 | 70 | | | | Discharge Tamp | | | 53 | 94 | 136 | | 106 | 105 | % | % | 145 | 88 | 20 | T3 | 221 | | | | Dats
ond time
sampled | P.S.T. | 1963 | 10/8 | 11/5 | 12/3 | 1964 | 1/7 0820 | 2/4
0735 | 3/3
0740 | 0080 | 5/5
0615 | 6/9 | 7/7 | 8/4
0715 | 9/1 | o Field pH. b Laborotory pH. c. Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate ($\mathsf{PO_{\bullet}}$) Determined by addition of analyzed constituents. e Derived from canductivity vs TDS curves. h Annual medion and range, respectively. Calculated from analyses af duplicate monthly samples made by California Department of Public Health, Division of Labaratories, ar United States Public Health Service. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS); United States Geological Survey, Quality of Water Magles Department of Water and Power (LADWP); City of Los Angeles, Department of Water Resources (DWR); as indicated. Public Health (LBDPH); Terminal Testing Lobaratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE (STA. NO. 26b) | | 7280 | y ₂ | | | | | | | | | | | | | | | |--------------------------|--|----------------|--------------|-------|--------------|------|-------------|-------------------|--------------|-------------|----------------------|-------------|-------------|-------------|----------------------------------|--| | | Analyzed
by i | SSSO | | | 1.01 | | | | | | | | | | | | | 4 | Hordness bid - Coliform se CoCO ₃ ity MPN/ml Totol N.C. | Median | 12. | 2400. | 6.2 | | | | | | | | | | | | | Tur- | - 514
- 741
- 760 n | | 55 | 15 | 20 | | 15 | 10 | 00 | 10 | 017 | 8 | 04 | 25 | 8 | | | | Hordness
es CoCO _S
Totol N.C.
ppm ppm | | ನ | 105 | 95 | | 95 | 149 | 233 | 199 | 8 | 117 | 126 | 110 | 8 | | | 1 | | | - | 566 | 792 | | 286 | 320 | 907 | 358 | 214 | 256 | 283 | 792 | 205 | | | Par | sod - | | 22 | 26 | 59 | | 55 | 59 | 8 | 53 | 55 | 57 | 5,6 | 55 | - 53 | | | Total | solids
In ppm | ŧ | 3708 | 786e | 762° | | 8878 | 1000 ^g | 1210e | 10908 | 5826 | 738e | 8538 | 762e | 5648 | | | | Other constituents | | | | | | | | | | POt, 0.50
AS 0.00 | :
 } | | | AS 0.00
ABS 0.00
Polt 0.50 | | | | Silica
(SiO ₂) | | | | | | | | | | ଥା | | | | 53 | | | lion | Boron (B) | | 0.1 | 7.0 | 0.8 | | 0.8 | 1:1 | 1.3 | 6.9 | 0.4 | 7.0 | 7.0 | 0.3 | 6.3 | | | r million
per million | Fluo-
ride
(F) | | | | | | | | | | 0.01 | | | | | | | | Ni-
trate
(NO ₃) | | | | | | | | | | 3.4 | | | | 4.9
0.08 | | | ports pe | Chio-
ride
(CI) | | 2,60 | 5.92 | 150 | | 203
5.73 | 228
6.43 | 325 | 300 | 150 | 206
5.81 | 231
6.52 | 212
5.98 | 154 | | | Ē | Sul -
fote
(SO ₄) | | | | | | | | | | 564
2.37 | | | | 1.9 | | | constituents | Bicor-
bonote
(HCO ₃) | | 2.39 | 3.21 | 3.38 | | 3.80 | 208 | 3.38 | 194
3.18 | 164 | 162 | 181
2.97 | 188
3.08 | 17th
2.85 | | | Mineral con | Corbon-
ofs
(CO ₃) | | 000 | 0.00 | 0.00 | | 0.00 | 0.0 | 4
0.13 | 0.00 | 0.0 | 4
0.13 | 5 | 0.00 | 0.0 | | | E | Patas-
sium
(K) | | | | | | | | | | 3.4 | | | | 3.7 | | | | Sodium
(No) | | 3.04 | 154 | 158
6.87 | | 158
6.87 | 210 | 280
12.18 | 186
8.09 | 5.31 | 155 | 164 | 147 | 110
4.78 | | | | Colcium Magne-
sium
(Co) (Mg) | | | | | | | | | | 24
1.93 | | | | 22 1.80 | | | | Coleium
(Co) | | 2.82 | § .32 | 5.28 | | 5.72° | 0 <u>1.0</u> | 8.16 | 7.16 | 2.30 | 5.12 | 5.66 | 5.28 | 2.30 | | | | E alo | | 7.5 | 7.5 | 7.3 | | 7.7 | 0.0 | 8.2 | 200 | 8.0 | 8.0 | 8 B. E. | 9.2 | 9.0 | | | o i jude o | conductance
(micrambas
at 25°C) | | 629 | 1300 | 1260 | | 1400 | 1590 | 2000 | 1720 | 456 | 1220 | 1320 | 1260 | 742 | | | | | | 83 | \$ | 75 | | 91 | 22 | 66 | 115 | 96 | 96 | 106 | 66 | 8; | | | | Dissolved oxygen ppm %So | | 7.5 | 4.00 | 9.1 | | 10.5 | 10.0 | 11.2 | 11.0 | 9.8 | 9.5 | 9.5 | 8.3 | 9.7 | | | | Temp
in op | | 66 | 59 | 77 | | 84 | 25 | 8 | ₫ | 58 | 63 | 73 | 72 | 69 | | | | Dischorge Tamp
in cfs in of
Gage off | | | | | | | | | | | | | | | | | | ond time
sompled
P.S.T. | 1963 | 10/8 | 11/5 | 12/3
1035 | 1964 | 1/7 | 2/4 | 3/3 | 1010 | 5/5 | 6/9 | 0840 | 8/14 | 9/1 | | b Labaratory pH. c Sum of colcium and magnesium in epm. d Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.) f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labarataries, or United States Belatives, Quality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR); United States Branch (USPB); Son Bernardino County Flood Carter (SBCFO), Metropoliton Water District of Southern California (WMD), Los Angeles Department of Water Resources (DWR), as indicated. Public Health (LEDPH), Terminal Testing Labaratories, Inc. (TTL), or California Department of Water Resources (DWR), as indicated. SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE (STA. NO. 25c) | | Pa z | | | | | | | | | | | | | | | | |------------------------|----------------------------------|--------------------|--------------|------------------|-------------------|-------------------|------|-------------------|-------------------|-------------------|-------------------|---|------------------|------------------|--------------|---| | | Anolyzad
by i | | D VOII | | | | | | | | | | | | | | | | bid - Coliform | | Modification | Maxtmum | Minimum
6.2 | | | | | | | | | | | | | | P d d | | | 8 | 15 | 35 | | 8 | 15 | 8 | 8 | 30 | 30 | 8 | 35 | 30 | | | Hordness
os CoCO ₃ | PPC | | 112 |
233 | 203 | | 129 | 177 | 1458 | 325 | 151 | 151 | 164 | 149 | 143 | | | | Total | | 562 | 752 | 392 | | 357 | 8111 | 0119 | 764 | 294 | 308 | 317 | 310 | 300 | | | | | | 55 | 29 | 28 | | 59 | 8 | 59 | 26 | 277 | 75 | 26 | 56 | 55 | | Toto | Police
Police | in pp | | 729 ^e | 1318 ^e | 1125 ^e | | 1020 ^g | 1259 ^e | 1790 ^e | 1353 ^e | 7968 | 857 ^e | 869 ^e | 851e | 822 ^g | | | d d | | | | | | | | | | | ABS 0.1
Po ₁ 0.35
As 0.0 | | | | ABS 0.1.
Po _t 0.35
As 0.01 | | | Silico | SiO ₂) | | | | | | | | | | 91 | | | | 윊 | | 100 | ٦ | <u> </u> | | ង | 0.9 | 1.3 | | 1.2 | 2.1 | 2.3 | 1.7 | 540 | 0.5 | 100 | 7.0 | 1.0 | | million
per million | Ftuo- | | | | | | | | | | | 0.0 | | | | | | 15.1 | 1 | - | | | | | | | | | | 0.05 | | | | 3.7 | | ports pe | Chlo- | (0) | | 230 | 401
11.31 | 318
8.97 | | 237
6.69 | 330 | 545
15.37 | 11.85 | 235 | 269
7.59 | 280
7.90 | 272
7.67 | 7.84 | | 5 | Sul - | (\$0\$) | | 1.98 | | 302 | | 274
5.70 | 4.12
8.58 | 536
11.16 | 372 | 3.21 | 156
3.25 | 153
3.19 | 134
2.79 | 2.75 | | constituents | Bicar- | (HCO3) | | 173
2.84 | 3.77 | 3.77 | | 3.90 | 3.41 | 3.64 | 3.34 | 174 | 192
3.15 | 186
3.05 | 3.21 | 192
3.15 | | Mineral con | 1 | (c ₀) | | 0.17 | 0.0 | 0.0 | | 000 | 4 0.13 | 0.0 | 000 | 000 | 0.0 | 0.0 | 0.0 | 0.00 | | , Min | Potos- | (X) | | | | | | | | | | 0.11 | | | | 8.t
0.0 | | | Sodium | (0 N) | | 1148
6.11 | 275
11.96 | 250
10.88 | | 218
9.48 | 312 | 430
18.70 | 288
12.53 | 164 | 166
7.22 | 186
8.09 | 18th
8.00 | 17 ⁴
7.57 | | | Mogne- | (Mg) | | | | | | | | | | 34
2.79 | | | | 2.66 | | | Calcium | | | ° 5.24 | 8.44 | 7.84° | | 0.4B | 36.8 | 12.80 | 9.84 | 3.09 | 6,16 | £.9 | 6.20 | 67
3.34 | | | I a | م | | 4.7 | 7.5 | 8.2 | | 7.9 | 8.3 | 8.0 | 7.8 | 8.1 | 7.9 | 8.0 | 8.0 | 8.5 | | Specific | conductonce | | | 1250 | 2260 | 1930 | | 1630 | 2160 | 3070 | 2320 | 1360 | 1740 | 1490 | 1460 | 0041 | | | | %Sot | | 82 | 91 | E | | 88 | 85 | 8 | 107 | 95 | 75 | 99 | 75 | ₹. | | | Dissolved | mad | | 7·ħ | 9.1 | 8.5 | | 10.5 | 9.8 | 10.5 | 0.11 | 9.8 | 7.7 | 5.9 | 9.9 | 6.9 | | | Temp
in OF | | | 8 | 58 | 1,3 | | 94 | 841 | 147 | 57 | 57 | 59 | 73 | 72 | 9 | | | Oischorge Tamp
in cfs in oF | | | 94.8 | 312 | 126 | | 256 | 189 | 122 | 142 | 183 | 155 | 118 | 88 | 106 | | | Dots
ond time
sampled | P.S.T. | 1963 | 10/8
0930 | 11/5 | 12/3
0910 | 1961 | 1/7
0910 | 2/4
0840 | 3/3
0830 | 0780 | 5/5 | 6/9
073J | 7/7
0715 | 8/14 | 9/1
0740 | a Freld pH. b Lobaratory pH. c Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO,) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Mineral analyses made by United States Geologicol Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Water Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laborataries, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service. TABLE D-2 (Cont.) ## ANALYSES OF SURFACE WATER SAN JOAGUIN RIVER AT FRIANT DAM (STA. NO. 24) | | Anolyzed
by i | USGS | | | | | |--|---|---|----------------|---------------------------------|--------------|---| | | Hordnass bid Coliform as CoCO ₃ ity MPN/ml Total N.C. nppm | Median
0.62
Maximum
62.
Minfmum | 0.23 | | | | | 1 | - pid - | <u>د</u> | -1 | m | 77 | 4 | | | N C. | 0 | 0 | 0 | 0 | 0 | | | Hardi
DS Cc
Total
ppm | 12 | 14 | 12 | # | 21 | | | Son in the second | 36 | 38 | 39 | 97 | £ 17 | | Total | dis-
solived
solids
In ppm | 36.6 | 39e | 38€ | 34e | 388 | | | Other constituents ^d | | | ABS 0.00
POL 0.10
As 0.00 | | ABS 0.0
Pol ₁ 0.05
As 0.05 | | | Silica
(SoS) | | | 9.2 | | গ্ৰ | | Hion | 5 | 0.0 | 0:0 | 0.0 | 0.0 | ि | | millior
er mi | Flub-
ride
(F) | | | 0.1 | | | | ports per million
equivalents per million | Ni-
trote
(NO ₃) | | | 2.0 | | 00
00
00
00
00
00 | | equiv | | 3.8 | 1.5 | 4.2 | 3.0 | 8.00
0.00 | | E | Sul -
fate
(SO ₄) | | | 0.0 | | 0000 | | nstituents | Bicar-
bonate
(HCO ₃) | 16
0.26 | 18
0.30 | 0.25 | 16
0.26 | <u>17</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Mineral constituents | Corban-
ote
(CO ₃) | 0:0 | 0.0 | 0.0 | 0.0 | 0.00 | | ž | Potas-
sium
(K) | | | 1.0 | | 00000 | | | Spdium
(Na) | 3.3 | 3.9 | 3.8 | 0.19 | 0.19 | | | Colcium Mogne-
sium
(Co) | | | 0.5 | | 0.08 | | | Calcium
(Co) | 0.25 | 0.28 | 0.20 | 0.22 | 3.2.5
0.16 | | | 돌이 | 7.3 | 6.8 | 7.3 | 7.7 | 0 P. | | Capillip | conductance
(micramhos
at 25°C) | 1.55 d. | 87 | 777 | 27 | ত
ব | | | Dissolved oxygen | 89 | 17 | 105 | 91 | N 80 | | | 1 | 7.7 | 8.7 | 10.6 | 10.0 | . 6 | | | Temp
in oF | 67 | 7.5 | 84 | 52 | 51 | | | Dischorge Temp
in cfs in OF | 88 | 51 | 126 | 171 | 120 | | | Dote
and time
sampled
P.S.T. | 1963
10/7
0445 | 1,713
084.5 | 5/11 0645 | 7/13
0820 | 9/17 | o Field pH. b Laboratory pH. c Sum of colcium and magnesium in epm. d Arsenic (As), olkyl benzene sulfonate (ABS), and plosphate (PO.) f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. Gravimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropoliton Water District of Southern California (MMD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Water Resources (DMR); as indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service. SAN JOACUIN RIVER NEAR GRAYSON (STA. NO. 26) | | Anolyzed
by i | T | uses | | | | | | | | | | | | | | |----------------------|---------------------------------------|--------|--------|-----------------|----------------|------------------|------|------|-------------|-------|------------------|--------------------------------|------|-------|--------------|---------------------------------| | | bid - Coliform ity MPN/mi | 1 | Median | 230.
Maximum | Minimum
13. | | | | | | | | | | | | | | Pid
Figure | | | 13 | 5 | 10 | | 25 | 8 | 200 | 15 | 20 | 35 | 9 | 15 | 15 | | | 800 Z | E do | | 777 | 113 | 911 | | 75 | 140 | 592 | 153 | 35 | 87 | 131 | 141 | 7. | | | | E do | | 170 | 298 | 304 | | 276 | 330 | 1,70 | 324 | 242 | 248 | 313 | 338 | 232 | | | - Po | | | 54 | 75 | 57 | | 57 | 99 | 96 | 54 | 52 | 53 | 54 | 49 | 52 | | Total | solved
solids
in opm | | | 454° | 873e | 867 ^e | | 790e | 962e | 12126 | 879 ^e | 610 ^g | 642e | 802e | 332° | 601E | | | Other constituents | | | | | | | | | | | ABS 0.0
POU 0.60
As 0.00 | | | | ABS 0.0
Pop. 0.50
As 0.00 | | | Silica
(SiO ₂) | | - | | | | | | | | | 50 | | | | 81 | | lion | 5 | | | 0.0 | 0.5 | 0.7 | | 0.1 | 0 | 1.1 | 0.8 | 0.3 | 7.0 | 0.3 | 0.4 | 0.4 | | million | Fluo- | 5 | | | | | | | | | | | | | | | | ports per million | rote
trote | (MO3) | | | | | | | | | | 6.1 | | | | 3.4 | | od | Chio- | 3 | | 3.24 | 231 | 225 | | 186 | 238 | 343 | 240
6.77 | 155 | 162 | 215 | 218 | 154 | | Ē | Sul -
fote | (aug) | | | | | | | - | | | 109
2.27 | | | | 106
2.21 | | atituents | Bicor -
bonate | (E00F) | | 154
2.52 | 3.61 | 3.70 | | 244 | 224
3.67 | 250 | 3.41 | 164
2.59 | 3,21 | 3.64 | 240
3.93 | 193
3.16 | | Mineral constituents | Carbon - | | | 000 | 000 | 000 | | 0.00 | 0.13 | 0.00 | 0.00 | 1½
0.47 | 000 | 0.00 | 0000 | 0.00 | | Mine | Potos- | 3 | | | | | | | | | | 0.10 | | | | 3.4
0.09 | | | Sodium
(No) | | | 3.96 | 164 | 182
7.92 | | 168 | 230 | 275 | 178
7.74 | 5.35 | 130 | 168 | 152 | 5.18 | | | Magne- | (BW) | | | | | | | | • | | 30 | | | | 2.34 | | | Calcium
(Ca) | | | 3.40 | 3.96 | 90.3 | | 5.52 | 09.9 | 01.6 | 84.9 | 48
2.40 | 96.4 | 92.9 | 21.3 | 7.30
5.30 | | | E a | م | | 8.0 | 7.9 | 000 | | 8.0 | 000 | 7.7 | 800 | | 7.5 | 7 0 B | 80 00
101 | 8.0 | | | conductonce
(micromhos
of 25°C) | | | 194 L | 1470 | 1460 | | 1330 | 1620 | 2040 | 1480 | 1020 | 1080 | 1350 | 1400 | 1040 | | | | %2ar | | 79 | 105 | 82 | | 83 | 70 | 144 | ඩ් | © | 8 | 326 | 178 | 2.6 | | | | Edd | | 7.3 | 10.4 | 9.1 | | 3.5 | 7.6 | 15.0 | 8.1 | 8.3 | ÷ ; | 10.3 | 14.9 | 8 8 | | | Temo
in OF | | | 29 | 61 | 51 | | 1,8 | 53 | 56 | 62 | 69 | 72 | 79 | 8 | 69 | | | Oischarge Temp
in cfs in oF | | | 930 | 570 | T35 | | 730 | 515 | 250 | 560 | 094 | 362 | 320 | 220 | 005 | | | ond time
sompled | 1.5.1. | 1963 | 10/12 | 11/9 | 12/9
1555 | 1961 | 1/9 | 2/3 | 3/9 | 4/1
1135 | 5/7 | 6/4 | 7/8 | 7/31 | 9/3
0845 | b Laborotary pH. c Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO,) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Surceau of Reclamation (USBR);
United States Public Health Service (USPHS), Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LBDPH); Try of Long Beach, Department of Water Resources (DWR); as indicated. h Annual median and ronge, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Divisian of Laboratories, or United States Public Health Service ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE (STA. NO. 26a) | | Analyzed | by 1 | USGS | | | | | | | | | | | | | | |----------------------|--------------|---|--------|-----------------|----------------|------------|------|-------------|------------------|--------------|---------------------|--|-------------|-------------|------------------|---| | | Coliform | a nppm MPN/mi | Median | 230.
Maximum | Minimum
23. | | | | | | | | | | | | | | Tur-
bid- | n ppm | | 5 | - | 10 | | 15 | ω | ಜ | 15 | 50 | 25 | 20 | 0† | 15 | | | 18.8e | ပို့ z ရှိ | | 8 | 37 | 82 | | 36 | 85 | 157 | 121 | 105 | 114 | 126 | 148 | 43 | | | | | | 122 | 101 | 48 | | 125 | 8 | 308 | 262 | 5ħ6 | 568 | 282 | 315 | 232 | | | Cent | - poe | | 53 | 52 | 53 | | 54 | 57 | 54 | 51 | 25 | 45 | 53 | 52 | 25 | | | - | solide
in opm | | 310e | 268e | 223e | | 338° | 538 ^e | 787° | e ^{†199} | 570 ^g | e70° | 869 | 792 ^e | 6108 | | | | Other constituents | | | | | | | | | | ABS 0.1
PO ₄ 0.65
As 0.00 | | | | ABS 0.1
PO _{1,} 0.75
As 0.01 | | | | Silico
(SiO ₂) | | | | | | | | | | ম | | | | গ্ৰ | | ا ا | | Boron
(B) | | 0.0 | 0 | 0.2 | | 0.2 | 0.5 | †·0 | 0.5 | 0.3 | 0 | 7:0 | 70 | 0.4 | | million | | Flua-
ride
(F) | | | | | | | | | | 0.0 | | | | | | parts per million | | Ni-
trote
(NO ₃) | | | | | | | | | | 0.12 | | | | 0.07 | | ď | Ainha | Chlo-
ride
(CI) | | 89
2,51 | 8 8 8 | 60 | | 89 | 151 | 27.1
7.64 | 218 | 5.11 | 221 | 242 | 289 | 180
5.08 | | .5 | | Sul -
fote
(SO ₄) | | | | | - | | | | | 81
1.69 | | | | 81
1.69 | | stituents | | Bicor-
bonate
(HCO ₃) | | 1,84 | 1.28 | 1.1 | | 108 | 140
2.29 | 3.02 | 172
2,82 | 156
2.56 | 3.08 | 3.11 | 3.28 | 187
3.06 | | Mineral constituents | | Corban-
ate
(CO _S) | | 000 | 0.00 | 000 | | 0.0 | 000 | 0.0 | 0.0 | 0.27 | 000 | 000 | 000 | 0.00 | | Mine | | Petos-
sum
(X) | | | | | | | | | | 0.12 | | | | 0.12 | | | ľ | Sodium
(No) | | 6h
2.78 | 50
2.18 | 1.91 | | 68
2.96 | 5.31 | 166 | 12 <u>7</u>
5.52 | 5.05 | 221
6.18 | 144
6.26 | 158
6.87 | 5.22
5.22 | | | | Mogne-
sium
(Mg) | | | | | | | | | | 25.42 | | | | 1.70 | | | | Calcium
(Ca) | | 2,44 | 20.5 | 1.68 | | 2.50 | <u>00.4</u> | 6.16 | 5.24 | 20
2.50 | 5.36 | 5.64 | 2.24 | 2.94 | | | : | . e o | | 7.6 | 7.8 | 7.4
7.5 | | 7.5 | 7.9 | 8.0 | 7.7 | 8.5 | 8.3 | 7:9 | 7.5 | 7.3 | | | Specific | (micromhos
of 25°C) | | 925 | 181 | 399 | | 605 | 796 | 1410 | 1190 | 1000 | 1200 | 1250 | 1420 | 1040 | | | pay | %Sot | | 72 | 8 | 82 | | 82 | 89 | 125 | 85 | 93 | 62 | 102 | 100 | 88 | | | | oxygen
ppm %Sot | | 6.5 | 8.8 | 0.6 | | 9.5 | 7.5 | 13.0 | 8.2 | 8.T | 7.0 | 8.7 | 8.7 | 7.3 | | | , emo | in of | | 19 | 62 | 25 | | 50 | 22 | 57 | 62 | 99 | 72 | 1/2 | †L | 9 | | | ischorge | in cfs in ^o F | | 425 | 2255 | 2945 | | 2335 | 1550 | 510 | 755 | 750 | 485 | 455 | 300 | 1,775 | | | | and time
sompled
P.S.T. | 1963 | 10/12 | 11/9 | 12/9 | 1961 | 1/9
5111 | 2/3 | 3/9 | 1,/1 | 5/7 | 6/4 | 1/8 | 7/31 | 9/3 | a Field pH. b Laboratory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), olkyl benzeno sulfonoto (ABS), and phosphato (PO.) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laborataries, or United States Bealant Service. Internal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBPC); United States Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LBDPH); Teminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. SAN JOAQUIN RIVER NEAR MENDOTA (STA. NO. 25) | | | Analyzed
by i | T | nsgs | | | | | | | | | | | | | | |-------------------|-------------------------|--|----------|--------|----------------|-----------------|------------|------|-------------------------------|------------------|-------------|------------------|---------------------------------|------------------------|--------------|--------------|----------------------------------| | L | | | + | | 2.0 | | | | | | | | | | | | | | | ; | Hordness bid - Coliform" os CoCO ₃ ify MPN/ml | | Median | 6.2
Maximum | Minimum
0.13 | | | | | | | | | | | | | | T or | - piq
- i y
- i y
- i y | | | 32 | 8 | 54 | | 10 | ព | 22 | 35 | 2 | 25 | 3 | 745 | e 3 | | | | 0000 N | E G | | 33 | <u>بر</u> | 8 | | 64 | 63 | 47. | 3 | 53 | 59 | 20 | 32 | Z Z | | | | | e e | | 139 | 113 | 130 | | 71/1 | 158 | 151 | # | 140 | 106 | 145 | 100 | 150 | | _ | 9 | tu pos | | | L# — | 87 | 20 | | 20 | 52 | L †(| 4 | 1,47 | 145 | 61 | 47 | ₹5 | | | Totol | solios
Eog | | | # | 2T9e | 323 | | 361 | ηΤη ₀ | 349e | 229 ^e | 3188 | 23¼ ^e | 356 | 270° | 407 ⁸ | | | | Other constituents d | - 1 | | | | | | | | | | Pol, 0.25
As 0.01
ABS 0.0 | | | | ABS 0.1.
Pol, 0.15
As 0.01 | | | | Silico
(\$,0,0) | | | | | | | | | | | 阳 | | | | 16 | | | lion | Boron
(B) | | | 0.2 | 0.1 | 0.3 | | 0.2 | 0.3 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | ु। | | million | er ail | Fiuo- | | | | | | | | | | | 0.00 | | | | | | ports per million | equivolents per million | rote. | (No.3) | | | | | | | | | | 0.03 | | | | 0.11 | | ă | equivol | Chlo- | -+ | | 2.12 | 1.92 | 80
2.26 | | 94 2.65 | 105
2.96 | 89
2.51 | 1.35 | 83
2.34 | 5 ⁴
1.52 | 2.68 | 82
2.31 | 3.50 | | | <u>.</u> | Sul - | \dashv | | | | | | | | | | 1.06 | | | | <u>77.19</u> | | | fituents | Bicor-
bonote | | | 128
11.5 | 103 | 134 | | 7
1.8
1.8
1.8
1.8 | 1.90 | 94 | 1,41 | 1.74 | 94, | 1.9 | 1.36 | 121
1.98 | | | Mineral constituents | Corbon - E | | | 00.0 | 000 | 0.00 | | 2.0 | 0000 | 0.00 | 000 | 0.0 | 000 | 0 8 | 000 | 0.0 | | | Mine | Potos- C | €
E | | | - | | | | | | | 0.05 | | | | 3.4 | | | | Sodium | | | 57
2.48 | 148
2.09 | 2.61 | | 65
2.83 | 3.44 | 61 2.65 | 36 | 57
2.48 | 1.73 | 64
2.78 | 53 | 82
3.57 | | | | Mogne-
Sium | (Mg) | | | | _ | | | | | | 1.30 | | | | 1.35 | | | | Colorum | | | 2.78 | 2.26 | 2.60 | | 2.88°c | 3.16 | 3.02 | 2.22 | 1.50 | 2.14
2.14 | 2.90
2.90 | 2.00 | 33
1.65 | | r | | I a | ما | | 8.2 | 7.3 | 8.1 | | 7.7 | 8.0 | 7.8 | 7.7
8.0 | 7.7 | 7.6 | 7.7 | 8.2 | 7.5 | | | Specific | (micromhos
at 25°C) | | | 595 | 785 | 559 | | η29 | 717 | 603 | 397 | 547 | 101 | 919 | 79t | 21.7 | | | | 1 | %Sot | | 88 | 66 | 93 | | 105 | 102 | 107 | 108 | 105 | 93 | 95 | 001 | 91 | | | | Dissolvad | EGG | | 7.9 | 9.95 | 10.8 | | 13.3 | 11.5 | 11.3 | 10.3 | 9.T | 4.8 | 7.8 | 9.6 | 8.2 | | | | | | | 69 | | <u></u> | | 24 | 20 | 55 | 79 | 19 | 69 | 78 | 47 | 69 | | | | Dischorge Temp
in ofs in oF | | | 156 | 88.50 | נגנ | | 17 | 109 | 320 | 350 | 2714 | 384 | 844 | 1485 | 26 th | | | | ond time | P.S.T. | 1963 | 10/B
0730 | 1000 | 12/9 | 1964 | 1/13 | 2/10 | 3/9 | 4/13
0930 | 5/11 | 6/8
1025 | 7/13 | 8/10
0710 | 9/14
0730 | o Field pH. b Loborotory pH. Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phose (PO.) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health, Service. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of Mater and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Loboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) SAN JOAQUIN RIVER AT PAITERSON BRIDGE (STA. NO. 278) | | | Anolyzed
by i | SDSA | | | | | | | | | | | | | | |-------------------|----------------------|---|--------
--|------------------|------------------|------|-------------|-------------------|-------------------|-------------|---------------------------------|------------------|------------------|-------------|--| | | - | bid - Coliform" | Median | Mand mum | Minimum
6.2 | | | | - | | | | | | | | | | - Ja | - pid - C | | | t- | 90 | | 15 | 15 | 6 | 15 | <u>۾</u> | 8 | 15 | 25 | 15 | | | • | P C C S | |
72 | 113 | 89 | | 16 | 150 | 227 | 151 | 88 | 16 | 119 | 76 | 72 | | | | | 7 | 134 | 280 | 260 | | 280 | 324 | 705 | 302 | 236 | 232 | 2775 | 256 | 236 | | | Par- | sod -
ium | | 20 | 57 | 28 | | 57 | 61 | 8 | 57 | 57 | 26 | 2.4 | 26 | 25 | | | Total | solids
n ppm | bt. | 335 | 837 ^e | 759 ^e | | 8378 | 1020 ^g | 1240 ⁶ | 9108 | 658 ⁸ | 655 ⁸ | 795 ⁸ | 746e | 650 ^g | | | | Other constituents d | | | | | | | | | | ABS 0.1
Pol, 0.55
As 0.00 | | | | ABS 0.0
Po ₁ 0.55
As 0.00 | | | | Silica
(SiO ₂) | | | | | | | | | | 욊 | | | | 췺 | | | lion | Boron
(B) | | 0:1 | 0.5 | 0.8 | | 0.8 | 1.2 | 1:1 | 0.7 | 4.0 | 0.3 | 4.0 | 0.3 | 0.3 | | million | per million | Fluo-
rids
(F) | | | | | | | | | | 0.1 | | | | | | ports per million | ır | Ni-
trote
(NO ₃) | | | | | | | | | | 4.3
0.07 | | | | 0.08 | | ă | equivolents | Chlo-
ride
(CI) | d | 2.29 | 228
6.43 | 187
5.28 | | 189
5.33 | 240
6.77 | 325 | 242
6.83 | 175 | 174 | 238 | 204
5.75 | 185 | | | = | Sul -
fote
(SO ₄) | | | | | | | | | | 128
2.66 | | | | 12.3
13.3 | | | STITUENTS | Bicar-
bonats
(HCO ₃) | | 2.23 | 3.34 | 3.21 | | 3.64 | 212
3.47 | 3.51 | 3.02 | 180
2.95 | 172
2.82 | 3.11 | 3.18 | 323 | | | Minsrol constituents | Carbon-
ote
(CO ₃) | | 000 | 0.00 | 0.6 | | μ
0.13 | 0.00 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 000 | 0.00 | | 1 | CI E | Potas-
sium
(K) | | | | | | | | | | 3.4 | | | | 0.09 | | | | Sodium
(Na) | , | 2.65 | 168 | 164
7.13 | | 71.0 | 232 | 276 | 186 | 144 | 136
5.92 | 169 | 34.9 | 136 | | | | Magne-
sium
(Mg) | | | | | | | | | | 2.18 | | | | 27.13 | | | | Calcium
(Co) | | 2.67 | | 5.20° | | 5.60 | | | | | 1.64 | 5.50 c | | 2.59 | | L | | E a 0 | | 2. 10. E. | 7.5 | 7.½
8.3 | | 7.8 | 8.0 | 8.2 | 8.0 | 7.9 | 7.8
8.1 | 8.0 | 8.2 | 8.0 | | | Specific | (micramhas
at 25°C) | | 578 | 1390 | 1260 | | 1350 | 1620 | 1990 | 1450 | 0,111 | 200 | 1320 | 1240 | 0111 | | | | | | 8 | 93 | 11 | | 88 | 16 | 104 | 901 | 104 | 8 | 120 | 211 | 95 | | | | Dissolved oxygen ppm %50 | | 7.1 | 9.5 | 8.6 | | 10.0 | 6.6 | 11.8 | 10.4 | 10.5 | 8.6 | 10.8 | 9.8 | 0.6 | | | | Ten or i | | 2 | 59 | # | | 64 | 53 | 50 | 19 | 65 | ₫ | 72 | 72 | 65 | | | | Dischorgs Tamp
in cfs in oF | | | | | | | | | | | | | | | | | | ond time
sempled
P.S.T. | 1963 | 10/8
0011 | 11/5
1100 | 12/3
1105 | 1964 | 1/7
1115 | 2/4
1100 | 3/3
1040 | 1,7
1040 | 5/5 | 6/9
0910 | 7/7
0925 | 8/1,00945 | 9/1
0945 | 250 b Loboratory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), alkyt benzene sulfanate (ABS), and phasphate (PO.) f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. g Grovimetric determination. h Annual median and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); San Bernardino County Flood in Mineral analyses made by United States Geological Survey, Quality of Water Branch (USCS); United States Department of Mater and Prover (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of County Department of Mater Resources (DWR); as indicated. SAN JOAQUIN RIVER NEAR VERNALIS (SIA. NO. 27) | | Analyzad | by i | 11503 | 3 | | | | | | | | | | | | | |--------------|---|--------------------------------------|--------|------------------|------------------|--------------|------|------------|------------------|-------------|------------------|--|---------------|---------------------------|-------------|--| | | Coliform | E/NAM | Median | 620.
Maximim | Minimum
50. | | | | | | | | | | | | | | - piq | n ppu | | 25 | ۲ | 30 | | 15 | 9 | 10 | 8 | 20 | 25 | 2 | 145 | 01 | | | Hordness | S O E | | 772 | 32 | 772 | | 27 | 53 | 125 | 122 | 85 | 72 | 137 | 144 | 18 | | | | | | 136 | 97 | 87 | | 93 | 144 | 264 | 566 | 529 | 808 | 290 | 306 | 234 | | | Cent | £ 1 | | 87 | 51 | 20 | | 12 | 53 | 53 | 53 | 54 | 17 | 53 | 52 | 52 | | | NO
- NO
- NO
- NO
- NO
- NO
- NO
- N | solids
in pom | | 323 ^e | 251 ^e | 146° | | 245° | 363 ^e | 9099 | 671 ^e | 5798 | 505e | 705 ^e | 784° | 6018 | | | 7 | Other constituents | | | | | | | | | | ABS 0.1
PO ₁ 0.55
As 0.01 | | | | ABS 0.1
PO ₁ 0.55
As 0.00 | | | | Silica
(SiO ₂) | | | | | | | | | | 22 | | | | 62 | | | 1 | Boron
(B) | | 0.1 | 0.1 | 0.2 | | 0.2 | 0.3 | 0.3 | 4.0 | 4.0 | 0.3 | 4.0 | 0.3 | 0.3 | | million | | ride
(F) | | | | | | | | | | 0.1 | ` | | | | | 161 | 1 | trate
(NO _S) | | | | | | | | | | 5.0 | | | | 5.8 | | ports p | | ride
(CI) | | 87
2.45 | 70
1.97 | 50 | | 58
1.64 | 2.68 | 209 | 223
6.29 | 171 | 146 | 7.00 | 259
7.31 | 182
5.13 | | 5 | 13 | fote
(SO ₄) | | | | | | | | | | 82
1.71 | | | | 78
1.62 | | constituents | | bonate
(HCO _S) | | 2.23 | 1.29 | 1.20 | | 81 1.33 | 107 | 166 | 176
2.88 | 176
2.88 | 166
2.72 | 3.06 | 3.25 | 3.11 | | · I | | corbon-
ofe
(CO ₃) | | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 20.07 | 0.00 | 0.00 | 0.00 | 000 | 000 | 0.00 | | Mineral | 1 2 | Sium
Sium
(K) | | | | | •• | | | | | 4.4
0.11 | | | | 5.8 | | | | Sodium
(No) | | 2.52 | 1,7
2,04 | 38 | | 1.91 | 3.22 | 136
5.92 | 139 | 5.18 | 4.31 | 3 ¹ 49
6.48 | 150
6.52 | 11.9
5.18 | | | | Sium
Sium
(Mg) | | | | | | | | | | 25 2.08 | | | | 24
1.94 | | | | Calcium
(Ca) | | 2.75 | 1.94° | 1.68 | | 1.86 | 2.82 | 5.28 | 5.32 | 2.50 | 4.16 | 5.80 | 6.12 | 55
2.74 | | | Ī | 80 | | 8.1 | 7.2 | 7.1 | | 8.2 | 7.4 | 7.6 | 7.7 | 7.6 | 7.8 | 8.1 | 8.0 | 7.8 | | | Conductance | of 25°C) | | 573 | 544 | 258 | | 1435 | 643 | 0711 | 1190 | 1010 | 896 | 1250 | 1390 | 1030 | | | | 100 | | 78 | 85 | 73 | | 87 | 92 | 95 | 104 | 95 | 8. | 101 | 75 | 91 | | | ۵ | шдд | | 7.0 | 9.8 | 8.8 | | 10.1 | 10.3 | 10.3 | 6.6 | 9.6 | 8.6 | 8.8 | 8.5 | 8.3 | | | Temp | 5 | | 2 | 59 | 145 | | 74 | 77 | 23 | 1 9 | 58 | † 9 | 73 | 72 | 88 | | | Discharge Temp | B | | 5300 | 2172 | 0694 | | 3184 | 2370 | 1050 | 919 | 248 | 946 | 004 | 337 | 826 | | | Oote
and time | P.S.T. | 1963 | 10/9 | 11/6 | 12/4
0920 | 1964 | 1/8 | 2/5 | 3/4 | 4/8
1015 | 5/6
0830 | 6/10
04/90 | 7/8
0715 | 8/5
0820 | 9/2
0830 | Loborotory pH. Sum of calcium and magnesium in epm. Arsenic (As), othyl benzene sulfonate (ABS), and phosphote (PO. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS), Son Bernardino County Fload in Mineral analyses Replayed States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR); United States Branch (USPHS), Son Bernardino County Fload Control District (SEMPH), Carrior (USPHS), Son Bernardino County (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Water Resources (DWR); as
indicated. h Annual median and range, respectively. Catculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); Son Bernardino County Flood i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USSS); United States Department of Mater and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles District of Southern California (WWD); Las Angeles District (SBCFCD); Metropolitan Water District of Southern California (WWD): Las Angeles District (SBCFCD); Metropolitan Water District of Southern California (WWD): ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) STANTSLAUS RIVER AT KOETITZ RANCH (STA. NO. 29) | | Anolyzed
by 1 | | SOSU | | | | | | | | | | | | | | | |----------------------|---------------------------------|--------------------|--------|-------------------------|----------------|------------------|------|-----------------|-------------|------------|------|--|-------------|------------|-------------|---|---| | | bid - Coliform ity MPN/mi | | Wedian | 23.
Maximum
7000. | Minimum
2.3 | | | - | | | | | | | | | | | | - Add | | | ٧ | 2 | 91 | | 9 | 60 | <u>-</u> | 2 | 25 | 9 | 2 | 4 | 0 | | | | 000 | Z | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | | | | 00 E | |
T3 | 8 | 92 | | 37 | 917 | 105 | 22 | 97 | 8 | 110 | 9 | 8 | _ | | | 00.0 | _ | | 52 | 22 | 55 | | 97 | 61 | - 23 | ₹. | 55 | 252 | ₹8 | 8 | % | _ | | Total | solved
solide | u l | ٩ | 131 | 149e | 129 ^e | | 63 _e | 19 <u>6</u> | 188 | 159e | 172 ^g | 159e | 190e | 194e | 156 | | | | Other constituents | | | | | | | | | | | ABS 0.0
PO _L 0.20
As 0.00 | | | | ABS 0.1
PO ₄ 0.30
As 0.01 | | | | Silico | A COLO | | | | | | | | | | 81 | | | | 티 | | | - e | 5 | | | 잉 | 이 | 0.1 | | ं | 1:0 | 100 | ं | 100 | 0:0 | 0.1 | 0 | 0.1 | | | million | Fluo- | E. | | | | | | | | | | 0.0 | | | | | | | ports per million | 1 | | | | | | | | | | | 1,1
0.07 | | | | 4° 2° 4° 0° 0° 0° 4° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° | | | o inc | Chlo- | اق | | 6.2
0.17 | 7.0 | 0 11 | | 3.0 | 3.4 | 12
0,34 | 8.0 | 0.24 | 0.21 | 8.0 | 0.28 | 5.5 | | | .5 | Sul - | (80, | | | | | | | | | | 0.21 | | | | 7.0 | | | tituents | Bicor- | | | 1,62 | 1.98 | 1.59 | | 46
0.75 | 26
0.92 | 2.30 | 121 | 2.13 | 1.95 | 2.31 | 2,43 | 133
2,18 | _ | | Mineral constituents | Corbon | (co ₃) | | 000 | 000 | 000 | | 000 | 000 | 0.03 | 000 | 000 | 000 | 5,17 | 0000 | 0.0 | | | Min | Potos- | Έ | | | | | | | | | | 0.05 | | | | 3.8 | | | | Sodium | | | 11
0,48 | 11 0.48 | 9.7 | | 3.2 | 4.9 | 18
0.78 | 13 | 15 | 14
0.61 | 16
0.70 | 18
0.78 | 15 | | | | Mogne- S | | | | | | | | | | | 9.6 | | | | 8.0
0.66 | | | | Calcium | | | 2,1,5 | 1.76 | 1.52 | | 0.74 | 26.0 | 2.10 | 1.82 | 23 | <u>1.86</u> | ي
20.% | <u>8</u> .8 | 22 1.10 | | | | £ « | م ه | | 8.2 | 7.3 | 7.3 | | 8.1 | 7.5 | 8.3 | 7.9 | 7.9 | 7.7 | 8.5 | 270 | 7.8 | | | | Spacific conductance (micromhos | () -C 3 10 | | 194 | 220 | 191 | | 93 | 112 | 278 | 235 | 257 | 235 | 281 | 288 | 241 | | | | 05 | %Sot | | 8 | 93 | 85 | | 83 | 8 | 76 | | 8 | 96 | זנו | 95 | 55 | | | | Olesolvad | mda | | 8.0 | 6.9 | 10.3 | | 10.8 | 11.11 | 10.3 | 4.6 | 9.3 | 9.1 | p.6 | 8.6 | 5.0 | | | | | | | 2 | 59 | 4 | | 1,8 | 20 | 53 | 73 | 59 | ή9 | 75 | 89 | 89 | | | | Oischorge Temp
in cfs in 9F | | | 297 | 281 | 358 | | 888 | 606 | 182 | 178 | 137 | 149 | 143 | 101 | 141 | | | | Dote ond time | P.S.T. | 1963 | 1230 | 11/3 | 12/4 | 1364 | 1/8 | 2/4 | 3/3 | 1,77 | 5/5 | 6/9
0411 | 7/7 | 8/4
110 | 9/1 | | b Loborotory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), olkyl benzene sulfanato (ABS), and phosphote (PO.) e Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. ²⁵² STANISLAUS RIVER BELOW TULLOCH DAM (STA. NO. 29a) | | _ | | | | | | | | |-------------------|-------------|---|--------------------------------------|------|-----------------|---|-----------------|---| | | | Anolyzed
by i | SDSU | | | | | | | | 4 | bid - Coliform'ity MPN/ml | Median 0.23 Maximum 6.2 Minimum 0.23 | | | - | | | | r | , <u>,</u> | - big | 4 | | m | 4 | m | A | | | | S C C E | 0 | | 0 | н | 0 | 0 | | | | Hordness
as CaCO ₃
Total N.C.
ppm ppm | ଷ | | 27 | 53 | 19 | †ਹ | | L | P | - po- | 15 | | 17 | 19 | 22 | 1 | | | Totol | solide
in opin | 9
7
 | | 98 ⁴ | 894 | 37 ^e | 877 | | | | Other constituents d | | | | ABS 0.0
Po ₁ 0.10
As 0.0 | | AABS 0.0
Pol _t 0.00
As | | | Ì | Silica
(SiO ₂) | | | | 띄 | | 킈 | | | million | Boron
(B) | 0,0 | | 0.0 | 0.0 | 0.0 | 6,3 | | ports per million | per mil | Fluo-
ride
(F) | | | | 0.0 | | | | orts per | equivolents | ntote
(NO ₃) | | | | 0.00 | | 4.5000000000000000000000000000000000000 | | | equiv | Chio-
ride
(CI) | 0.03 | | 3.5 | 0.03 | 0.03 | 0.00
0.00 | | ٩ | | Sul -
fote
(SO ₄) | | | | 0.04 | | 0.02 | | e de la constante | 90118 | Bicor-
bonote
(HCO ₃) | 86.0
84.0 | | 34 0.56 | 27
0.4 | 24
0.39 | 32
0.52 | | Month | | Corbon-
ote
(CO ₃) | 0.0 | | 0.00 | 00.0 | 0.0 | 0.00 | | Ž | 1 | Palos-
sium
(K) | | | | 0.0 | | 0.00 | | | | Sodium
(No) | 0.08 | | 2.6
0.11 | 0.11 | 2.6
0.11 | 0.13 | | | | Mogne-
sium
(Mg) | | | | 0.18 | | 0.16 | | | | Colcium Mogne-
Sium
(Co) (Mg) | 94.0 | | 0.54 | | 0.38 | 0.32 | | | | H B D | 7.2 | | 7.7 | 6.9 | 6.6 | 7.3 | | | Specific | conductonce pH
(micromhos
of 25°C) a | 52 | | 65 | 77 | 20 | 79 | | | | gen
%Sol | 6 | | 8 | | 98 | 14 L | | | | | 6.2 | | 11.2 | | 8,5 | φ.
• | | | | F. i | 8 | | 91 | 63 | 63 | 8 | | | | Discharge Temp
in cfs in aF | 930 | | 1600 | | | 0000 | | | | ond time
eampled
P.S.T. | 196 <u>3</u>
10/7
1115 | 1964 | 1/13
1240 | 5/11
1245 | 7/13
1215 | 9/14
1100 | | _ | | | | | | | | | b Loborotory pH. c Sum of colcium and magnesium in epm. Arsenic (As), olkyl benzene sulfonote (ABS), and phosphote (FO.) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Grovimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survea of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood Control District (SBCFCD); Metropoliton Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Mater Resources (DWR); as indicated. Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. TABLE D-2 (Cont.) TULE RIVER NEAR SPRINGVILLE (STA. NO. 91b) ANALYSES OF SURFACE WATER | | Analyzed
by i | USGS | | | | | | | | | | | | | | |----------------------|---|---------------------------------|-------------|-------------------------|------|------------|--------------|------------------|------------------|--------------------------------|------|------------------|-------------|---|--| | | Hordness bid - Colitorm ^N os CoCO ₃ ity MPN/ml Totol N.C. ppm | No
Samples
Taken | | | | | | | | | | | | | | | | - Piq | | CI . | ٦ | | н | Н | н | н | -1 | н | CV | ~ | Н | | | | N.C.
Ppm. | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 176 | 131 | | 158 | 14.5 | 145 | úL | 92 | 19 | 135 | 150 | 169 | | | | Sod - | | 23 | ส | | 22 | 22 | 27 | 23 | 8 | 22 | 22 | 772 | 56 | | | Totol | solved
solids
in ppm | | 280° | 206° | | 245e | 230 e | 226 ^e | 133 ^e | 1248 | 108 | 213 ^e | 246e | 2718 | | | | Other constituents ^d | | | | | | | | | ABS 0.0
FOL 0.10
As 0.00 | | | | ABS 0.0
PO _{l,} 0.15
As 0.00 | | | | Sinco
(SiO ₂) | | | | | | | | | ଷ | | | | 었 | | | Hion | Baran Silico
(B) (SiO ₂) | | 0.1 | 0:1 | | 0.1 | 0.0 | 0:1 | 0.1 | 2.0 | 0,0 | 0,1 | 0.2 | 0.2 | | | millio
m | Flug-
ride
(F) | | | | | | | _ | | 0.01 | | | | | | | ports per million | Ni-
trote
(NO ₃) | mber | | | | | | | | 1, 1
0,07 | | | | 0.02 | | | Po | Chio-
ride
(CI) | of Nove | 14
0.39 | 10
0.28 | | 12
0.34 | 10
0.28 | 0.28 | 0.07 | 0.06 | 3.5 | 8.5 | 0.34 | 14
0.39 | | | .5 | Sul -
fate
(SO ₄) | ted as | | | | | | | | 0.4 | | | | 6.0 | | | etituents | Bicar-
bonate
(HCO ₃) | Sempling started as of November | 254 | 17 ⁴
2.85 | | 3.44 | 3.38 | 3.11 | 1.92 | 103 | 2.54 | 3.05 | 3.59 | 240
14.06 | | | Mineral constituents | Corbon-
ote
(CO ₃) | Samp | 000 | 0.20 | | 8 0.27 | 0.0 | 8
0.27 | 0.0 | 3 0.07 | 0.0 | 0.0 | 0.03 | 2
0 <u>007</u> | | | Win | Potas-
sium
(K) | | | | | | | | | 1.6 | | | | 4.5 | | | | Sodium
(No) | | 25 | 16
0.70 | | 19
0.83 | 18
0.78 | 18
0.78 | 31 | 8.8
0.38 | 8.8 | 17
0.74 | 22
0.96 | 1.22 | | | | Coleium Magna-
(Co) Sium | | | | | | | | | 0.22 | | | | 12
0.98 | | | | Coleium
(Co) | | 3.52 | 2.62 | | 3.16 | 28.5 | 2.8 | 1.58 | 26 | 1.34 | 2.70 | | | | | | E elo | | 8.2 | 8.5 | | 8.6 | 7.5 | 8.5 | 7.8 | 8.7 | 7.6 | 7:7 | 8.3 | , 8
, 3 | | | | Conductance (micromhos pH of 25°C) a | | #5 # | 312 | | 37.1 | 348 | 342 | 202 | 183 | 191 | 323 | 372 | 1,29 | | | | | | 98 | 88 | | 1 | 89 | ' | 98 | 102 | ėj | 5 | ÷- | 136 | | | | Dissolved
oxygen
ppm %50 | | 80 | 10.6 | | 1 | 1.11 | ' |
10.0 | 11.2 | ₹°5 | ٠٠.
ت | 6.0 | 13.5 | | | | | | 58 | 14.5 | | 147 | 7:5 | 777 | 58 | 52 | 89 | 72 | & | 6 | | | | Discharge Temp
in cfs in oF | | 27 | 63 | | 141 | 94 | 26 | 139 | 711 | 131 | 23 | 5- | m | | | | Dote
ond time
sompled
P.S.T. | 1963 | 11/4 | 12/2 0950 | 1961 | 1/6 | 2/14
1050 | 3/5 | 1,78 | 5/4 | 6/1 | 7/6 | 8/5
1230 | 9/9 | | o Field pH. Derived from conductivity vs TDS curves. b Laboratory pH. Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphota (PO_4) Determined by addition of analyzed constituents. Grovimetric determination. Mineral analyses made by United States Geological Survey, Ovality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Department of Water Department of Water and Power (LADMP); City of Los Angeles, Department of Survey, Ovality (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TIL); or California Department of Water Resources (DWR); os indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. TULE RIVER RELOW SUCCESS DAM (STA. NO. 91) | parts per million | |-------------------| | 4 | | To a contract of | | | | | | Anolyzed
by i | | 11959 | 3 | | | | | _ | | | | | | | | |----------------------|-----------|----------------------|---------------------|---------|--------------------------|------------------|--------------|------|------------------|---------|---------------|------|---|------------------|------------------|-------|---------------------------------| | | 4 | ily MPN/mi | | Moditor | Nextmum | Minimum
.02 | | | | | | | | | | | | | | 2 | P P P P | | | н | CV . | α | | ч | | | 9 | ч | 7 | Q | 4 | н | | | 0 | 00 CO CO 3 | Total N.C. | | 0 | 0 | 0 | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 3 | 50 | Tota
PPm | | 86 | 109 | 11. | | 123 | | | 108 | 100 | 91 | 83 | 98 | 8 | | | Par | - pos | | | 72 | 23 | 23 | | 23 | | | 23 | 22 | 55 | 8 | 22 | ដ | | [] | 9.5 | solved | nda u | | 210 ^e | 173 ^e | 182 | | 196 ^g | | | | 163 ⁸ | 142 ⁶ | 133 ⁶ | 136¢ | 147 | | | | Other constituents d | | | | | | | | | | | ABS 0.00
PO ₄ 0.10
As 0.00 | | | | ABS 0.1
As 0.00
Polt 0.05 | | | ľ | Silica
(SiQs) | 2 | | | | | | | | | | ଷ୍ଠ | | | | 81 | | | | Boron
(B) | | | 0:0 | 0.1 | 0.1 | | 11 | | | 0.1 | 0.1 | 0.7 | 0.2 | 0:1 | 7 | | million | | Fluo- | | | | | | | | | | | 0.2 | | | | | | ports per million | | Ni-
trote | _ | | | | | | | | | | 3.1 | | | | 0.02 | | 0 | | Chio- | (î) | | 0.20 | 0.80 | 9.8 | | 0.11
0.31 | TAKEN | SAMPLES TAKEN | 0.21 | 2.5
0.07 | 6.0 | 5.0 | 0.1 | 0.15 | | Ē | | Sul - | (\$0\$) | | | | | | | SAMPLES | AMPLES | | 6.0 | | | | 0.10 | | Mineral constituents | | Bicar bonote | (HCO ₃) | | 1 ⁴ 1
2.31 | 156
2.56 | 162 | | 162
2.66 | ZS OM | NO S. | 156 | 2.23 | 2.13 | 1.95 | 121 | 2.21 | | eral con | | Carbon - | (00) | | 0.0 | 0.0 | 0.0 | | 7.0 | | | 0.00 | 0.10 | 0.0 | 0.00 | 0.07 | 0.00 | | ž | | Potas- | ĵ. | | | | | | | | | | 0.06 | | | | 2.6 | | | | Sodium
(No) | | | 0.52 | 13 | 16 | | 17
0.74 | | | 15 | 0.57 | 25.0 | 110 | 다. | 0,52 | | | | Calcium Magne- | (Mg) | | | | | | | | | | 5.5 | | | | 0.34 | | | | Calcium
(Co) | | | 3 <u>96.1</u> | 2.18° | 2.28 | | 2,46 | | | 2.16 | 31 | 1.82 | 1.66 | 1.72° | 30 | | | | 표 리 | | | 7.2 | 7.8 | 8.0 | | 8.8 | | | 1.8 | 8.4 | 7.5 | 7.3 | 8.4 | 8.0 | | 3 | Specific | (micromhos | | | 329 | 270 | 285 | | 305 | | | 273 | 247 | 227 | 208 | 212 | 235 | | | 200 | | ppm %Sat | | 88 | 8 | 91 | | 118 | | | 115 | 126 | 29 | 99 | 75 | 92 | | | Diego | osygen | E dd | | 7.5 | 7.3 | 10.2 | | 13.8 | | | 12.2 | 13.5 | 4.9 | 6.1 | 6.5 | 8. | | | Temo | .E | | | 75 | 89 | 84 | | 64 | | | 96 | 55 | 1 9 | 99 | 72 | 72 | | | Dischorne | in of a in of | | | œ | 904 | 83 | | 53 | | | 83 | 94 | 115 | 172 | 112 | L1 | | | | sompled | P.S.T. | 1963 | 10/8 | 11/4 | 12/2
1415 | 1964 | 1/6 | | | 1100 | 5/4
1525 | 6/1 | 7/6 | 8/5 | 1030 | a Field pH. b Laboratory pH. c Sum of calcium and magnesium in epm. d Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO.) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino Country Flood Control District (SBCFCD); Metropoliton Water District of Southern California (MWD), Las Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); os indicated. h Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) TUOLUMME RIVER BELOW DON PRDRO DAN (STA. NO. 31a) | | Anolyzed
by i | USGS | | | | | |--|--|-----------------|-------------------|--|------|---| | | Hardness bid-Coliform A
oe CaCO ₃ ity MPN/mi
Total N.C. | No
Samples | | | - | | | | n ppm | CU | 4 | rl | N | N | | | 0003
N.C. | 0 | 0 | ٦ | 0 | 0 | | | Hordr
Co Co | € ∞ | 10 | 16 | 10 | Ф | | | a na | 2,5 | 13 | 21 | 8 | 53 | | Total | solids
in ppm | 17 ^e | - 51 _e | 348 | 22e | 196 | | | Other constituents | | | ABS 0.0
PO _t 0.05
As 0.00 | | Ass 0.0
Pol ₁ 0.00
As 0.00 | | | Silice
(SiO ₂) | | | 7.8 | | 8 - 17 | | no lilion | Boron
(B) | ं | 0.0 | 2,0 | 0.1 | ી | | multic
per m | Fluo-
ride
(F) | | | 0.00 | | | | parts per million
equivolents per million | rotor
(NO.) | , | | 1.5 | | 0.
0.0 | | viupe | Chlo
Pig
Sign | 0,1 | 0.10 | 1.5 | 0.5 | 9000 | | <u>e</u> | Sul -
fote
(SO.) | | | 0.0 | | 0.02 | | atituent | Bicor -
bonete
(HCO-) | | ्रा ह | 30 | 0.20 | 00.16
0.16 | | Mineral constituents | Cerbon- | 000 | 8 0 | | 000 | 0000 | | M | Potos-
sium
(K) | | | 1.2 | | 0 8:00 | | | Sodium
(No) | H (| 6 8 | 0.00 | 1.9 | 00.00 | | | Calcium Mogne- | | | 1.0 | | 00.00
00.00 | | | Calcium
(Co) | ٦ | را. | 2.2 | 0.0 | 00.12 | | | 돌 | 9-9 | 6.7 | 7.5 | 6.8 | 90
- 140
- 1 | | Chacific | (micromhos of conductance of micromhos of
25°C) | 52 | 88 | 07 | % | 12 | | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 72 | 73 | 87 | 72 | 4- | | | Oiceo | 7.0 | 7.8 | 6. | 7.2 | 7.1 | | | Ten
Peri | 3 | ₹. | t | 99 | 29 | | | Dischorge Temp
in ofe in of | 0721 | 730 | 1440 | 2410 | 1510 | | | ond time
sampled | 1963 | 1310 | 5/7
1325 | 7/8 | 1330 | o Field pH. b Laboratory pH. c. Sum of calcium and magnesium in epm. d. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO_4) f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves. g Gravimetric determination. h Annual median and range, respectively. Calculoted from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPKS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health, Service (USPKS); San Bernardina County Flood Canner (SBCFCD); Metropoliton Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health, Cappeth, Carlo of California Department of Water Resources (DWR); as indicated. TUOLIDMINE RIVER AT HICKMAN BRIDGE (STA. NO. 30) | Γ | | Anolyzed
by i | | 900 | 200 | | | - | | | | | | | <u> </u> | | | |-------------------|-------------------------|--------------------------------|---------------------|------|------------------|------|------------|------|--------------|-------------|-------|-----------|--|------------------|------------------|-------|--| | | 4 | bid - Coliform" ity MPN/mi | | | Samples
Taken | | | | | | | | | - | | | | | | T or | Pid-
Pode | | | | m | 5 | | Q | m | CV . | -7 | - | m | 5 | 15 | 7 | | | | 20° | 2 g | | 9 | 0 | 0 | | N | - | 28 | 25 | 27 | 34 | 31 | 30 | % | | | | | Totol | | 90 | 177 | 18 | | 22 | 77 | 105 | 105 | 108 | 121 | 124 | 123 | 119 | | L | - | 1 00 E | | | 75 | 28 | 77 | | 39 | 37 | 811 | | £- | 55 | 20 | 51 | 20 | | | 100 P | oolved
oolide | E 44 c | | -69 | 56e | 31e | | 47e | 88 | - 50g | %e | 3038 | 322 ^e | 322 ^e | 340e | 350 ^g | | | | Other constituents | | | | | | | | | | | ABS 0.0
PO ₄ 0.20
As 0.00 | | | | ABS 0.0
PO ₄ 0.10
As 0.01 | | | | Silico | /3 OIC) | | | | | | | | | | 긔 | | | | 13 | | | ion | Boron | 9 | | 0.0 | 0 | 0.0 | | 0.0 | 0 | 0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | | noillie. | er Bil | Fluo- | | | | | | | | | | | 0.0 | | | | | | ports per million | equivalents per million | Ni- | (NO ₃) | | | | | | | | | | 6.0 | | | | 0.0 | | ě | equiva | Chlo- | (ij) | | 18 | 5.1 | 3.5 | | 0.31 | 20 | 2.54 | 86 | 92
2.60 | 3,10 | 3.16 | 3.13 | 104
2.93 | | | ءِ ا | Sul - | (\$0\$) | | | | | | | | | | 0.08 | | | | 0.10 | | | Tituents | Bicar- | (HCO ₃) | | 87.0 | 17 | 22
0.36 | | 24
0.39 | 41
0.67 | 1.54 | 93 | 1.56 | 102 | 1.79 | 1.87 | 11.85 | | | Mineral constituents | | (00) | | 000 | 0.0 | 000 | | 0.0 | 000 | 000 | 2
0.07 | 0.07 | ار
0.13 | 2
0.07 | 000 | 0.00 | | : | Mine | Potas- | | | | | | | | | | | 0.10 | | | | 0.13 | | | | Sodium | (ou) | | 00.11 | 2.6 | 2.8 | | 6.5 | 0.48 | 1.91 | 2.04 | 1,7
2,04 | 58 | 58
2.52 | 2.52 | 2.52
2.52 | | | | Mogne- | (Mg) | | | | | | | | | | 9.2 | | | | 8.9
0.73 | | | | Calcium | (82) | | 09.0 | 0.28 | 0.37 | | 0.14
0.14 | 0.82 | 2.10 | 2.10 | 28 | 2,18 | 2 48 | 2,46 | 33 | | | | Ŧ. | مار | | 7.2 | 7.1 | 6.9 | | 7.3 | 7.7 | 7.9 | 88 | 8.6 | 8 4 8 5 | 8.3 | 8.1 | 8.1 | | | Specific | (micromhos | | | 119 | 77 | 53 | | 8 | 141 | 450 | 911 | 465 | 552 | 558 | 578 | 546 | | | | | %Sot | | 85 | 79 | 88 | | 76 | 82 | 112 | 68 | 80 | 122 | 108 | 110 | 125 | | | | Dissolved | Edd | | 7.9 | 8.0 | 4.6 | | 10.4 | 9.1 | 11.3 | 8.5 | 7.8 | 10.2 | 9.1 | 0.6 | 11.0 | | | | | | | 29 | 59 | נג | | 51 | 51 | 59 | 75 | 17 | 76 | 92 | 62 | 73 | | | | Discharge Temp
in cfs in oF | | | 1,88 | 1636 | 2170 | | 999 | 695 | 121 | 73.7 | 70 | 25 | 82 | 8. 44 | 100 | | | | and time | P.S.T. | 1963 | 10/11 | 11/9 | 12/10 | 1964 | 1/9 | 2/3
1445 | 3/9 | 1,/1 | 5/7
1425 | 6/4 | 7/8 | 7/31 | 9/3
1230 | o Field pH. b Laboratory pH. Sum of calcium and magnesium in epm. Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO.) Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD); Los Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DWR), as indicated. h Annual median and range, respectively. Calculated fram analyses of duplicate manthly samples made by California Department of Public Health, Division af Laboratories, or United States Public Health Service. ANALYSES OF SURFACE WATER TABLE D-2 (Cont.) TUOLUMME RIVER AT TUOLUMME CITY (STA. NO. 31) | | Analyzed
by i | nsgs | | | | | | | | | | | | | | | |--|--|--------|---------|---------------|------------|----------------|------------------|------------|-------------|------------------|---|------------------|------------------|------------------|--------------------------------|--------| | 4 | Hordness bid Caliform os CaCO ₃ ity MPN/ml Total N C. spm ppm | Median | Meximum | Minimum
6. | | | | | | | | | | | | | | ,
2
1 | - pid - | | 9 | α | 91 | | 10 | 4 | 25 | ٧. | 1 | 7 | 9 | 0 | CV . | | | | N C. | | 8 | 12 | 11 | | 12 | 56 | 7 | 17 | 69 | 17. | 81 | 92 | 59 | | | | Hard
as Co
Total | | H | 37 | 35 | | L 17 | 85 | 189 | 192 | 180 | 282 | 220 | 224 | 808 | | | - i | eod - | | 20 | 4.5 | 141 | | 748 | 64 | 52 | 54 | 50 | 42 | 23 | 52 | 12 | | | Total | solved
solids
in spm | | 202e | 932 | 726e | | 121 ^e | 206° | 163e | 522 ^e | 523 [©] | 583 ^e | 583 ^e | 595 ^e | 5848 | | | | Other canetituents | | | | | | | | | | ABS 0.1
PO ₄ 1.2
As 0.01 | | | | ABS 0.2
POl, 1.3
As 0.00 | | | | Silico
(SiO ₂) | | | | | | | | | | 윘 | | | | 양 | | | lian | Baron
(B) | | 0.0 | 0.0 | 0.1 | | 0:0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | | million
er mil | Fluo-
ride
(F) | | | | | - : | | | | | 0.02 | | | | | | | garts per million
equivalents per million | Ni-
trate
(NO ₃) | | | | | | | | | | 5.3 | | , | - | 1.3 | | | equiva | Chia-
ride
(CI) | | 1.95 | 31
0.87 | 21 | | 38 | 70
1.97 | 185 | 192 | 172
4.85 | 5.78 | 222 | 223
6.29 | 5.70 | | | . <u>c</u> | Sut -
fate
(SO ₄) | | | | | | | | | | 0.23 | | | | 0.23 | | | stituents | Bicar-
bonate
(HCO ₃) | | 70 | 31 | 29
0.48 | | 43
0.70 | 72 | 144
2.36 | 2.43 | 2.29 | 2.56 | 166
2.72 | 2.95 | 182
2.98 | | | Mineral constituents | Carbon-
ofe
(CO ₃) | | 0.00 | 0.00 | 000 | | 000 | 000 | 000 | 000 | 000 | 000 | 0.07 | 000 | 0.00 | | | Mine | Potos-
Sium
(X) | | | | | | | | | | 6.0 | | | | 7.6
0.19 | | | | Sodium
(No) | | 36 | 177 | 11.0 | | %
0.87 | 38 | 93 | 102 | 3.78 | 108 | 5.05 | 113 | 102 | | | | Magne-
sium
(Mg) | | | | | | | | | | 1,25 | | | | 17 | | | | Calcium sium (Ca) | | 1.54 | 0.74
0.74 | 0.70 | | <u>16.0</u> | 1.70 | 3.78 | 3.84 | 2.35 | 10° 1 | 7.40 | 1.18° | 25.74 | | | | F e | | 7.0 | 6.9 | 7.5 | | 7.7
8.0 | 7.1 | 7.5 | 7.4
7.7 | 7.3 | 7.8 | 000 | 7.5 | 7.2 | | | | Conditions of H Control of Contro | | 353
| 163 | 127 | | 212 | 360 | 862 | 912 | 835 | 1020 | 1020 | 1040 | 982 | | | | yed
gen
%Sat | | 57 | F | 87 | | 81 | 68 | 92 | 19 | 75 | 73 | 103 | 83 | 50 | | | | Dissolved
oxygen
ppm %Sc | | 5.2 | 7.7 | 9.5 | | 0.6 | 7.6 | 4.9 | 4.9 | 5.1 | ₹ •9 | 8.3 | 7.5 | 5.4 | | | | Te ai | | 99 | 9 | 52 | | 51 | 17 | 57 | 63 | 179 | 72 | & | 69 | 69 | | | | Discharge Temp
in cfs in 9F | | 00 | 1550 | 2150 | | 1450 | 760 | 335 | 300 | 300 | 191 | 800 | 195 | 235 | | | | Date and time compled P.S.T. | 1963 | 10/12 | 11/9 | 6/21 | 1964 | 1/9 | 2/3 | 3/9 | 4/1 | 5/7
0850 | 6/4 | 7/8
1405 | 7/31 | 9/3 | Ho Sie | b Labaratary pH. d Arsenic (As), alkyl benzone sulfanate (ABS), and phasphate (PO.) c Sum of calcium and magnesium in epm. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Surreau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardina County Flood Cantrol District (SBCFCD); Metropolitan Water District of Southern California (MWD); Las Angeles Department of Water California Department of Water California Department of Water California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. TABLE D-3 SPECTROGRAPHIC ANALYSES OF SURFACE WATER | | | | Constituents in | n ports per billion | | |--|--------|--------------|--|--|---| | Station | Sto | 1964 | Alumi- Beryl- Bismuth Codmium Cobalt Chra- Capper iron num (Ai) (Be) (Bi) (Cd) (Co) (Cr) (Cu) (Fe) | Gallium Germa- Manga- Malyb. Nickel Le
nium nese denum
(Ga) (Ge) (Mn) (Mo) (Ni) (R | Lead Titanium Vanodium Zinc (Pb) (Ti) (V) (Zn) | | San Josquin River at Fremont Ford Bridge | 55c | 9-1-6 | 3.1 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 22 < 3.1 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.5 < 3.1 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 | 5.7 < 0.29 22 7.4 1.8 < 5.7 < 0.29 < 1.4 8.6 1.7 < | 1.4 < 0.57 | | San Joaquin River near Vernalis | 521 | 5-6 | 1.8 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 < 2.9 10 < 2.1 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 < 1.4 < 3.4 11 < | 5.7 < 0.29 1.7 4.0 1.6 < 5.7 < 0.29 < 1.4 3.1 1.3 < | 1.4 < 0.57 | | Stanislaus River at Koetitz Ranch | 82 | 5-5 | 1.9 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 < 1.4 16 < 3.1 < 0.57 < 0.29 < 1.4 = 1.4 < 1.4 3.7 7.7 < | 5.7 < 0.29 | 1.4 < 0.57 5.1 < 5.7
1.4 < 0.57 4.0 < 5.7 | | Tuolumne River at Inclumne City | 33 | 7 - 2 | νη
2. ο. 4. | 5.0 < 0.25 < 1.2 < 0.25 1.1 < 5.7 < 0.29 4.6 1.8 1.3 < | 1.2 < 0.50 2.1 < 5.0
1.4 < 0.57 5.4 < 5.7 | | Merced River near Stevinson | R
 | 9 2 4 | ## 1.4 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1 | 5.7 < 0.29 < 1.4 1.4 = 0.29 < 5.7 < 0.29 < 1.4 1.4 0.57 < | 1.4 < 0.57 $3.4 < 5.7$ $1.4 < 0.57$ $4.3 < 5.7$ | | Kings Edver below People's Weir | | 5-11-6 | 3.7 < 0.50 < 0.25 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 1.5 < 1.2 | 5.0 < 0.25 < 1.2 2.0 0.38 < 5.7 < 0.29 < 1.4 2.3 0.34 < | 1.2 < 0.50 0.98 < 5.0
1.4 < 0.57 0.74 < 5.7 | | Kern River near Bakersfield | ×
× | 5- 4 | 2.5 | 5.7 < 0.59 < 1.4 6.0 0.40 < 5.7 < 0.29 < 1.4 6.3 0.49 < | 1.4 < 0.57 | | Tule River below Success Dam | 16 | 5- 4 | 4.0 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 | 5.7 < 0.29 < 1.4 1.4 = 0.29 < 5.7 < 0.29 < 1.4 1.6 = 0.91 < | 1.4 < 0.57 2.6 < 5.7
1.4 < 0.57 7.4 < 5.7 | | Delta-Mendota Canal near Mendota | 8 | 5-11
9-14 | 2.3 < 0.57 < 0.29 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 <
1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 | 5.7 < 0.29 < 1.4 1.9 1.0 < 5.7 < 0.29 < 1.4 1.4 1.3 < | 1,4 < 0.57 | | Delta-Mendota Canal near Tracy | 8 | 9 7 6 | 8.3 4 0.57 6 0.29 4 1.4 4 1.4 4 1.4 2 1.4 22 4 8.3 4 0.57 6 0.29 4 1.4 4 1.4 4 1.4 4 1.4 4.9 6.3 6 | 5.7 < 0.29 < 1.4 1.0 0.89 < 5.7 < 0.29 < 1.4 2.4 1.2 < | 1,4 57 < 0.29 < 5.7
1,4 < 0.57 7.1 < 5.7 | | | | | | | | < = less than the amount indicated = equal to, but slightly less than the amount indicated</pre> TABLE D-4 RADIOASSAYS OF SURFACE WATER | | Sta | 0,00 | | | Picocuries | | per liter | | | |----------------------------------|-----|--------------|--------------------------|--------------------------------------|------------------------|-------|--------------------------------|--------------------|-------| | Signion | No. | חחות | Dissolved Al | Alpho | Solid Alpha | | Dissolved Beta | Solid Be | ta | | Big Creek above Pine Flat Dam | 33d | 5/11
9/14 | 0.17 + 0. | 88 | 0.01 + 0. | 0.20 | 5.46 + 10.54
3.91 + 10.85 | 1.48 + | 9.13 | | Chowchilla River near Raymond | 114 | 5/11 | - 0.02 + 0 | <u>-</u> | 0.13 + 0. | 29 | 11.21 + 24.61 | - 4.26 + | 8.73 | | Delta-Mendota Canal near Mendota | 92 | 5/11
9/14 | 1.47 + 1 | 1.68 | 1.28 + 1.0.59 + 1. | 1.24 | 12.31 + 13.08 | 2.40 + | 9.86 | | Delta-Mendota Canal near Tracy | 93 | 5/6 | - 0.80 + 0.
3.10 + 4. | .53 | 0.51 + 0.
2.18 + 1. | 0.67 | 156.80 + 10.21
6.19 + 13.61 | 7.66 + | 9.79 | | Fresno River near Daulton | 113 | 5/11 | 0 + 80.0 - | . 61 | 0.27 ± 0. |
₫ | 3.56 ± 9.67 | 2.51 + | 9.02 | | Kaweah River below Terminus Dam | 35 | 5/11 | 0.13 + 0 | 0.74 - | 0.34 + 0. | 0.46 | 8.26 + 9.95 | - 4.62 +
5.00 + | 8.55 | | Kaweah River near Three Rivers | 35p | 5/11
9/14 | 0.18 + 0 | 0.81 | 0.70 + 1. | 1.00 | 0.79 + 11.46 | 4.84 + | 9.92 | | Kern River near Bakersfield | 36 | 5/4
9/3 | 1.68 + 1 | 1.56 | 0.31 + 0. | 0.65 | 15.29 + 11.35
3.35 + 10.84 | - 6.44 + | 7.67 | | Kern River below Isabella Dam | 36a | 5/1
9/11 | 1.49 + 1 | 1.36 | 0.84 + 1. | 10 82 | 7.99 + 10.15 | - 5.93 +
7.83 + | 9.74 | | Kern River at Kernville | 36b | 5/1 9/11 | 0.07 + 0 | 0.7 ⁴
2.0 ⁴ | 0.07 + 0.0 | .73 | 4.07 + 10.86
5.36 + 10.61 | -11.38 + | 9.98 | | Kings River below North Fork | 33c | 5/11
9/14 | 0.69 + 1 | 1.04 | 0.59 + 0. | 39 | 4.61 + 10.23
9.14 + 10.55 | - 2.87 + 7.53 + | 8.31 | | Kings River below Peoples Weir | 34 | 5/11
9/14 | 0.85 + 1 | 1.08 | 0.71 + 1.0 | 82 | 7.81 + 11.56
4.20 + 9.46 | 13.25 + 10 | 10.25 | TABLE D-4 (Cont.) RADIOASSAYS OF SURFACE WATER | | Sto | 0 0 0 | | Picocuries | per liter | | | |--|-----|--------------|------------------------------|--------------------------------|----------------------------------|------------------------------|----------| | 1011010 | o Z | מוֹש | Dissolved Alpha | | solv | Solid Beta | | | Kings River below Pine Flat Dam | 330 | 5/11
9/14 | - 0.53 + 0.74
1.94 + 1.51 | 0.49 + 0.74
- 0.35 ± 0.45 | 10.43 + 10.94 | 0.48 + 7.6
- 8.28 + 7.6 | 19
67 | | Merced River below Exchequer Dam | 32a | 5/11
9/14 | - 0.38 + 0.23 | - 0.21 + 0.67
- 0.74 + 0.27 | 10.73 + 9.84 | 3.69 + 8.9 | 8,5 | | Merced River near Stevinson | 32 | 5/5 | 1.49 + 1.64 | - 0.53 + C.73
- 0.20 + 0.73 | 12.06 + 11.26 | 4.01 + 9.4
- 2.14 + 7.8 | 53
84 | | Salt Slough at San Inis Ranch | 54c | 5/5 | 7.77 + 6.25
8.67 ± 5.34 | 0.32 + 0.86 0.89 | - 4.71 + 13.62
-22.81 + 13.34 | 10.74 + 9.2 | 38 | | San Joaquin River at Crows Landing
Bridge | 95 | 5/5 | 3.05 ± 3.93 | 0.80 + 1.17 | 4.55 + 12.35 | 11.03 + 9.5 | 55 | | Sen Joaquin River at Fremont Ford
Bridge | 25c | 2/5 | 8.15 ± 6.97 | 1.98 ± 1.49 | 12.38 + 14.94 | 5.52 + 9.0 | 10 | | San Joaquin River at Friant Dam | 77 | 5/11
9/14 | 0.19 ± 0.95 | 0.31 + 0.65 | 5.26 + 10.97
- 1.77 + 10.45 | - 0.34 + 7.6
- 1.62 + 8.5 | 61 | | San Joaquin River near Grayson | 92 | 5/7 | 9.12 + 7.40
1.31 + 4.07 | 1.25 + 1.56 | 1.63 + 17.96 | 1.18 + 10.6 | 99 | | San Joaquin River at Maze Road Bridge | 26a | 5/7 | 1.09 + 1.76 | 0.26 + 0.93 | 9.37 + 12.94
5.14 + 10.92 | 8.31 + 10.0
- 4.76 = 7.8 |
88 | | San Joaquin River near Mendota | 25 | 5/11 | 0.47 + 2.18
5.15 ± 5.00 | - 0.13 + 0.80
1.24 + 1.13 | 3.19 + 12.32 | 12.70 + 10.3 | 34 | | San Joaquin River at Patterson Bridge | 27a | 5/5 | 0.15 + 1.65 | 0.07 + 0.70 | -18.62 + 10.44
15.61 + 14.15 | - 1.44 + 7.1
7.54 ± 10.5 | 44 50 | | | | | | | | | | TABLE D-4 (Cont.) RADIOASSAYS OF SURFACE WATER | | Oto | | | | Picocurie | m | per liter | | | |------------------------------------|----------|--------------|---------------------------|----------------|-----------|------|--------------------------------------|---------|-------| | Station | No
No | Date | Dissolved Alp | ha | Solid Al | | 1 1 | Solid B | e: ı | | Sen Joaquin River near Vernalis | 27 | 5/6
9/2 | 4.71 + 4.
5.15 + 5. | 1, 04
5, 00 | 1.24 + | 0.89 | 19.42 + 12.98
9.50 <u>+</u> 12.42 | 27.68 + | 11.49 | | Stanislaus River at Koetitz Ranch | 59 | 5/5 | 0.21 + 0. | 0.69 0 | 0.82 | 0.98 | 13.36 + 10.48 | 8.96 | 10.25 | | Stanislaus River below Tulloch Dam | 29a | 5/11
9/14 | - 0.49 + 0.
14.19 + 9. | 29 0 | 0.01 + | 0.00 | -11.71 + 10.33 | 7.94 + | 9.28 | | Tule River near Springville | 916 | 5/4
9/9 | 5.88 + 3. | 79 0 | 0.05 + | 0.85 | 4.76 + 9.88
2.78 + 12.53 | 4.36+1 | 8.80 | | Tule River below Success Dam | 16 | 5/4
9/9 | 0.91 + 1. | 177 | 0.00 | 0.28 | 14.18 + 12.21
- 5.26 + 11.11 | + 94.0 | 8.21 | | Tuolumne River below Don Pedro Dam | 31a | 5/7 | - 0.41 + 0.
0.29 + 1. | 22
08
08 | 0.32 + | 0.82 | 2.94 + 9.84 3.36 + 10.60 | 5.38 + | 9.81 | | Tuolumne River at Hickman Bridge | 30 | 5/7
9/3 | - 0.51 + 1.
2.86 + 3. | 95 0 | 0.39 + | 1.11 | 12.56 + 12.19 | 4.60 + | 9.21 | | Tuolumne River at Tuolumne City | 31 | 5/7
9/3 | 0.44 + 2.
6.73 ÷ 5. | 13 - | 0.78 + | 0.09 | 11.07 + 14.84
- 2.21 + 11.88 | 11.97 + | 9.50 | APPENDIX E GROUND WATER QUALITY The contribution of mineral constituents from major tributaries was also appreciably higher than it was the previous year. The increase in mineral concentration was most noticeable during the irrigation season when the streamflow regimen was at its lowest stage for the entire year. The incremental change in mineral constituents over the previous year's concentrations increased significantly from Fremont Ford to Vernalis. This accumulation of minerals is attributed to the lack of available streamflow sufficient in quantity to dilute accretions affluent to the lower reaches of the San Joaquin River. The U. S. Bureau of Reclamation supplemented the flow in the San Joaquin River to aid the migration of fish from the Sacramento-San Joaquin Delta to the lower reaches of the San Joaquin River. Approximately 45,000 acre-feet were diverted from the Delta-Mendota Canal through the Newman and Westley Wasteways from September 23 to November 1, 1964, to provide adequate streamflow and dissolved oxygen content necessary for fish migration up the San Joaquin River. ### TABLE OF CONTENTS | | | Page | |-----------------|---|------| | INTRODUC | CTION | 267 | | Explanat | tion of Tables | 267 | | Explanat | tion of Plates | 267 | | Explanat | tion of Headings and Symbols Used in Table E-l | 267 | | _ | ate Well Number | 267 | | Age | ency Supplying Data | 267 | | | LIST OF TABLES | | | Table
Number | | | | E-1 | Mineral Analyses of Ground Water, San Joaquin District | 269 | | E-2 | Mineral Analyses of Ground Water, Fresno-Madera Area | 299 | | E-3 | Trace Element Analyses of Ground Water | 375 | | E-4 | Analyses of Miscellaneous Constituents | 376 | | E-5 | Kern County Piezometer Sampling Program | 379 | | E-6 | Wells Indicating Significant Deviation in Quality from Surrounding Area | 381 | | | LIST OF PLATES | | (Bound at end of volume) | lumber | | |--------|--| | E-1 | Location of Selected Observation
Wells, Ground Water Quality | | E-2 | Location of Selected Wells, Fresno-Madera Area | | E-3 | Ground Water Quality, Fresno-Madera Area | | П 4 | Witnests Compenhantions in the San Joaquin Valley | ### INTRODUCTION This appendix contains data pertaining to ground water quality in the San Joaquin Valley area. The data consist of the chemical characteristics of those waters sampled. The analyses represent the constituents which were most significant for the evaluation and/or surveillance of ground water quality. These data appear on the tables and plates. Additional supporting information is available in the office of the San Joaquin District, Fresno, California. ### Explanation of Tables Table E-1 lists mineral analyses of selected wells for the area reported in this volume excluding analyses for the Fresno-Madera area which are listed on Table E-2. Table E-2 lists the analyses used in the preparation of Plate E-3 for the Fresno-Madera area, and those analyses are listed by the aquifer from which the samples came. A standard mineral analysis is made on the samples of wells either new to the program or whose previous analyses have varied from year to year requiring a more complete history before partial analysis would be suitable. A partial mineral analysis is suitable when a satisfactory history on the well has been established and a detailed analysis is not required to maintain surveillance. Trace element analyses and other important constituents not determined in a standard mineral analysis are shown in Table E-3. These constituents, though small in quantity, can be significant for various types of water usages. Three constituents not normally determined, ABS (detergents), nutrients, and lithium, were analyzed in selected samples, and are shown on Table E-4. Where mineral analyses of water from a well were found to differ significantly from those of other wells in the surrounding area, the deviations were recorded and are given in Table E-6. Such deviations may be either in a single constituent or the complete analysis. Special effort is made to investigate these wells to determine the reason for the observed deviations. ### Explanation of Plates The locations of the selected sampling wells are shown on Plate E-1 except those for the Fresno-Madera area which are shown on Plate E-2. Plate E-3 illustrates, by aquifer, the chemical character of the water in the Fresno-Madera area. The chemical character of the water is illustrated by mineral type and by contours of electrical conductivity. The mineral type was determined by the use of the hypothetical salt method. The mitrate concentrations of ground water in the San Joaquin Valley are illustrated on Plate E-4 and are represented by contours of equal parts per million of mitrates. ## Explanation of Headings and Symbols Used in Table E-1 <u>State Well Number</u>--The well numbering system used in this report for the location of wells is explained on page 160. Agency Supplying Data--The numbers in this column are the code numbers for the agencies who sampled the well. The agencies, and code numbers assigned to them, are listed in the following tabulation: | Agency Code | Agency | |-------------|--| | 5000 | U. S. Geological Survey | | 5001 | U. S. Bureau of Reclamation | | 5050 | Department of Water Resources | | 5060 | Department of Public Health | | 5124 | Kern County Farm Advisor | | 5125 | Fresno County Farm Advisor | | 5128 | Madera County Farm Advisor | | 5200 | City of Fresno | | 5521 | Modesto Irrigation District | | 5631 | Fresno Irrigation District | | 5641 | Central California Irrigation District | | 5645 | Arvin-Edison Water Storage District | | 5702 | Individual Owner | | 5703 | Valley Waste Disposal Company | | | | # MINERAL ANALYSES OF GROUND WATER SAN JOAQUIN DISTRICT | | M | | | | .0 | | | | | | | | |--|------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--| | | TOTAL |
G.CO 3 | 46 | 104 | 116 | 54 | 56 | 152 | 170 | 153 | 82 | 161 | | ents in
lian | TDS | Evap 180 C | | 249 | 246 | 135 | | | 355 | 348 | 192 | 301 | | neral constituents
parts per millian | ii 8 | SiO 2 | 1 | 32 | 4 | 11 | t | ł | 6 0 | 774 | 93 | 45 | | Mineral constituents in
parts per millian | Baron | 80 | 0.10 | 0.05 | 0.05 | 0.05 | 00.00 | 00.0 | 0.05 | 0.05 | 0.05 | 0.05 | | | Fluo- | ıL | 1 | ł | ł | ! | ì | ŀ | 1 | 1 | - | 1 | | | rote. | ε
0
2 | 1 | 1 | 1 | 1 | 1 | 1 | l | 1 | 1 | ì | | | Chlo- | Ū | 15 | 21 | 14 | 0.20 | 0.06 | 15 | 14 0 • 39 | 18 | 14 0 39 | 14 | | milligrams per liter
equivalents per million
percent reactance value | Suifate | 504 | 1 | 0.23 | 19 | 0.04 | 1 | 1 | 21 | 0.19 | 40. | 16 | | milligrams per liter
equivalents per mil
percent reactance v | Bicar-
bonate | нсо з | 114 | 162 | 152 | 1.56 | Į | 1 | 244 | 256 | 128 | 217 | | | Carban-
ate | co 3 | i | 0 | C | C | 1 | į | 0 | 0 | C | 0 | | _ | Potas-
sium | ¥ | - | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | | Mineral Constituents in | Sodium | Z | 0.70 | 32 | 1.00 | 0.74 | 0.38 | 1.13 | 34 | 1.87 | 0.96 | 1.13 | | Mineral C | Magne- | Wg | - | 10 | 13 | 0.33 | 1 | 1 | 1.40 | 1.15 | 9 0 74 | 16 | | | Calcium | გ | - | 1.25 | 1.25 | 15 | ļ | ł | 2.00 | 38 | 0.90 | 38 | | Specific
conduct- | (micro- | mhos
at 25°C) | 279 | 1 | 1 | 1 | 149 | 408 | } | 1 | 1 | ţ | | | Ŧ | | 7.6 | 7.8 | 7.2 | 7.6 | 7.1 | 7.9 | 7.6 | 7.7 | 7.4 | 7.7 | | Темр. | Sampled | ٠, | 56 | 1 | 1 | 1 | 69 | 99 | 1 | 1 | 1 | 1 | | State Well | . - | Date Sampled Agy. Time Coll. | 1N/10E-17G 1 M
3-26-64 5050 | 2S/ 8F-27N 1 M
8-11-64 5521 | 2S/ 9E-28N 1 M
8-11-64 5521 | 25/ 9E-31G 1 M
8-11-64 5521 | 25/10E-10B 1 M
4-15-64 5050 | 25/10E-27H 1 M
5-29-64 5050 | 35/ 8E-12H 1 M
8-11-64 5521 | 3S/ 8E-29E 1 M
8-11-64 5521 | 35/ 9E- 3D 1 M
8-11-64 5521 | 3 <pre>3</pre> / 9E- 9J 1 M 8-11-64 5521 | | | | Õ | 1 N | 2.5 | 25.8 | 2.8 | 2.5 | 25. | 30 | 00 W | 35 | ω
ω | 269 MINERAL ANALYSES OF GROUND WATER SAN JOAQUIN DISTRICT | | TOTAL hordness | | 125 | 107 | 82 | 993 | w w | 199 | 10 | ų, | ~ | (L) | |--|------------------|-------------------|--------------------------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | | te or | | | | | J, | 184 | | | 258 | 929 | 130 | | ents in
Iion | TDS
Computed | | 226 | 253 | | | 345 | | | 521
554 | | | | neral canstituents
parts per million | i 8 | 510 2 | 23 | 46 | 1 | 1 | 1 | ł | 1 | 1 | ł | 1 | | Mineral canstituents in parts per million | Boron | ά | 0.05 | 0.05 | 00•0 | 0.40 | 00 • 0 | 0.10 | 0.20 | 0.40 | 0.80 | 00.0 | | | Fluo- | u. | 1 | ; | ł | - | ł | 1 | ł | 1 | 1 | 1 | | | N:- | N O N | 1 | 1 | 1 | } | 60 • 0
0 • 97
16 | ì | 1 | 12.0
0.19 | | 1 | | | Chlo | ū | 0.31 | 0.59 | 0.39 | 1330 | 31 0.87 | 1.13 | 39 | 3.41
3.41 | 181 | 16 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 504 | 0.25 | 0.35 | 1 | 1 | 0.46 | ; | - | 1,98 | 1 | 1 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar-
bonote | HCO ₃ | 183 | 143 | 1 | 1 | 235
3 85
63 | 317 | ł | 228
3•74
40 | 381
6•24 | 1 | | E & G | Carbon- | 000 | 0 | 0 | ł | 1 | 0 | | 1 | 0 | ł | 1 | | | Potos- | × | 1
| 1 | | 1 | 0.10 | 1 | 1 | 0.03 | 1 | 1 | | Mineral Constituents in | Sodium | ž | 1.04 | 1.17 | 18 | 415 | 50
2.17
36 | 3.35 | 2 55 | 4.22 | 152 | 1.87 | | Mineral C | Magne- | 6
W | 0.90 | 0.99 | 1 | 1 | 18
1.48
25 | 1 | 1 | 2.71 | } | } | | | Colcium | 3 | 1.60 | 1.15 | ; | 1 | 2.20 | 1 | l | 2.45 | 1 | | | Specific conduct- | (micra- | mhos
at 25°C) | 1 | 1 | 255 | 4190 | 578 | 707 | 297 | 947 | 1750 | 443 | | | I | r | 7.5 | 7.1 | 7.5 | 7.8 | 7.8 | 7.6 | 7.9 | 8 • 1 | 0
• 0 | 0 • | | Темр. | Sompled | ш. | 1 | + | 72 | 73 | 1 | 99 | 76 | 11 | 88 | 80 | | State Well
Number | | Date Sampled Agy. | 35/10E-17K 1 M
8-11-64 5521 | 3 3 10 | 35/11E+ 4N 1 M
4-15-64 5050 | 35/12E-35C 1 M
2-2n-64 5050 | 45/ 9F-22C 1 W
6-3n-64 5050 | 45/ 9F-30R 1 W
3-26-64 5050 | 45/11F- 5M 2 M
7-29-64 5050 | 5S/ 7E-35A 1 W
7-29-64 5050 | 55/ 8E- 8G 1 M
3-26-64 5050 | 55/10E-28H 1 W
5-29-64 5050 | | | TOTAL | nardness
os
CaCO 3 | 240 | 118 | 161 | 445 | 370 | 80 | 107 | 356 | 370 | 452 | | |--|-----------------|----------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--| | ants in | TDS | Evop 180°C | | | | | | | | | | 825 | | | neral canstituents
parts per millian | Sili | SiO 2 | 1 | 1 | 1 | - | ł | 1 | - | 1 | i | ŀ | 1 | | Mineral canstituents in parts per millian | Baron | 6 | 0.30 | 0.10 | 0.10 | 0.40 | 0.60 | 00.00 | 00.0 | 1 | 2.70 | 0.70 | | | | Fluo- | ш. | ł | 1 | 1 | | 1 | 1 | 1 | 1 | i | 1 | | | | Z t | ε ο χ | 1 | 1 | ł | 1 | <u> </u> | ì | 1 | 36.0 | 1 | 15.0 | FSOURCES | | | Chlo- | ō | 16 | 58 | 16 | 304 | 2.12 | 0.14 | 10 | 13 | 0.
8.4.
8.4. | 111
3•13
23 | OF WATER P | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | 50 4 | } | 1 | l
I | 1 | 1 | ļ
t | ł | 1 | 1 | 217 | STATE OF CALIFORNIA - THE RESOLIBEES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOLIBEES | | milligrams per liter
equivalents per mill
percent reactance v | Bicar- | HCO ₃ | | 1 | 171 2.80 | ł | 1 | 1 | 1 | 1 | ł | 354 | PANIA D | | | Carban- | ° 0 | 1 | 1 | 1 | 1 | 1 | 1 | ł | į | 1 | 0 | OF CALIF | | _ | Potes. | × | 1 | 1 | j
I | 1 | ł | 1 | 1 | 1 | 1 | 0.03 | AGENCY | | Mineral Constituents in | Sodium | ž | 1.74 | 106 | 1
6 0
80 10 | 136 | 100 | 0.87 | 1.00 | 2.57 | 341 | 110 | PECOLIPCES | | Mineral C | Mogne- | Wg | - | - | - | 1 | - | | 1 | } | - | 54
4°44
32 | PNIA THE | | | Colcium | ß | - | 1 | 1 | 1 | 1 | 1 | | } | 1 | 92
4 . 59
33 | OF CALIFO | | Specific
conduct- | ance
(micra- | mhas
at 25°C) | 625 | 869 | 511 | 1550 | 1140 | 279 | 325 | 879 | 2370 | 1280 | STATE | | | I | ۵ | 8 • 2 | 7.8 | 7.9 | 8 • 0 | 2 • 8 | 7 • 8 | 7.5 | 7.6 | &
• | φ
• | | | Temp. | when | . F | - | 67 | 99 | 1 | 1 | 67 | 89 | 89 | - | 99 | | | State Well | Jacobs | Date Sampled. Agy.
Time Coll. | 65/ 9E-18F 1 M
7-16-64 5641 | 65/10E-28K 1 M
7-29-64 5050 | 65/11F- 9C 1 M
2-20-64 5050 | 75/ 8E-23R 1 M
7- 1-64 5641 | 75/ 9E-32H 1 M
7- 2-64 5641 | 75/12E-19A 1 M
5-29-64 5050 | 75/13E- 4P 1 M
5-28-64 5050 | 75/15E-30E 1 M
7-29-64 5050 | 85/ 95-12E 1 M
7-16-64 5641 | 85/ 9E-16E 1 M
7-30-64 5050 | DWR 1982 | | | | | | | | | | | | | | | J | | - | |----------| | U | | | | _ | | œ | | \vdash | | ် | | υ, | | - | | 0 | | _ | | | | Z | | _ | | | | ~ | | 00 | | JOAC | | \sim | | O | | 7 | | | | _ | | SAN | | d | | 10 | | J, | | | TOTAL | CoCO 3 | 242 | 403 | 164 | 146 | 60
80
80 | 1380 | 129 | 174 | 65 | 293 | |--|-----------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------| | | \vdash | | | 661 | | | | H | 239 | 288 | | | | lian | Computed | Evap 180°C | | - V | | | | | 17 (7) | NN | | | | neral canstituents
parts per millian | :ijs 8 | SIO 2 | 1 | 1 | | 1 | | - | 4.2 | 67 | 1 | ! | | Mineral canstituents in
parts per millian | Boron | 80 | 1.20 | 0.07 | 0.00 | 0.30 | 0.70 | 1.80 | 00.0 | 0.10 | 00•0 | 0.10 | | | Fluo- | ш | 1 | 1 | 1 | 1 | 1 | - | 0•0 | 0.1 | ; | - | | | i.i. | 0 N | ł | 0.1 | 1 | 1 | 1 | 94.0 | 17.0
0.27
8 | 2.7
0.04 | 1 | + | | | Chlo | ō | 3.16 | 124
3•50
30 | 3.55 | 3.95 | 507 | 754 | 0.34 | 0.23 | 9.14 | 2.31 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfote | \$04 | 1 | 226
4•71
40 | 1 | 1 | ļ | 1 | 0.25 | 13 | 0.15 | 18 | | milligrams per liter
equivalents per millian
percent reactance value | Bicar- | HCO 3 | 1 | 210 | ł | ł | 1 | ł | 166
2•72
76 | 3.77 | 1.31 | 304 | | - + - | Carbon | S | 1 | 0 | 1 | i | 1 | ł | 0 | 0 | 0 | 0 | | c | Potos- | * | | 0.05 | ! | 1 | 1 | 1 | 0.13 | 0.08 | 0.03 | 0.05 | | Mineral Constituents in | Sodium | Z | 4.22 | 3.35 | 3.96 | 114 | 266 | 422 | 1.04 | 0.87 | 0.26 | 65
2.83 | | Mineral C | Magne- | 6 W | 1 | 50
4.11
36 | - | 1 | 1 | 1 | 10
0.82
22 | 1.07 | 0.25 | 25 2 06 | | | Colcium | 3 | | 3.94
3.94 | ; | 1 | 1 | } | 35
1.75
47 | 2.40
54 | 21 | 3.79 | | Specific conduct- | ance
(micro- | mhos
at 25°C) | 919 | 1120 | 773 | 88 31 | 2120 | 4270 | 375 | 401 | 150 | 857 | | | I | ۵. | 8 1 | 8 • 2 | 8 • 1 | &
• | 8 • 2 | 0 • | 7.6 | 7.6 | 8 • 2 | 7.6 | | Тепр. | when | o
F | 1 | 1 | } | 1 | 1 | ł | 1 | 1 | 5 | 69 | | State Well | | Date Sampled Agy.
Time Coll. | 95/ 9E-21F 1 M
7- 1-64 5641 | 95/10F-36P 1 M
7- 7-64 5641 | 95/13F-31D 1 M
8- 7-64 5641 | 105/12E- 6K 1 M
7- 9-64 5641 | 105/12E-35K 1 M
7-13-64 5641 | 115/10E-23K 1 M
7-20-64 5641 | 155/25E- 3DS1 M
6-10-64 5000 | 155/26E- 5CS1 M
6-24-64 5000 | 175/22E-19H 1 M
10- 7-63 5000 | 175/23E- 1D 2 M
10- 7-63 5000 | | State Well
Number | Temp. | | Specific canduct- | | Mineral Co | Mineral Canstituents in | | e d | milligrams per liter
equivalents per million
percent reactance value | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in
parts per million | neral constituents
parts per million | nts in
on | | |----------------------------------|-----------------|-----------|-------------------|----------------------|--|-------------------------|-----------|-----------|--|--|--|-------------------|---------------|--|---|----------------|----------------| | | when
Sampled | Ŧ | (micro- | Calcium | Magne- | Sodium | Patos- | Carbon- | Bicar-
banate | Sulfate | Chloride | rota
frota | Fluo-
ride | Boron | Sil: | TDS | TOTAL | | Date Sampled, Agy.
Time Call. | , щ | 2. | mhas
at 25°C) | კ | ₩
W | Z | × | 0,0 | HCO 3 | 504 | ō | ο
2 | <u> </u> | 60 | SIO 2 | Evap 180°C | 0300
CaCO 3 | | 175/23E- 8J 2 M
3-26-64 5050 | 49 | C
• | 1080 | - | + | 104 | 1 | 1 | 1 | 1 | 3.24 | 1 | 1 | 0.10 | 1 | | 321 | | 175/25E-34P 1 M
3-26-64 5050 | 73 | 7.7 | 551 | 1 | 1 | 33 | 1 | ŀ | | 1 | 0
8 %
8 % | 1 | 1 | 0000 | 1 | | 206 | | 185/19E- 4J 1 M
3- 3-64 5000 | 69 | 6 | 1170 | 0 • 20 | 0.08 | 270
11.74
97 | 0.08 | 10 | 348
5 • 70
4 9 | 125 | 100 | 9•2
0•15 | 2 • 6 | 1.30 | 22 | 719 | 14 | | 18S/24E-34L 1 M
9-30-64 5050 | 99 | 8 2 | 676 | 88
4 • 39
64 | 0.58 | 1.83 | 0.05 | 0 | 305
5 • 00
73 | 12 0 25 | 52
1.47
22 | 6 • 8
0 • 11 | 1 | 00.0 | 1 | 360 | 249 | | 185/26E-36C 1 M
9-30-64 5050 | 67 | 9
4 | 921 | 3.75 | 3,70 | 2.61 | 0.10 | 0.13 | 360 | 102
2•12
21 | 1.21 | 44.0 | ł | 3 - 80 | 1 | 55 88
55 88 | 372 | | 18S/27E-10C 2 M
9-3n-64 5050 | 6 | 0 | 986 | 101 5.04 | 9. 4. 6. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 1.91
1.91 | 0.08 | 0 | 384
6 • 29
60 | 117
2.44
23 | 31 | 52.0
0.84 | • | 0.01 | 1 | 583
656 | 441 | | 195/21E- 3B 1 M
5-21-64 5050 | 70 | 20.7 | 259 | 1 | 1 | 2.48 | 1 | 1 | + | | 0.11 | 1 | 1 | 0.30 | 1 | | 13 | | 195/26E- 2K 2 W | % | 80
• 3 | 1000 | 109
5 • 44
5 3 | 26
2.14
21 | 58
2.52
25 | 0•10
1 | 0 | 330
5.41
53 | 1.50 | 2.62 | 38.0
0.61
6 | 1 | 1.00 | ł | 563 | 379 | | 205/16F-20L 1 M
3-16-64 | 76 | - | 1 | 1 | | 1 | 1 | 1 | 1 | 968 | 185 | - | 1 | 2.10 | 1 | | | | 20S/16E-28F 1 M
3-17-64 5050 | 9 | 1 | 1 | - | | ł | 1 | ; | ł | 952 | 3.64 | 1 | 1 | 2.50 | 1 | | | | DWR 1982 | | | STATE | OF CALIFOR | NIA - THE | RESOURCES | AGENCY (| OF CALIFO | RNIA - DE | PARTMENT | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | SOURCES | | | | |] | | Fluo- Sili: 1DS TOTAL ride Boron as Computed hardness | B SIO ₂ Evap 180°C CoCO ₃ | | 702 | | 113 | 25 | 808 396 813 | 30 1538 | 1096 | 454 | 275 | |---|--
--|--|---|---|--|---|--|--
---|--| | Boron ca | SIO 2 | | - | | | | 13 | 30 | 41 | | | | Boron | Si | | 1 | | | | ω ω | 3530 | 1054 | | | | | 83 | 0 | | 1 | 1 | 1 | 1 | 1 | 43 | 1 | ! | | Fluo- | | 1.40 | 2.20 | 0.70 | 0.70 | 1.50 | 0.20 | 3.60 | 09•0 | 0.50 | 1.10 | | | ш | ; | ; | 1 | 1 | 1 | Ì | 1 | 0.2 | 1 | 1 | | Ni-
trate | NO 3 | 1 | 1 | 1 | | 1 | 0.0 | 36.0
0.58 | 0 • 0 | 1 | | | Chlo-
ride | Ū | 146 | 1 | 88 2 • 48 | | 36 | 233
6•57
45 | 1420
40.04
78 | 1.33 | 205 | 1 | | Sulfate | 50 4 | 1049 | 1918 | 719 | 531 | | 92
1•92
13 | 0.87 | 192 | 1140 | 803 | | Bicar-
bonate | нсо з | į | 3.56 | 1 | 107 | ł | 378 | 592
9.70
19 | 170
2 • 79
34 | 1 | 167 | | Carban-
ote | co 3 | ì | C | ł | 0 | 1 | 0 | 0 | 0 | 1 | 0 | | Potos-
sium | ¥ | 1 | } | 1 | 1 | 1 | 0.03 | 0.26 | 0.33 | 1 | ł | | Sodium | Z | ţ | 472 | 1 | 265 | 186 | 154 6 70 | 431
18•74
38 | 325
14•13
39 | 226 | 263 | | Mogne-
sium | Mg | 1 | 1 | 1 | 1 | 1 | 2.22
2.22
15 | 216
17•76
36 | 11.27 | 1 | | | Calcium | 3 | 1 | 281 | 1 | 2.25 | - | 114 5.69 39 | 12.97
26 | 213 | 182 | 110 | | (micro- | at 25°C) | 1 | 3750 | 1 | 1480 | 833 | 1430 | 5170 | 2250 | 1 | 1860 | | I. | | 1 | 7.3 | ł | 7.9 | 3. | 7 .8 | | 7.7 | 1 | 7.4 | | Sampled | | 7.1 | 49 | 1 | 78 | 7.1 | 76 | 72 | 72 | 73 | 1 | | \vdash | Coll. | 5050 | 5050 | 5050 | 3 1 M
5050 | 5050 | 4 1 M
5050 | 5050 | 1 M
5050 | \$ 1 M
5050 | 4E 1 M | | Date Sampled | Time | 0S/16F-32E
3-17-64 | 05/16E-32N
2-29-64 | 0S/16E-36A
3-18-64 | 05/16E-36G
2-29-64 | 05/20E-10L
5-21-64 | 0S/21E-12A
7-29-64 | 3 | 15/16E- 1N
3-17-64 | | 215/16E- 4E
2-29-64 | | | Sampled p H micro- Calcium sium ote bonate Sulfate ride hate | Sampled PH pH micro- Calcium Calcium sium sium colo Sodium sium sium colo Colo Photos- Soulfate colo Chlo- ride ride ride ride ride ride ride ride | Agy. or mhos at a colium sium one bonate and micro. Calcium sium one bonate at a colium coliu | Agy. Sampled of Imicro- Colcium Colcium sium sium Sodium sium one bondre sium Sodium sium one bondre sium Sodium sium one bondre sium Sodium sium one bondre sium No. Riborate ride No. Fluorities 1 M 71 1049 1466 5050 1 M 64 7.3 3750 281 | Sumpled pH (micro- Golcium sium ore bonate ore bonate sum) At 25°C Ca Mg Na K CO3 HCO3 SO4 CI NO3 F T1 1049 146 T2 | Sampled pH (micro- Calcium sium Sodium contents of the content | Sampled pH (micro. Calcium iron bolas. Carbon Binor. Sulfate Chlo. Ni: Fluoros rido mhos calcium iron so bonate sulfate close rido rido rido rido rido rido rido rido | Figure 1 by micro- Galeium Magnes Sadium Paleta Galeium Bisari Carlos Misses Galeium Magnes Sadium Paleta Galeium Magnes Sadium Paleta Galeium Magnes Sadium Paleta Galeium Magnes Magne | Fig. 1. Solution Sol | The contact of | The contract of | | | Specific
conduct- | | Mineral Co | Mineral Canstituents in | | Eĕ | milligrams per liter
equivalents per millian | er liter
ser millian | | | | Mineral constituents in parts per million | neral constituents
parts per million | ents in
ion | | |------|----------------------------|--------------------|------------|-------------------------|----------|-----------|---|-------------------------|--|-----------|-------|---|---|------------------------|--------------------------| | auce | _l_ | | Magne- | | Potas- | Carban- | Bicar- | Bior- | Chlo | ż | Fluo | | Sili | IDS | TOTAL | | | micro-
mhos
at 25 C) | Calcium
Ca | sion
Mg | Sodiu a | e si | e e | bonate
HCO 3 | Sulfate
SO 4 | ride D | rote NO S | eb r | Boron | SIO 2 | Computed
Evap 180°C | hardness
as
CaCO 3 | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1243
25•88 | 152 | 1 | 1 | 1.50 | | | | | 18 | 1800 | 103 | 1 | 247
10.74 | 1 | C | 184
3 • 02 | 16.03 | 1 | ł | 1 | 1.10 | 1 | | 257 | | 2.1 | 2100 | 142
7•09
24 | 107 | 315
13.70
46 | 0.20 | 0 | 213
3•49
12 | 1014
21•11 | 182
5•13 | 0.01 | 0 • 2 | 1.30 | <i>w</i> | 2002 | 795 | | 19 | 1950 | 105 | 1 | 240 | 1 | 0 | 217 | 675 | 1 | | 1 | 06.0 | 1 | | 262 | | 21 | 2150 | 166 | | 253
11•00 | į į | 0 | 116 | 961 | 142 | 1 | 1 | 0.50 | 1 | | 414 | | 12 | 1250 | 83
4 • 14
24 | 4.03 | 200
8.70
51 | 0.08 | 0 | 175
2•,87
17 | 503
10.47
62 | 3.58
2.58 | 1.1 | 0 • 1 | 0.60 | 40 | 1087 | 409 | | 1750 | 20 | 145 | - | 202 | 1 | 0 | 120 | 864 | 102 | 1 | 1 | 0.50 | 1 | | 362 | | 1110 | 10 | 3.09 | 1 | 153 | 1 | C | 155 | 417 | } | - | İ | 0.50 | 1 | | 155 | | 1200 | 00 | ł | | 118 | ! | 1 | å | 1 | 26 0 . 73 | 1 | 1 | 0.40 | ł | | 374 | | 11 | 1160 | 1 | 1 | 209 | 1 | ł | 1 | 1 | 154 | 1 | 1 | 0.40 | I | | 121 | | S | TATE | OF CALIFOR | INIA - THE | RESOURCES | AGENCY (| OF CALIFO | RNIA - DE | PARTMENT (| STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | SOURCES | | | | | 7 | MINERAL ANALYSES OF GROUND WATER SAN JOAQUIN DISTRICT | | _ | | | | | | | | | | | | |--|-------------------|----------------------|------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------|------------------------|------------------------|------------------------------|------------------------|------------------------| | | TOTAL
hardness | os
CoCO 3 | 18 | 233 | | 260 | | | | | | 138 | | ents in
Ion | TDS
Computed | Evap 180°C | 104 | | | 356
391 | | | | | | 348 | | neral constituents
parts per million | Silit | SIO 2 | } | 1 | 1 | 1 | - | 1 | 1 | ł | 1 | - | | Mineral constituents in
parts per million | Boron | 80 | 00.0 | 0.00 | 1 |
0•10 | 1 | 1 | } | ł | ŀ | 09•0 | | | Fluo-
ride | u. | ; | 1 | l | 1 | 1 | - | ł | } | 1 | 1 | | | rate. | NO 3 | 0.8 | 17.0 | 41.0
0.66 | 36 • 0
0 • 58
9 | 24.0 | 18.0 | 5.2 | 0.8 | 7.6 | 43.0
0.69
12 | | | Chloride | Ū | 0.17 | 0.62 | 1 | 34
0.96
15 | 1 | ł | 1 | 1 | 1 | 43
1•21
21 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 50 4 | 0
0
0
0
0 | 1 | 1 | 0.35 | 1 | 1 | 1 | } | ; | 30 | | milligrams per liter
equivalents per mill
percent reactance ve | Bicor-
banate | нсо з | 1.34
84 | 284 | 1 | 288
4•72
71 | 1 | 1 | 1 | 1 | 1 | 203
3•33
57 | | ال ق ف | Carbon-
ale | 8 | O | ; | 1 | 0 | 1 | 1 | ł | ţ | ł | 0 | | u | Patas-
sium | × | 0.03 | 1 | - 1 | 0.08 | 1 | - 1 | 1 | ł | 1 | 0.18 | | Mineral Constituents in | Sodium | ž | 31
1•35
78 | 1.17 | 1 | 31
1,35
20 | 1 | 1 | 1 | ł | ; | 3.09 | | Mineral C | Mogne-
sium | Wg | 0 | l | 1 | 1.40 | 1 | 1 | 1 | - | 1 | 0.16 | | | Colcium | S | 0.35 | 1 | 1 | 3.79 | 1 | 1 | 1 | 1 | ł | 52
2.59
43 | | Specific
canduct- | (micro- | mhas
at 25°C) | 165 | ري
در
در | 1 | 642 | 1 | 1 | 1 | } | 1 | 608 | | | Ξ ₀ | | Ç • & | 7.8 | 1 | &
• | ; | ! | 1 | 1 | - | 7.8 | | Тетр. | Sampled | <u>د</u>
د | 70 | 69 | 64 | 64 | 72 | 73 | 99 | 67 | 6.8 | 72 | | Vell | - [- | ed Agy.
Coll. | 27L 2 M | 15P 2 M | 21K 1 M
4 5050 | 22E 1 M
4 5050 | 22J 1 M
4 5050 | 23L 1 M
4 5050 | 26F 2 M
4 5050 | 26P 1 M | 27C 1 M
4 5050 | 27F 1 M
4 5050 | | State Well
Number | | Date Sampled
Time | 215/25E-27L
3-26-64 | 21S/27E-15P 2 M
3-26-64 5050 | 21S/27E-21K 1 M
8-11-64 5050 | 215/27E-22E 1 M
8-11-64 5050 | 215/27E-22J 1
8-11-64 505 | 21S/27E-23L
8-11-64 | 215/27E-26F
8-11-64 | 21S/27E-26P 1
8-11-64 509 | 215/27E-27C
8-10-64 | 215/27E-27F
8-12-64 | | No K CO3 HCO3 SO4 C1 NO3 F 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Specific Aineral C and uct- when ance Sampled p (micro- Coleium sium | Specific canduct-
ance P (micro- Cokium mhoc | Colcium | | Mineral C | 0 1 | Mineral Constituents in | Potas- | Carbon- | milligrams per liter
equivalents per million
percent reactance value
Sicar-
Sultate | er liter
ance value
Sulfate | Chlo- | Ni.
trate | Fluo- | Mineral constituents in parts per million Sili. | park per million | ion
TDS
Camputed | TOTAL | |--|--|---|-------------|----------|-----------|-----|-------------------------|--------|---------|---|-----------------------------------|---------|--------------|-------|---|------------------|------------------------|-------| | 68 — | | L | | at 25°C) | ů | Wg | Š | ¥ | co 3 | нсо з | SO 4 | ū | NO 3 | u. | æ | SIO 2 | Evop 180°C | 03EO | | 74 8.0 36.3 4.9 0 12.6 2.69 0.25 0.37 0.26 0.10 72 71 72 72 66 67 72 66 72 72 72 72 72 | 5050 | 80 | 1 | 1 | - | 1 | 1 | 1 | ł | ŀ | 1 | 1 | 13.0 | - | ł | 1 | | | | 72 < | 215/27E-27L 1 M
8-10-64 5050 | 74 | &
C
• | 363 | 2.49 | 0 | 26
1•13
31 | 0.05 | 0 | 164 2.69 | 0.25 | 13 | 16.0 | - | 0.10 | - | 199 | 123 | | 71 | 215/27F-27R 1 M
8-11-64 5050 | 72 | 1 | İ | - | | ł | l | 1 | 1 | 1 | - | 7.6 | 1 | 1 | 1 | | | | 72 <td< td=""><td>21S/27E-28A 1 M
8-10-64 5050</td><td>7.1</td><td>1</td><td>1</td><td>1</td><td>-</td><td>1</td><td>ł</td><td>1</td><td>ŀ</td><td>1</td><td>ŀ</td><td>18.0</td><td> </td><td> </td><td>1</td><td></td><td></td></td<> | 21S/27E-28A 1 M
8-10-64 5050 | 7.1 | 1 | 1 | 1 | - | 1 | ł | 1 | ŀ | 1 | ŀ | 18.0 | | | 1 | | | | 66 | 21S/27E-28K 1 M
8-11-64 5050 | 72 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 20.0 | 1 | | 1 | | | | 67 0.09 < | 3N 1 M
5050 | 99 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | } | 1 | 14.0 | 1 | 1 | - | | | | 72 9.55 9.55 9.55 9.55 <td>21S/27E-34B 1 M
8-11-64 5050</td> <td>67</td> <td>-</td> <td>ļ</td> <td>1</td> <td>-</td> <td>!</td> <td>1</td> <td>ŀ</td> <td>ŀ</td> <td>}</td> <td>1</td> <td>0.0</td> <td>1</td> <td>1</td> <td>- </td> <td></td> <td></td> | 21S/27E-34B 1 M
8-11-64 5050 | 67 | - | ļ | 1 | - | ! | 1 | ŀ | ŀ | } | 1 | 0.0 | 1 | 1 | - | | | | 8.2 439 111 2 83 0 0 173 50 14 1.00 0.20 13 13 559 1.0 0.20 14 1.00 0.20 13 559 1.0 14 1.00 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 | 21S/27E-34D 1 M
8-11-64 5050 | 72 | 1 | ļ
ļ | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 9.5
0.15 | - | 1 | - | | | | 79 7.8 559 86 73 5.06 | 5050 | 69 | 8 • 2 | 439 | 0.55 | • 1 | • | 0 | 0 | 173
2.84
66 | 1.04 | 14 0 39 | 1.0 | i | 0.20 | ! | 246 | 36 | | | 5050
5050 | 79 | 7.8 | 559 | 1 | 1 | 3.74 | - | 1 | 1 | 1 | • | 1 | 1 | 0.20 | 1 | | 7.7. | | | , | | | | | | | | | | | | |--|-----------------|----------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|---| | | TOTAL | CoCO 3 | 1170 | 1120 | 1270 | 16 | 4 | 7 | 720 | 279 | 108 | 35 | | ents in
ion | TDS | Evap 180°C | | | | | | 94 | 1190 | | | 312 | | neral constituents
parts per million | Sili | SIO 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | ; | | Mineral constituents in
parts per million | Boran | æ | ì | i | 1 | ĺ | ł | 0.10 | 00•0 | 11 | 1 | 00.0 | | | Fluo- | <u> </u> | ł | 1 | i
i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | i Sr | , o | 1 | 1 | 1 | l | ! | 0 • 3 | 22.0
0.35 | 1 | | 7.8
0.13 | | | Chlo- | ō | 593
16•72 | 518 | 424 | 19 | 0.11 | 0.08 | 189 | 1.49 | 30 | 86
2.43
49 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | \$04 | 1 | } | } | 1 | \
\ | 0.04 | 580
12.08
66 | 1 | 1 | 15 0.70 0.70 0.03 0.03 0.51 1.92 2.43 0.13 3 1.4 85 1.4 85 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1. | | milligrams per liter
equivalents per mill
percent reactance v | Bicar. | HCO 3 | 112 | 130 | 155 | 1.26 | 1.29 | 48
0•79
44 | 39 | 118 | 119 | 0.51 | | E & & | Corbon- | S | O | 0 | 0 | 0.23 | 0 | 26 0 87 49 | 0 | 0.13 | 0 | 0 | | | Patas- | × | I | 1 | 1 | 1 | 1 | 0 | 0.03 | 1 | 1 | 0.03 | | Mineral Constituents in | Sodium | ž | ľ | 1 | 1 | 1 | 1 | 37
1.61
93 | 92 | 1 | 1 | 96
4.17
85 | | Mineral Co | Magne- | 6W | 1 | | 1 | 1 | 1 | 0 0 0 8 | 0.16 | 1 | 1 | 0 | | | Colcium | კ | 1 | 1 | 1 | 1 | | 0.05 | 285 | 1 | | 14
0.70
14 | | Specific
canduct- | ance
(micro- | mhas
at 25°C) | 3470 | 4270 | 5220 | 383 | 161 | 192 | 1700 | 873 | 419 | 615 | | | I | 2. | 8.2 | 8 • 2 | ش
• | 80 | 0 • 80 | 9.1 | 7.1 | 4.8 | 8 . 2 | 7.4 | | Temp. | Sampled | · L | 74 | 42 | 78 | 70 | 1 | 69 | 69 | 80 | 73 | 70 | | | | Agy. | 5050
5050 | 2 M | 1 M | 5050 | J 1 M
5050 | 5050 | 1 1 M
5050 | 5050 | 5050 | 5050 | | State Well | | Date Sampled
Time | 255/18E- 3N
8-27-64 5 | 255/19E- 6D 2 M
8-27-64 5050 | 255/19E- 7P 1 M
8-27-64 5050 | 255/22E- 2P
8-26-64 5 | 255/23E-11J 1
8-26-64 509 | 255/23E-28D
5- 6-64 5 | 25S/24E-15H 1
5- 5-64 505 | 255/24E-27R 1
8-27-64 509 | 255/25E- 40
8-26-64 5 | 255/25E-22D
5- 5-64 5 | | 1101e ride Boron as Computed has No.3 F 8 S10.2 Evap 180°C Co. 23.2 | Specific Mineral Canstituents in equivalents per liter conduct. Mineral Canstituents in percent reactance value ance Manage Balas Carbon Bisar | Mineral Canstituents in | Potos. Corban. | Potos. Corban. | Potos. Corban. | Corban | 1 . | lligrams per
uivalents pr
rcent reacto | | r liter
er millian
ence value | Chio | Ż | Fluo | Mineral constituents in parts per million | neral constituents parts per million | nts in
no
TDS | TOTAL |
--|---|-------------------------|----------------|----------------|----------------|--------|--------|--|--------------------|-------------------------------------|-------|------------------|----------|---|--------------------------------------|---------------------|----------| | 0.00 3.60 0.00 0.80 1.40 1.20 1.38 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0. | | | 0 | Calcium | siom
siom | Sodium | sion s | ate ate | bonate | Sulfate | a pir | # tot | - P | Baron | 8 | | hardness | | 0.08 3.00 | at 25°C) | _ | 1 | 3 | Mg | o Z | ¥ | CO 3 | HCO 3 | SO 4 | ŭ | NO 3 | <u>.</u> | ۵ | sio 2 | _ | CoCO 3 | | 0.16 2.26 0.03 1.62 1.71 0.27 0.10 1.72 0.10 1 | 7.8 368 0. | | o | 4 50 6 | 0.08 | 3.00 | 0 | 0 | 49
0 • 80
25 | 1.02 | 1.38 | 1.2 | - | 0.10 | - | 197 | 14 | | 0.58 | 8•4 362 | 362 | | 1 | 1 | 1 | 1 | 0.03 | 1.62 | - | 23 | 1 | 1 | - | 1 | | 50 | | 0.16 2.26 0.05 0.56 0.54 0.09 0.00 149 205 205 0.26 0.85 0.59 0.87 17.23 0.87 3.19 0.87 3.19 0.96 | 7.8 428 27
1.35 | | • | 33 | 0.58 | 2.17 | 0.05 | 0 | 137
2•25
53 | 82
1•71
40 | 0.20 | 6.5
0.10
2 | ; | 0.10 | 1 | 249 | 97 | | 0.20 2.64 1.38 0 1.39 0 1.39 0.59 0.59 0 1.33 17.23 0.87 11.3 0.87 13.3 11.3 0.27 0.95 0.28 0.28 0.33 0.28 1.33 0.33 0.28 0.33 0.28 0.33 0.33 0.33 | 7.2 292 2 2 4 | | 0 | 7 0 4 | 0.16 | 2.26 | 0 | 0 | | 0.56 | • | 0.01 | 1 | 00.0 | 1 | 149 | <u>.</u> | | 0 185 6111 6111 6111 0 1.33 17.23 113 0 0.87 113 0 0.87 113 0 0.87 113 0 0.87 1.33 0 0.28 0.28 1.33 | 8.6 492 | | '
 | 1 | 1 | - | 1 | 0.20 | 161 | P. | 38 | <u> </u> | 1 | 1 | 1 | | 52 | | 0 81 17.23 11.3 0 0.87 11.3 0 0.87 11.3 0.28 0.28 1.33 0 1.57 1.33 | 8 • 2 | · | i
 | 4 | i | 1 | 1 | 0 | 1 • 39 | 1 | • | | 1 | 1 | 1 | | 12 | | 0 0.83 113 | 8+1 2530 | | i
 | | 1 | | -1 | 0 | 1.33 | } | 6111 | | } | ŀ | 1 | | 264 | | 0 0 58 10 0 0 58 10 0 0 6 58 10 0 58 10 6 58 10 6 58 10 6 58 10 6 58 10 6 58 10 6 58 10 6 58 | 7.9 565 | | i | | • | 1 | 1 | 0 | 53 | <u> </u> | 3.19 | | ; | 1 | 1 | | 102 | | 1.33 | 9.0 | | i
 | | l
l | } | 1 | 0.27 | 58 | | 10 | 1 | 1 | ; | 1 | | 27 | | | 8.2 564 | _ | i | | <u> </u> | 1 | 1 | 0 | 1.57 | 1 | | | 1 | i | - | | 139 | MINERAL ANALYSES OF GROUND WATER | Specific conduct- | Specific conduct- | Specific conduct- | | Mineral Constit | Mineral Constit | nstit | vents in | | | milligroms per liter
equivalents per milli
percent reactonce vo | milligroms per liter
equivolents per million
percent reactonce value | - | | | Mineral constituents in parts per million | neral constituents
parts per million | ents in
lion | 2 | |---------------------------------|-------------------|-------------------|--------|-----------------|--|----------------|--------------------|----------------|----------------|---|--|---|--------------|-------|---|---|----------------------|----------| | Orto Sampled Ac | 1 | Sampled | I. | (micro- | Calcium | Magne.
sium | Sodium | Patas-
sium | Carbon-
ate | Bicar.
banate | Sulfate | Apir
epir | rate
F | Fluo- | Boron | i∯ 8 | TDS
Camputed | hardness | | | Coll | | | at 25°C) | 3 | Wg | Š | × | 003 | нсо з | 504 | ō | s on | L. | 80 | SIO ₂ | Evap 180°C | ်
ပိ | | 26S/27E- 9G 1 M
8-26-64 5050 | ΣO | 82 | O
• | 1720 | | ļ | 103 | ł | 1 | + | 1 | 210 | 0.7 | ŀ | 1 | 1 | | 659 | | 275/19E-28H 1 M
8-27-64 5050 | Σ O 3 | ; | 8 • 2 | 10500 | | | 1 | 1 | 0 | 132 2 16 | - | 1800 | | 1 | 1 | 1 | | 2420 | | 275/20E-34G 1 M
8-27-64 5050 | ¥ 0 ₹ | ; | 4 | 558 | 1 | | 1 | 1 | 0.07 | 128 | 1 | 1.97 | 1 | 1 | 1 | ŀ | | | | 275/22E- 20 2 M
9-15-64 5050 | ₹ 0 Z | 78 | ° 2 | 2480 | 1 | 1 | 1 | 1 | 0 | 1.05 | 1 | 698 | 1 | | ł | - 1 | | 194 | | 275/22E-21P 2 M
8-26-64 5050 | ΣC | 69 | 7.9 | 4000 | 1 | 1 | 1 | ì | 0 | 76 | 1 | 1010 | 1 | 1 | 1 | 1 | | 760 | | 27S/23E- 1R 1 M
5- 6-64 5050 | ₹ 0 | 69 | 7.4 | 3360 | 317
15.82
46 | 0.66 | 418
18•17
52 | 0.05 | 0 | 1.43 | 994
20.70
59 | 461
13.00
37 | 13.0
0.21 | 1 | 0.10 | 1 | 225
6
2390 | 825 | | 27S/23E- 1R 3 M
5- 6-64 5050 | ΣC | 70 | 8 • 2 | 218 | 0.75 | 0 | 1.35 | 0 | 0 | 115
1 88
90 | 0.06 | 0.14 | 0.0 | | 0.10 | } | 112 | | | 27S/23E- 1R 4 M
5- 6-64 5050 | ΣC | 70 | 7.6 | 184 | 0.20 | 0.08 | 37
1.61
85 | 0 | С | 84
1•38
76 | 0.25 | 0.17 | 0.01 | 1 | 00.0 | ł | 102 | | | 27S/23E- 1R 5 M
5- 6-64 5050 | ΣC | 70 | 8 • 2 | 549 | 0.05 | 0 | 2.26 | 0 | 0 | 92
1.51
64 | 0 | 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0.01 | ł | 0.20 | 1 | 129 | | | 275/23E-27J 1 M
9-15-64 5050 | ¥ 0 | 81 | 8 . 2 | 1500 | 1 | 1 | ! | 1 | 0 | 1.26 | 1 | 105 | 1 | i | 1 | 1 | | 187 | | DWR 1982 | | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | NIA - THE R | ESOURCES | AGENCY C | OF CALIFO | DRNIA - DE | PARTMENT | OF WATER R | ESOURCES | ı | I | | | 1 | | State Well | Temp. | | Specific
canduct- | | Mineral Co | Mineral Constituents in | | e d | milligrams per liter
equivalents per millian
percent reactance value | er liter
er millian
ance value | | | | Mineral constituents in
parts per million | neral constituents
parts per million | ints in | | |---------------------------------|-----------|---------|----------------------|------------------------|------------|-------------------------|--------|---------|--|--------------------------------------|------------------|--------------------|---------------|--|---|------------|--------------| | Lagen I | Sampled | I | ance
micro- | Colcium | Mogne- | Sodium | Potos- | Carbon. | Bicar.
bonote | Sulfate | Chlo-
ride | Ni-
trote | Fluo-
ride | Boron | ij 8 | Computed | TOTAL | | Date Sampled Agy.
Time Call. | o
H | | mhas
at 25°C) | ß | Wg | ž | ¥ | 003 | нсоз | 504 | Ū | NO 3 | u. | 83 | SIO 2 | Evap 180°C | as
CoCO 3 | | 275/24E- 1L 2 M
5- 7-64 5050 | 68 | 0.8 | 442 | 2.25 | 0.41 | 1.35 | 0.03 | 0 | 95
1.56
39 | 40
0.83
21 | 41
1•16
29 | 28.0
0.45
11 | 1 | 00•0 | 1 | 238 | 133 | | 275/24E- 1L 3 M
5- 7-64 5050 | 69 | 8.7 | 155 | 0.20 | 0.08 | 1.17 | 0.03 | 0.07 | 0.89 | 0.27 | 0.14 | 0.01 | ! | 00.00 | 1 | 986 | 14 | | 275/24E- 1L 4 M
5- 7-64 5050 | 68 | 0.8 | 140 | 0.10 | 0.08 | 1.17 | 0 | 0 | 0.98 | 0.21 | 0.14 | 2.0 | 1 | 00.0 | 1 | 104 | 6 | | 275/24E- 5R 1 M
9-15-64 5050 | 76 | 8.1 | 150 | 1 | - | 1 | 1 | O | 58 | - | 0.17 | 1 | 1 | 1 | 1 | | 14 | | 275/24E-31E 1 M
8-27-64 5050 | 78 | 4.6 | 676 | | - | 1 | ł | 0.07 | 1.05 | 1 | 1.97 | 1 | ł | ł | 1 | | 103 | | 275/24E-34F 1 M
9-15-64 5050 | 74 | 7 8 | 210 | 1 | - | 1 | 1 | 0 | 0.0 | | 18 | 1 | } | 1 | 1 | - | 28 | | 275/25E- 1N 1 M
5- 6-64 5050 | 65 | 7.4 | 407 | 35 | 0.58 | 1.61 | 0.05 | 0 | 158
2.59
66 | 44
0•92
24 | 0.31 | 5.4 | 1 | 0.10 | 1 | 219 | 117 | | 275/25E- 1N 3 M
5- 6-64 5050 | 99 | 6.2 | 131 | 0.05 | 0.08 | 1.04 | 0.03 | 0 | 47
0•77
69 | 0.12 | 0.20 | 1.0 | 1 | 00.0 | ł | 70 | 7 | | 275/25E- 5R 1 M
9-15-64 5050 | 80 | φ
• | 352 | 1 | 1 | 1 | 1 | 0.13 | 138 | 1 | 0.25 | 1 | å
i | 1 | - | | 104 | | 275/25E-34A 2 M
9-15-64 5050 | 72 | αρ
• | 415 | 0 135 14 2 2 2 1 0 3 9 | 1 | 1 | | 0 | 2.21 | 1 | 0.39 | l | 1 | 1 | 1 | | 140 | MINERAL ANALYSES OF GROUND WATER SAN JOAQUIN DISTRICT | TOTAL | CaCO 3 | 186 | ω
80 | 97 | 99 | 781 | 704 | 840 | 197 | 101 | 208 | |-----------------|--|---|--|--|--
--|--|--|--
--|--| | TOS | Evap 180°C | 396 | 169 | 419 | 251 | 1017 | 2438 | 3032 | | | 679 | | Sili: | s ő | 1 | ł | l | 1 | 1 | ł | 1 | i | l | 1 | | Boran | 60 | 0.79 | 0.36 | 0.15 | 0.28 | 90.0 | 3.30 | 4.30 | 1 | 1 | 00.00 | | Fluo- | ш. | 0.0 | 0 • 2 | 0.1 | 0 8 | 0.0 | 1 | 1 | ł | } | 1 | | ž | o
N | 1 | } | 1 | 1 | 1 | 0.01 | 0.8 | 1 | 1 | 17.0
0.27
2 | | Chlo | <u> </u> | 164 | 34 | 130 | 1.55 | 411 | 776
21.88
55 | 846
23.86
49 | 3.58 | 58 | 228
6.43
56 | | Sulfate | Ş | 15 0 31 | 0.29 | 1.60 | 0.19 | 3.08 | 731
15•22
38 | 983 | 1 | 1 | 202 228 17.0
4.21 6.43 0.27
37 56 | | 8icar- | | 122 | 91 | 1.80 | 137 | 218 | 166 | 277 | 95 | 127 | 51 | | ė | ီး ဝွ | , 0 | 0.27 | 0 | 0.53 | 0 | 0 | 0 | 0 | 0.13 | 0.03 | | Potas- | E > | 0.10 | 0.08 | 20 | 0.10 | 0.13 | 0.13 | 0.15 | ł | l
I | 0.03 | | Sodium | ž | 3.65 | 51 2.22 | 108 | 84
• 80 | 2.70 | 588
25.57
64 | 752
32.70
66 | ! | 1 | 2 134
16 5.83
2 58 | | Magne- | E 2 | 10 | 0.41 | 1.23 | 0.41 | 3.87 | 3.78
10 | 50
4.11
8 | 1 | | • | | Calcium | 3 | 5.89 | 7 | 0.70 | 0.70 | 235 | 206
10•28
26 | 254
12•67
26 | 1 | ! | 3.99 | | ance
(micro- | mhos
at 25 C) | 769 | 303 | 581 | 909 | 2500 | 3920 | 4650 | 1410 | 712 | 1090 | | Ξ | <u>a</u> | 7.7 | 8 • 6 | 8 0 | &
•
• | 7.5 | 6 • 9 | 7.2 | 8 • 1 | 4 • | 8 • 1 | | Sampled | ь. | 1 | 1 | | 1 | 1 | 67 | 67 | 1 | 82 | 1 | | IAGIIDAI | Date Sampled Agy. | 75/26E-22H 1 M
9-24-64 5703 | 75/26E-22Q 1 M
9-21-64 5703 | 75/26E-25J 1 M
9-16-64 5703 | 75/26E-27A 1 M
8- 6-64 5703 | 75/26E-27R 1 M
8- 6-64 5703 | 85/22E- 9D 1 M
5- 7-64 5050 | 85/22E- 9D 2 M
5- 7-64 5050 | 35/22E-10R 1 M
8-27-64 5050 | 35/22E-26J 1 M
9-14-64 5050 | 28S/23E-25H-2-M
5-29-64 5050 | | | when ance when Garban Bicar Carban Sicar Sulfate 105 | when when when the continum sign Sompled by Collinum sign Polata: Garban- sign Garban- sign Signs sign COII. Ni- Fluo- ride Pluo- ride Sili- IDS Agy. | Agy. °F and 25°C and the continue and sium sium sium sium at a banate Sultate Caho. Ni. Fluo. Sultate Caho. Ni. Fluo. Sultate Caho. Ni. Fluo. Sultate Caho. Ni. Fluo. Sultate Caho. No. Sampled have sium at a banate Sultate Caho. No. Sampled have sium at a banate Solitate Caho. No. Sampled have sium at a banate Sultate Caho. No. Sampled have sium at a banate Solitate Caho. No. Sampled have sinm at a sium at a banate Solitate Caho. No. Sampled have ha | Sampled p Calcium Magne Sodium Sium Potas Carbon Bicar Calcium Sium Sodium Sium Carbon Bicar Calcium Sium Calcium Sium Calcium Calc | when mother sum signm Potest Free South signm Carbon Founds Free Souther Bistor Chlo- train ride Ni- files Free Free Free Free Free Free Free Fr | Nimbos N | Coll. Coll. Coll. Magnet Social magnet Coll. Magnet Social magnet Coll. Co | Agy. "*** of a condition at condit | Agy Sample Agy Color Mage Agy Sadium Sadi | Second Column C | Simple S | | | | TDS TOTAL | | 36 | 300 | 117 38 | 113 33 | 94 18 | 95 23 | 380 157
436 | 329 118
355 | 156 40 | 117 23 | |-------------------------|--|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------| | Mineral constituents in | parts per millian | Sili- I | - 7 | 1 | | 1 | 1 | † | 1 | | | | 1 | | Mineral | parts p | Boron | ω | 1 | 00 • 0 | 00.0 | 00.0 | 00.00 | 0.10 | 0.10 | 0.10 | 0 • 10 | 0.10 | | | | Fluo- | <u>.</u> | 1 | ı | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | rote in | S O Z | ł | 34.0
0.55
13 | 4.2 | 3.1 | 2 • 2
0 • 04
2 | 1•3
0•02 | 5 • 3
0 • 09 | 5 • 5
0 • 0 9 | 2.3 | 2.0 | | | | Chlo | ō | 1.38 | 40
1•13
26 | 15
0•42
21 | 16 0.45 23 | 0.31 | 13
0•37
23 | 91 2.57 42 | 70
1.97 | 0.76 | 0.62 | | er liter | equivalents per millian
percent reactance value | Sulfate | 504 | | 73
1.52
36 | 17
0 • 35
18 | 18
0•37
19 | 0.27 | 0.27 | 133 2.77 46 | 121
2•52
48 | 45 | 20 | | milligrams per liter | equivalents per millian
percent reactance value | Bicar- | HCO 3 | 45 | 66
1•08
25 | 71 1.16 58 | 62
1.02
53 | 56
0.92
57 | 0.08 | 38
0•62
10 | 40
0•66
13 | 41
0.67
26 | 52
0.85
44 | | | e c | Carban- | 9 | 0 | 0 | 0 | 0.03 | 0.07 | 0 | 0 | 0 | 0.13 | 0.03 | | | | Potos- | ~ | 1 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | | Mineral Canstituents in | Sodium | Ž | 1 | 35 | 30 | 30 | 1.30 | 1.22 | 68
2.96
48 | 2.83
54 | 1.74 | 36
1.57 | | | Mineral Co | Magne- | Mg | } | 0.08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Colcium | 3 | 1 | 2.59
2.59
61 | 15 0 36 | 0.65 | 0.35 | 0.45 | 3.14 | 2.35 | 16
0.80
31 | 0.45 | | Specific | conduct- | (micro- | mhas
at 25°C) | 399 | 471 | 215 | 205 | 170 | 190 | 969 | 290 | 298 | 224 | | | | Ξ, | 1 | 7 - 8 | • 1 | 80
• | 4 • 8 | φ
• | 7.7 | 7 • 8 | 4 | ©
•
• | &
•
• | | | Temp. | Sampled | u. | 7.1 | 73 | 75 | 75 | 75 | 75 | 75 | 74 | 76 | 76 | | | State Well
Number | | Date Sampled Agy.
Time Coll. | 285/23E-25P 1 M
9-14-64 5050 | 285/24E- 1F 1 M
6-23-64 5050 | 285/24E- 2B 1 M
6-23-64 5050 | 285/24E- 2P 1 M
6-23-64 5050 | 28S/24E- 3N 1 M
6-24-64 5050 | 28S/24E- 30 1 M
3-31-64 5050 | 285/24E- 6F 1 M
3-31-64 5050 | 7- 9-64 5050 | 285/24E- 78 1 M
7- 9-64 5050 | 28S/24E- 9H 1 M
7- 9-64 5050 | | | Ŀ | 3. | е е | | 28 | 6.3, | 6 0 | 30 | 10 | 12 | 10 | 20 | 70 | ı | |--|--------|-----------------|------------|------------------------
--------------------------|---|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------|------------------------|------------------------|--| | | TOTAL | hordness | Ů | 10 | | | | | | | | | | ١ | | ents in
Iion | TDS | Computed | Evop 180°C | 250 | 108 | 145 | 201 | 138 | 130 | 161 | 93 | 120 | 265 | ı | | neral constituents
parts per million | Sili | 8 | SIO 2 | ł | 1 | t | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ı | | Mineral constituents in parts per million | | Boron | æ | 0.10 | 0.10 | 00•0 | 00.0 | 0.10 | 0.20 | 0.20 | 0.10 | 0.10 | 0.10 | ı | | | Fluo- | apir | ш. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ı | | | ž | trate | NO 3 | 32.0
0.52
13 | 1.7
0.03 | 9•7
0•16
7 | 21.0
0.34
10 | 7•3
0•12
5 | 0.9 | 0.4 | 1 • 3
0 • 02
1 | 0.01 | 3.2 | RESOURCES | | | Chlo- | ride | ō | 1.24 | 0.45 | 21
0.59
24 | 30 | 36
1.02
43 | 0.37 | 1.97 | 0.23 | 28 0 . 79 | 2.51 | OF WATER F | | er liter
per million
tance value | | Sulfate | SO 4 | 1.10 | 0.31 | 0.42 | 0 • 85
26 | 19 | 0.19 | 0 | 0.25 | 19 | 1.08 | THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | | milligrams per liter
equivalents per million
percent reactance value | Bicar- | bonate | нсо з | 69
1•13
28 | 1.08
58 | 1.29 | 78
1.28
39 | 45
0.74
31 | 70
1.15
67 | 56
0 • 92
32 | 1.15
1.05 | 0.90 | 0.66 | ORNIA - DE | | | Carbon | ote | co 3 | 0 | 0 | 0 | 0 | 0.10 | 0 | 0 | 0 | 0 | 0.10 | OF CALIF | | c | Polas- | mois | ¥ | 0.03 | 0.03 | 0.03 | 0.03 | 0 | 0 | | 0 | 0 | 0.03 | AGENCY | | Mineral Canstituents in | | Sodium | 2 | 1.91 | 1.35 | 1.26 | 35
1.52
46 | 38
1.65 | 1
6
6
8
8 | 2.57 | 1 • 43 | 37
1•61
80 | 3.00 | RESOURCES | | Mineral C | Mogne- | E i cm | Mg | 0.08 | ó | 0 | 0 | 0 | 0 | 0.08 | 0 | 0 | | : | | | | Calcium | ů | 2.05 | 0.55 | 1.25 | 1.75 | 0.60 | 0.20 | 0.15 | 0.20 | 0.40 | 1.40 | STATE OF CALIFORNIA | | Specific
canduct- | ance . | (micra-
mhas | at 25°C) | 447 | 205 | 260 | 377 | 257 | 176 | 323 | 173 | 230 | 516 | STATE | | | : | ī_ | | ω
• | &
•
• | 8 . 2 | 8 • 1 | 00
• 00 | 7.1 | 7.5 | 8 • 2 | 8 • 0 | 00
0
10 | ١ | | Temp. | when | Sampled | | 73 | 75 | 88 2 | 75 | 79 | 72 | 72 | 0 | 73 | 10 | ı | | | | Agy. | Call. | 1 M
5050 | 5050
5050 | 5050
5050 | 5050
5050 | 1 M
5050 | 5050 | 5050
5050 | 5050 | 5050
5050 | 5050 | | | Well | 2 | led | | -11A | -11F | -12A | -12D | -16A | -23D | -23D | -26D | -30F
54 5 | -31A
54 5 | | | State Well | | Date Sampled | Time | 285/24E-11A
6-23-64 | 285/24E-11F
7- 9-64 5 | 28S/24E-12A 1
6-23-64 505 | 285/24E-12D 1
6-24-64 50 | 285/24E-16A 1
6-23-64 505 | 28S/24E-23D 2
4- 9-64 505 | 285/24E-23D 3
4- 9-64 505 | 285/24E-26D
6-23-64 | 285/24E-30F
6-23-64 | 285/24E-31A
6-24-64 | 7041 311 | | | | | | .,, | 10 | • | | - | | | | ., | | | | | TOTAL
hordness | °s
C°CO 3 | 13 | 33 | 186 | 205 | 207 | 204 | 176 | 238 | 205 | 86 | |--|-------------------|--|------------------------|-----------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------|---------------------------------|------------------------|------------------------| | ents in
ion | Computed | Evap 180°C | 102
113 | 133 | 401 | 345 | 376 | 3.88
0.88
8.89 | 331
368 | 4 30
504 | 378 | 279 | | neral canstituents
parts per million | Sij: | SIO 2 | 1 | 1 | 1 | ł | 1 | 1 | 1 | 1 | ; | 1 | | Mineral canstituents in
parts per million | Boron | 8 | 00•0 | 0.20 | 0.10 | 00 • 0 | 00.0 | 0.10 | 00.0 | 0.10 | 0.10 | 0.10 | | | Fluo-
ride | L. | 1 | 1 | 1 | 1 | 1 | ì | 1 | 1 | 1 | - | | | role
Frole | NO 3 | 1 • 1
0 • 0 2
1 | 7.3
0.12 | 6.0
0.10 | 39.0
0.63
11 | 42.0
0.6P
11 | 81.0
1.31
24 | 47.0
0.76
14 | 77.0
1.24
19 | 30 • 0
0 • 48 | 14.0
0.23 | | | Chlo
ebir | ō | 20
0.56
32 | 0.45 | 111
3•13
47 | 36
1.02
18 | 38
1.07
18 | 0.71 | 1.13 | 2.00 | 39
1•10
18 | 19
0.54
12 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | 504 | 19
0•40
23 | 38
0.79
36 | 119
2•48
38 | 1111
2.31
42 | 126 2 • 62 | 58
1•21
22 | 1.85 | 94
1.96
29 | 134
2 • 79
4 7 | 93
1.94
43 | | milligrams per liter
equivalents per millian
percent reactance value | Bicar-
banate | нсо з | 0.49
28
28 | 43
0•70
32 | 55
0.90
14 | 1.59 | 97
1.59 | 141
2•31
42 | 92
1•51
29 | 91 | 98
1•61
27 | 113
1•85
41 | | Εŏō | Carbon- | 8 | 0.27 | 0.13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Potos- | ¥ | O | 0 | 0.05 | 0.08 | 0.05 | 0.05 | 0.05 | 0.03 | 0.08 | 0.03 | | Mineral Constituents in | Sodium | ž | 34
1.48
86 | 1.49.00 | 2.70 | 31
1.35
24 | 1.78 | 36 | 1.74 | 57
2.48
34 | 45
1.96
32 | 2.52
5.52
5.6 | | Mineral Co | Mogne- | on
¥ | 0 | 0 | 0.08 | 0.66 | 0
4
8 | 0.49 | 0.33 | 1.32
1.32 | 0.41 | 0.16 | | | Colcium | 3 | 0.25 | 13
0•65
31 | 3.64 | 3 . 69
444
62 | 73 | 3.59 | 64
3•19
60 | 3.44 | 3.69 | 36
1 • 80
40 | | Specific canduct- | ance
(micro- | mhos
at 25 C) | 200 | 227 | 722 | 580 | 630 | 583 | 561 | 784 | 647 | 489 | | | I | <u>. </u> | 0.6 | 8 . 7 | 8•1 | 8 • 2 | 8 • 2 | 0 | &
• | ©
•
• | 0 • | φ
• | | Temp. | when | ů. | 72 | 74 | 73 | 74 | 75 | 72 | 78 | 7.7 | 74 | 73 | | State Well | | Agy.
Coll. | -310 1 M | -32P 1 M | -36R 1 M | - 2A 1 W | E- 2K 1 M
-64 5050 | 9-64 5050 | E- 4P 2 M | 785/25E- 9E 2 M
6-24-64 5050 | E-10B 1 M | E-13C 1 M
-64 5050 | | State | | Date Sampled
Time | 285/24E-31D
6-24-64 | 285/24E-32P 1
6-23-64 50 | 285/24E-36R
6-24-64 | 285/25E- 2A
6-23-64 | 285/25E- 2K
6-23-64 | 285/25E- 4F
7- 9-64 | 28S/25E- 4P
6-23-64 5 | 785/25E-
6-24-64 | 285/25E-10B
3-31-64 | 285/25E-13C
6-25-64 | | | ٠, | | | | | | | | | | | | 7 | |--|----------|----------------------|------------------------|------------------------|---------------------------------|---------------------------------|------------------------|------------------------|--------------------------|------------------------------|------------------------|-----------------------------|--| | | TOTAL | 28
CaCO 3 | 35 | 160 | 757 | 1200 | 118 | 454 | 22 | 40 | 65 | 20 | | | ents in
ion | Computed | Evap 180°C | | 413 | 1266 | 2072 | 253 | 718 | 106 | 159 | 178 | 91 | | | neral constituents
parts per million | Sili; | 510 2 | 1 | 1 | 1 | ŀ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Mineral constituents in parts per million | Boron | ω | 1 | 0.10 | 0.10 | 0.10 | 0.10 | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 | 1 | | | Fluoride | u. | 1 | 1 | t | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | rate t | 0
Z | 1 | 29.0 | 20.0 | 54.0
0.87 | 3 . 8 | 8 • 2
0 • 13 | 1.0 | 4 • 2
0 • 0 7 | 2.9 | 1.2 | SECURIORS | | | Chlo- | ō | 0.37 | 1.61 | 431
12.15
58 | 368
10.38 | 1.69 | 186
5•25
45 | 0.25 | 26
0.73
28 | 37
1.04
34 | 0.23 | THE RESOLINCES AGENCY OF CALLEDRING DEPARTMENT OF WATER RESOLINCES | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | \$0 ⁴ | - 1 | 148
3.08
4.7 | 365
7•60
36 | 940
19.57
61 | 71
1•48
35 | 235
4 • 89
42 | 0.15 | 37 0 - 77 0 29 | 43
0.90
30 | 13 | PADTMENIT | | milligrams per liter
equivolents per mill
percent reactance v | Bicar- | HCO 3 | 1.46 | 85
1•39
21 | 1.00 | 1.33 | 59 0 97 | 88
1•44
12 | 1.05 | 66
1.08
41 | 1.05 | 58 | A PINAC | | E & A. | Carban- | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.10 | OF CALIFO | | _ | Patas- | × | ł | 0.03 | 0 0 0 0 | 0.10 | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 | 0.03 | AGENCY | | Mineral Constituents in | Sodium | Z | 1 | 3.26 | 125
5.44
26 | 195
8 • 48
26 | 1.74 | 3.35 | 1.09 | 1.83 | 37
1.61
55 | 1.22 | PESOLIBCES | | Mineral C | Magne- | . ₩ | 1 | 0.41 | 1.40 | 1,23 | 0 | 0.49 | 0.08 | 0 | 0 | 0 | NIA - THE | | | Calcium | ß | 1 | 2.79 | 13.72 | 456 22.75 | 2.35 | 160
7.98
67 | 0.35 | 0 + 80 | 1.30 | 0.40 | STATE OF CALIFORNIA | | Specific conduct- | (micro- | mhos
ot 25 C) | 234 | 687 | 2120 | 2900 | 466 | 1230 | 166 | 306 | 344 | 166 | STATE | | | Ξ | 1 | 80 . 2 | • | 6
0
0 | | 8 • 2 | 7.8 | 8 • 2 | &
• | 7 • 8 | &
• | 1 | | Temp | when | ů. | 72 | 74 | 73 | 75 | 75 | 74 | 1 | 75 | 47 | 75 | | | | | Agy.
Coll. | 1 M
5050 | 5050 | 5050 | 5050 | . 1 M
5050 | 5050 | 5050 | 5050 | 1 M
5050 | 5050 | | | Stofe Well | | Date Sampled
Time | 285/25E-17L
9-14-64 | 285/25E-20D
6-23-64 | 285/25E-22F 1 M
6-23-64 5050 | 285/25E-24P 1 M
6-25-64 5050 | 285/25E-25L
6-24-64 | 285/25E-27L
4-28-64 | 285/25E-28P
4-28-64 5 | 285/25E-3nG 1
6-23-64 509 | 285/25E-32L
4-28-64 | 285/25E-32P 1
6-24-64 50 | DWR 1982 | | | | _ | _ | | | | | | | | | | | |---|---------------------------------------|---|------------|--------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|---------------------------------|-----------------------------| | | TOTAL | hardness | C0C03 | 70 | 4 8 | 6 | 10 | 368 | • | 6 0 | 2660 | 15 | 39 | |
ents in
lion | TDS | Computed | Evap 180 C | 141 | 182 202 | 194 | 203 | | | | | 114 | 210 | | neral constituents
parts per million | Siti- | 8 | SIO 2 | - | 1 | ł | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Mineral constituents in parts per million | S S S S S S S S S S S S S S S S S S S | | 80 | 0.10 | 0.10 | 0.20 | 0.20 | ľ | ł | 1 | 1 | 0.10 | 0.10 | | | Fluo- | epi | ı. | 1 | 1 | ł | 1 | İ | 1 | 1 | - | ŧ · | 1 | | | ż | irole | NO 3 | 1.5 | 1.4 | 0.01 | 0.4 | | 1 | 1 | 1 | 0.9 | 6.8
0.11 | | | Chlo | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ō | 0.68 | 0 0 0 0 0 | 36
1.02
30 | 2.48 | 3.16 | 1.16 | 17 | 2370 | 0.25 | 1.13 | | milligrams per liter
equivolents per million | Sulfate | | 504 | 0.42 | 450.94 | 0.52 | 0 | <u> </u> | 1 | - | 1 | 0.19 | 163 | | milligrams per liter
equivolents per million | Bicar- | bonote | нсо з | 1.39 | 70
1.15
37 | 1.07 | 1.03 | 1.25 | 92 | 1.21 | 304 | 1.02 | 31
0.51
15 | | E & & | ė | alo | CO3 | 0 | 0.07 | 23
0.77
23 | 0 | 0 | 0 | 0 | 0 | c | 0 | | | Potos- | E | ~ | 0.03 | 0.05 | 0.03 | 0.03 | 1 | 1 | ł | 1 | 0.03 | 0 | | Mineral Constituents in | | | ž | 1.09 | 31 1.35 | 3.17 | 3,39 | 1 | 1 | 1 | 1 | 1.17 | 57
2.48
76 | | Minerol Co | Модпе- | Eng | Mg | 0 | 0.08 | 0.08 | 0 | 1 | { | 1 | 1 | 0 | 0.08 | | | | E CORDO | S | 1.40
56 | 32
1.60
52 | 0 • 10 | 0.20 | 1 | 1 | 1 | 1 | 0.30 | 0.70 | | Specific conduct- | ance | mhos | ot 25 C) | 295 | 348 | 376 | 418 | 1080 | 313 | 260 | 9300 | 170 | 363 | | | 1 | <u>.</u> | | 7.9 | 4 | 0.6 | 7 8 | 7.9 | . 2
• 2 | 8•1 | 6 • 9 | 7 • 8 | 7.7 | | Temp. | when | Sompled
°F | | 74 | 75 | 69 | 69 | 79 | 4 | 81 | 1 | 09 | 72 | | | | Agy. | [8] | 5050 | C 1 M
5050 | H 2 M
5050 | H 3 M
5050 | A 1 M
5050 | C 1 M
5050 | L 1 M
5050 | C 1 M
5050 | H 1 M 5050 | D 1 M
5050 | | State Well | Number | Date Sampled | Time | 285/25E-35Q
4-29-64 5 | 285/25E-36C
6-25-64 5 | 28S/26E-21H
4-10-64 | 285/26E-21H
4-10-64 | 285/26E-30A
9-14-64 | 285/27E- 7C
9-14-64 | 285/27E-28L
9-14-64 | 295/22E- 1C
8-27-64 | 295/24E- 1H 1 M
3-31-64 5050 | 295/24E- 4D 1
6-23-64 50 | | | TOTAL | 50 | 7 | 20 | 15 | 144 | 60 | 75 | 420 | 49 | 165 | 25 | 45 | |--|-----------------|---------------|---------|------------------------------|---------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------|-----------------------------|------------------------------|--| | | \vdash | | | 2.2 | 0 7 | | 13 | 00 | | 9 % | | 32 | 4 0 | | ents in
Iian | IDS | 001 | ngi dan | 132 | 180 | 743 | 94 | 272 | 766 | 166 | 398 | 132 | 1146 | | neral canstituents
parts per millian | SIII: | 3 9 | 302 | 1 | ł | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Mineral canstituents in
parts per millian | Boron | a | | 0.10 | 0.20 | 0.10 | 00•0 | 0.10 | 0.50 | 0.10 | 0.10 | 0•10 | 0.10 | | | Fluo- | | - | - | 1 | 1 | 1 | 1 | 1 | 1 | ł | 1 | 1 | | | Z - | Š | 2 | 0.0 | 6.3
0.10 | 3.8 | 0.0 | 14.0 | 0.0 | 5 • 8
0 • 09 | 15.0 | 1.6 | 1.7
0.03
2
ESOURCES | | | Chlo | | 5 | 1.21
55 | 1.92 | 262
7.39
60 | 15
0.42
26 | 27
0•76
18 | 1.13 | 0.62 | 78
2.20
33 | 0.34 | 0 25 1 0 73 18 14 1•7 5 60 19 54 1•7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 5 | 20.4 | 0.42 | 400 | 3.04 | 0.27 | 2.12 | 349
7.27
58 | 0.90 | 103
2.14
32 | 0.25 | 18
0•37
19 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar- | | E 23 | 27 0 - 44 20 20 | 51 | 115 | 0.59 | 1.20 | 254 | 1.13 | 125
2•05
31 | 1.11 | 1.20
60
60
SRNIA - DE | | E & Q | Carbon- | . 5 | 5 | 0.13 | 0.20 | 0 | 10 | 0 | 0 | 0.03 | 0 | 0 | OF CALIF | | _ | Pofas- | | ¥ | 0.03 | 0 | 0.03 | 0 | 0.03 | 0.05 | 0.03 | 0.05 | 0.03 | 0.03
1
AGENCY | | Mineral Constituents in | Sodium | ź | 2 | 1.83 | 2.78 | 216 | 35
1.52
91 | 2.70 | 9 00 00
9 00 00 | 1.48 | 3.22 | 1.22
1.70 | 25
1 • 09
54
RESOURCES | | Mineral C | Magne- | : | 66 | 0 | 0 | 0.08 | 0 | 0 | 10 | 0.08 | 0.25 | 0 | O O | | | Colcium | į. | 3 | 0.40
18 | 0.30 | 2.79 | 0.15 | 1.50 | 152
7.58
62 | 1.20 | 3.04 | 0.50 | 13 0.90
45
STATE OF CALIFORNIA | | Specific
conduct- | ance
(micra- | mhos | | 263 | 355 | 1360 | 174 | 474 | 1160 | 308 | 706 | 195 | 213
STATE | | | Ξ | ۵. | 1 | | Ø. | | 9.4 | 80
• 0.3 | 8.2 | 4.8 | 7.8 | 7.9 | | | Temp. | when | 0 | 1 | 72 | 11 | 1 | 76 | 72 | 80 | 73 | 6 0 | 75 | 72 | | | | Agy.
Coll. | | 5050
5050 | 1 M | 5050
5050 | 5050 | 1 M | 5050
5050 | 5050 | 5050 | 5050
5050 | 1 1 M
5050 | | State Well | | Date Sampled | | 295/24E- 4M 1
4-29-64 505 | 295/24E- 7C 1 M
6-23-64 5050 | 295/24E- 8N 1
6-23-64 505 | 295/24E-21B 1 M
6-23-64 5050 | 298/24E-24F 1 M
6-24-64 5050 | 295/24E-33P 3 M
7- 9-64 5050 | 295/25E- 3N 1
6-24-64 505 | 295/25E- 5A 1
4-28-64 50 | 295/25E- 5G 1
3-31-64 505 | 295/25E-10M
6-24-64 5
DWR 1982 | | | 1 | | | | _ | | | | | | | | |--|-----------|--|------------------------|----------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|-----------------|------------------------| | | TOTAL | as a | 170 | 165 | 159 | 10 | 25 | 30 | &
& | 50 | 257 | 78 | | ents in
ion | TDS | Evap 180°C | 287
378 | 301 | 338 | 104 | 417 | 109 | 139 | 132 | | 141 | | neral constituents
parts per million | ils : | Sio 2 | ł | 1 | - | 1 | 1 | 1 | i | 1 | ŀ | ł | | Mineral constituents in parts per million | Boron | œ | 0.10 | 00.0 | 0.20 | 00.00 | 0.30 | 0.10 | 0.20 | 0.10 | 1 | 0•10 | | | Fluo | ıL | 1 | 1 | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | ż | ν
0
2 | 5.2 | 16.0
0.26
5 | 13.0 | 1.7 | 1.5 | 1.5 | 4.1 | 2 8 0 0 0 0 5 | 1 | 5.2 | | | chi : | ō | 2.37 | 84
2•37
47 | 1.72 | 0.17 | 6.35 | 0.20 | 0.71 | 0.51 | 18 | 0.28
11 | | milligrams per liter
equivalents per million
percent reactance value | Suffate | 504 | 1.23 | 1.27 | 81
1.69
34 | 0.15 | 0 | 0.21 | 0.48 | 23
0.48
21 | 1 | 18
0•37
15 | | milligrams per liter
equivalents per million
percent reactance value | Biar. | HCO 3 | 72
1•18
24 | 70
1•15
23 | 82
1•34
27 | 1.20 | 51
0.84
12 | 1.15 | 1.07 | 1.16 | 1.33 | 109
1.79 | | | ė | CO a | 0 | 0 | 0 | 0 | 0 | 0.07 | 0.07 | 0.07 | 0 | 0 | | c | Potos- | ¥ | 0.05 | 0.05 | 0.05 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 1 | 0.03 | | Mineral Canstituents in | Sodium | Ž | 35
1,52
31 | 39
1.70
34 | 1.638 | 30
1•30
85 | 154
6•70
93 | 1.04 | 29
1•26
52 | 30
1•30
56 | i | 23
1.00
39 | | Mineral Co | Magne- | 6 W | 0.23 | 0.16 | 0.33 | 0 | 0 | 0 | 0 | 0 | 1 | 0.16 | | | Colcium | S | 3.14 | 63
3•14
62 | 2.84 | 0.20 | 0.50 | 12
0•60
36 | 23
1.15
47 | 20
1•00
43 | 1 | 28
1.40
54 | | Specific
conduct- | micro | mhas
at 25 C) | 561 | 566 | 553 | 160 | 846 | 166 | 267 | 247 | 257 | 250 | | | 1 | <u>a</u> | 7.8 | 00
• 1 | ∞
• 1 | 7.3 | 7.9 | &0
•
• | 80
• 5 | ∞
• | 80 - 2 | 8 • 2 | | Femp. | when | 4 | 74 | 72 | 1 | 69 | 99 | 74 | 74 | 72 | 71 | 72 | | | | Agy.
Coll. | 1 1 M
5050 | 5050 | 5050 | 1 3 M | 5050 | 1 1 M
5050 | 5050 | 5050 | 5050 | J 1 M
5050 | | State Well | Laguinger | Date Sampled
Time | 295/25E-10N
4-28-64 | -10N 1
6-24-64 50 | 295/25E-11K
6-23-64 | 295/25E-12M
4-10-64 5 | 295/25E-12M
4-10-64 | 295/25E-12N
6-23-64 | 295/25E-13R
7- 9-64 | 295/25E-32F
7- 8-64 | -32F
9-14-64 | 29S/25E-35J
6-23-64 | MINERAL ANALYSES OF GROUND WATER SAN JOAGUIN DISTRICT | | TOTAL | os
CaCO 3 | 153 | 54 | 110 | 72 | 120 | 39 | 10 | 56 | 58 | 29 | |--|----------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|--------------------------|---------------------------------| | | - | | - | | | 80 LS | | O v# | 6.2 | | | 1 | | ents in
Iion | 105 | Evap 180°C | | | 335
339 | 118 | 194 | 89 | 112 | | | | | neral canstituents
parts per million | Sifi | SIO 2 | 1 | 1 | 19 | } | 1 | 1 | 1 | 1 | 1 | - | | Mineral canstituents in parts per million | Boran | ω. | + | 1 | 0.20 | 0.20 | 0.10 | 0.10 | 0.10 | 0.20 | 1 | 1 | | | Fluo- | 4 | 1 | 1 | 0 • 3 | 1 | 1 | 1 | 1 | 1 | 1 | ł | | | Ä j | 0 N | + | 1 | 14.0
0.23 | 2.0 | 2.7
0.04 | 2 - 8 | 0.01 | ! | 1 | 1 | | | 송 | ū | 1.38 | 0.37 | 36
1.02
18 | 0.23 | 30 | 0.14 | 0.23 | 0.42 | 15 | 150 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 504 | 1 | ; | 16
0•33
6 | 0.35 | 37
0•77
22 | 0.17 | 0.12 | 1 | 1 | 1 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar- | HCO ₃ | 91 | 1+23 | 254
4.16
72 | 94
1.54
72 | 110 | 1.26 | 88
1 • 44 | 1 | 150 | 34 | | Eŏŏ | ė | CO 3 | 0 | 0 | 0 | 0 | 0 | O | 0 | 1 | 0.17 | 0 | | | Potas- | × | 1 | 1 | 0.08 | 0.05 | 0.08 | 0.05 | 0.03 | 1 | 1 | - | | Mineral Constituents in | Sodium | Ž | ; | ! | 3.57
61 | 0.74 | 1.00 | 18 0.78 | 1.57
87 | 2.91 | 1 | 1 | | Mineral C | Magne- | 6 _W | 1 | ŧ | 0
4
8 | 0.33 | 0.49 | 0.08 | 0 | } | 1 | 1 | | | Calcium | S | 1 | 1 | 34
1.70
29
 1.10 | 38
1 • 90
55 | 14
0 • 70
43 | 0.20 | | 1 | l | | Specific
conduct- | ance
micro- | mhos
at 25°C) | 575 | 196 | 552 | 232 | 374 | 173 | 199 | 422 | 432 | 641 | | | I | o. | &
• 3 | 0
• 8 | 7.6 | 7.2 | 7.6 | 7.4 | 8 • 2 | ł | 80 | 7.6 | | Temp. | Somoled | a
F | 72 | 65 | 45 | 68 | 49 | 99 | 89 | 08 | 08 | 70 | | State Well | Nomber | Date Sampled Agy.
Time Coll. | 29S/26E- 9R 1 M
9-14-64 5050 | 29S/26E-35K 1 M
9-14-64 5050 | 29S/27E-21R M
2- 7-64 5050 | 29S/27E-34N 1 M
4- 8-64 5050 | 295/27E-34N 2 M
4- 8-64 5050 | 29S/27E-34N 3 M
4- 8-64 5050 | 295/27E-34N 4 M
4- 8-64 5050 | 295/28E-12E 1 M
12- 8-63 5124 | -12E 1 M
9-15-64 5050 | 30S/23E- 1C 3 M
8-27-64 5050 | | | | Da | 295, | 295. | 295. | 295. | 295 | 295 | 295 | 295 | 6 | 30S. | | State Well
Number | Temp. | | Specific conduct- | | Mineral Ca | Mineral Canstituents in | | e d | milligrams per liter
equivalents per millian
percent reactance value | er liter
er millian
ance value | | | | Mineral constituents in
parts per million | neral constituents
parts per million | ents in | | |---------------------------------|------------|----------|-------------------|--|----------------------|-------------------------|------------------|-----------|--|--------------------------------------|--------------------|---------|---------------|--|---|-------------------|------------| | | Sampled | Ξ, | (micro- | Calcium | Mogne-
sium | Sodium | Potas. | Carbon- | 8icar-
bonate | Sulfate | Chlo | rote: | Fluo-
ride | Boron | Sil; | TD5
Computed | TOTAL | | Date Sampled Agy. Time Call. | 0 | . | mhas
at 25°C) | ვ | Mg | Ž | × | co 3 | нсо з | 50 4 | D | NO 3 | ı. | 8 | SIO 2 | Evop 180°C | °\$ C°CO 3 | | 30S/24E- 3E 1 M
6-24-64 5050 | 75 | 0•6 | 184 | 5
0.25
16 | 0 | 31
1,35
84 | 0 | 0.20 | 38
0.62
38 | 0.52 | 10
0.28
17 | 0•1 | - | 0.10 | - | 9 6
120 | 13 | | 30S/24E- 4C 1 M
4- 9-64 5050 | 8 0 | 7.6 | 1350 | 168 | 1.73 | 102 | 0.08 | 0 | 282
4.62
31 | 4440
9.16
61 | 1.24 | 0.01 | 1 | 09•0 | i | 918 | 206 | | 30S/24E- 4C 4 M | 78 | 80 | 506 | 32
1,60 | 0.08 | 2.87 | 0 | 0 | 90
1.48
31 | 120 | 25
0.71
15 | 0.8 | 1 | 0.20 | 1 | 289 | 4 | | 30S/24E- 4C 5 M
4- 9-64 5050 | 69 | 7.1 | 416 | 35 | 4 6 8 | 1.87 | 0.03 | 0 | 94
1.54
39 | 1.92 | 16 | 0.5 | 1 | 0.30 | 1 | 238 | 104 | | 30S/24E- 4C 6 M
4- 9-64 5050 | 69 | 8 • 1 | 142 | 0.10 | 0.16 | 28
1.22
82 | 0 | 0 | 1.02 | 9
0.19
13 | 0.20 | 0 • 2 | 1 | 0.20 | l | 119 | 13 | | 30S/24E- 5L 2 M
6-24-64 5050 | 69 | φ
• | 1000 | 4.69 | 13 13 10 10 | 103 | 3
0 • 08
1 | 0 | 274 4.49 43 | 235 | 1.13 | 0.01 | ŀ | 09•0 | t | 624 | 288 | | 30S/24E- 6E 1 M
6-24-64 5050 | - | 8 • 2 | 1120 | 2.69 | 0.16 | 178
7.74
73 | 0.03 | 0 | 133
2•18
21 | 4.73 | 129
3.64
35 | 0.3 | 1 | 0.40 | 1 | 657 | 143 | | 30S/24E- 6H 1 M
6-24-64 5050 | 69 | 8 • 2 | 878 | 3.94 | 1, 15
1, 15
13 | 888
8 8 4 | 0.05 | 0 | 279 | 178
3•71
40 | 32 0.90 | 0 | 1 | 0.40 | 1 | 531
558 | 255 | | 30S/24E- 8G 1 M
7- 2-64 5050 | 73 | &
• | 2410 | 158
7 888
33 | 2.22 | 319
13.87
58 | 0.05 | 3 0.10 | 259
4.25
18 | 444
9 • 24
38 | 375
10.58
44 | 0.5 | 1 | 0.90 | 1 | 1456 | 505 | | 30S/24E- 8P 1 M
8-28-64 5050 | 1 | 1 | 7160 | 1 | 1 | 1 | 1 | 1 | 1 | { | - | - | 1 | 3.10 | 1 | | | | DWR 1982 | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | NIA - THE | RESOURCES | AGENCY (| OF CALIFO | RNIA - DE | PARTMENT C | OF WATER RE | SOURCES | | | | | | TABLE E-1 # MINERAL ANALYSES OF GROUND WATER SAN JOAQUIN DISTRICT TOTAL hardness as STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES **DWR 1982** | Sili- IDS
ca Camputed | 2 Evop 180°C | 3034 | 929 | 169 | 93 | 516 | | 257 | 135 | 266 | 184 | |--------------------------|--|--|--|---
--|--|---|--
--|---|--| | -ilis | 2 | | | | | | | | | N N | 2 | | - | Sio | 1 | 1 | 1 | ł | 1 | 1 | 1 | 1 | 1 | 1 | | Boran | 83 | 2 • 00 | 0 • 4 0 | 000 | 0.10 | 0.20 | - | 0.20 | 0.10 | 0.20 | 0.10 | | Fluo- | u. | 1 | 1 | 1 | ł | 1 | i | 1 | 1 | i | ł | | rate . | N 0 3 | 0.01 | 10.0 | 0 • 1 | 0.01 | 0 | 1 | 0.01 | 5.2 | 32.0
0.52
11 | 4•3
0•07 | | Chla-
ride | Ü | 1220
34.40
68 | 2.03 | 0.56 | 0.20 | 24 0 • 68 | 0.62 | 48
1.35
32 | 10
0•28
12 | 0.56 | 1.16 | | Sulfate | 504 | 686
14.28
28 | 463
9.64
73 | 1.21 | 0.27 | 262 5.45 67 | 1 | 86
1.79
43 | 18
0•37
15 | 32 0.67 | 20 0.42 | | Bicar-
bonate | нсо з | 104 | 1.44 | 92 0 93 | 1.05 | 125
2•05
25 | 1.46 | 1.02 | 104 | 183
3.00
63 | 98
1•61
49 | | Carban-
ate | co 3 | 0 | 0 | 0.10 | 0
13
4
8 | 0 | 0 | 0 | 0 | 0 | 0 | | Patas-
sium | ¥ | 0.08 | 0.10 | 0 | 0 | 0.03 | 1 | 0.03 | 0.03 | 0.03 | 0.03 | | Sodium | Ž | 824
35.83
72 | 93
4.04
31 | 1.87
69 | 31
1,35
82 | 2.96
3.7 | i | 2.70 | 21
0.91
38 | 27
1.17
25 | 28
1•22
37 | | Mogne-
sium | Wa | 3.21 | 2.63 | 0 | 0 | 0 8 8 8 | 1 | 0.16 | 0.08 | 0.82 | 0.08 | | Calcium | 3 | 208
10•38
21 | 123
6•14
48 | 0.85 | 0.30 | 96 4 . 79 | 1 | 1.35 | 28
1 • 40
58 | 2.69 | 40
2.00
60 | | (micro- | mhos
at 25°C) | 5120 | 1250 | 310 | 164 | 806 | 802 | 473 | 247 | 474 | 355 | | ¥a | | 0 | 6 • 9 | 80
• 57 | e0
•
• | 8•1 | 7.9 | 7.9 | 80 | 7.7 | 8 | | Sampled | u.
0 | 1 | 7.1 | 73 | 74 | 76 | 7.1 | 70 | 70 | 75 | 72 | | | Date Sampled Agy.
Time Coll. | 305/24E- 8P 1 M
8-28-64 5050 | 30S/24E-10P 2 M
6-24-64 5050 | 30S/24E-11G 1 M
6-25-64 5050 | 30S/24E-11J 1 M
6-24-64 5050 | 30S/24E-14H 1 M
6-24-64 5050 | -14H 1 M
8-27-64 5050 | 30S/24E-15D 1 M
6-24-64 5050 | 30S/25E- 1H 1 M
6-25-64 5050 | 30S/25E- 2A 1 M
6-23-64 5050 | 305/25E- 2K 1 M
6-23-64 5050 | | 5010 | Sampled DH (micro- Calcium sium sium one bonate bonate ride trate ride | Agy. Agy. Agy. Agy. Agy. Calcium Mogne- sium Sodium Sodiu | Agy. of Images Coll. of Images Coll. of Images Sodium sium sium of Engran Engra | Agy. Sampled Coll. pH (micro- at 25C) Cadidum sium Sodium sium sium Petos: are bonate bonate bonate bonate at 25C) Sodium sium sium at 25C) Petos: are bonate bonate bonate sium at 25C) Petos: are bonate bonate bonate bonate ride Original ride No. 3 Fluores ride 1 Mbs. 8.0 512O 208 39 824 3 0.08 0.08 0.04 0.06 0.08 0.06 0.06 0.06 0.06 0.01 0.06 | Sompled pH (micro- Calcium sium) Sodium sium of the bonds of the carbon sium of the bonds of the carbon sium of the bonds of the carbon | Sampled pH mitro- Calitum Mogne- Sadium Sad | Sampled of the continue | Sampled pH mircro- Calcium Nagne- Sadium Patra Carbon Barra Sadium A | Section Photosistic Phot | No. | The continue of | | | ۽ پر | 3 | -1 | m . | 74 | 60 | <u>m</u> | 82 | 74 | 61 | 76 | 52 | |--|------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------|----------------------|---------------------------------|-----------------------------|------------------------------|--| | | TOTAL | | 141 | 4 | | 103 | 10 | œ | | | | | | ents in
Iion | Camputed | Evap 180°C | 271 | 120 | 173 | 221 | 202 | | 131 | 129 | 163 | 142 | | nerol constituents
ports per million
| S:#: 8 | SIO 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Minerol constituents in
ports per million | Boron | ۵ | 0.20 | 0.10 | 0.10 | 0.20 | 0.20 | 1 | 0.20 | 0.10 | 0.20 | 0.20 | | | Fluo- | Œ | 1 | 1 | 1 | 1 | 1 | 1 | ! | 1 | 1 | 1 | | | Z P | ε
0
2 | 4•1
0•07 | 1.8 | 6.0 | 5.5 | 12.0
0.19 | 1 | 0.2 | 0.01 | 1.9 | 0.03 | | | Chlo- | ō | 0.85 | 10
0•28
13 | 14
0•39
13 | 21 0 . 59 | 0.31 | 14 | 0.28 | 0.25 | 15 | 162 19 1 36 0 0 114 18 10 10 1.65
37 37 60 10 10 1.65
37 37 31 60 10 10 10 10 10 10 10 10 10 10 10 10 10 | | milligroms per liter
equivolents per million
percent reactance volue | Sulfate | 504 | 1.29 | 0.35 | 0.60 | 45
0 • 94
24 | 31 | 1 | 0.35 | 0.33 | 26
0.54
18 | 0.37 | | milligroms per liter
equivolents per mil
percent reactance v | Bicor-
banate | HCO 3 | 151
2.47
53 | 86
1•41
66 | 117 | 137
2•25
58 | 136
2•23
64 | 123 | 106
1.74
73 | 106 | 118 | 1.87 | | | Carban- | 93 | О | 0.07 | 0 | 0 | 0.13 | 0 | 0 | 0 | 0 | 0 | | c | Patas- | × | 0.03 | 0 | 0.03 | 0.03 | 0.03 | 1 | 0.03 | 0.03 | 0.03 | 0 | | Mineral Constituents in | Sodium | Ž | 1.87 | 1.30 | 36 | 1.83 | 36
1.57
43 | ł | 0.91
38 | 1.17 | 32
1.39
47 | 1.57 | | Minerol C | Magne- | Ф | 0.08 | 0 | 0.08 | 0.25 | 0.16 | 1 | 0.08 | 0.16 | 0.16 | 0.08 | | | Calcium | 3 | 2.74
5.8
5.8 | 0.85 | 28
1.40
45 | 36 | 38 | 1 | 28
1 • 40
5 8 | 1.05 | 1.35 | 0.95 | | Specific conduct- | (micro- | mhos
ot 25 C) | 485 | 213 | 310 | 407 | 377 | 348 | 243 | 238 | 310 | 262 | | | Ŧ, | ı. | 0 • 8 | 80 .5 | &
•
• | 8 . 2 | 80 • 4 | 8 • 1 | ¢ | ec
• | €
• | 8 • 2 | | Temp | Sampled | ٠, | 70 | 72 | 74 | 1 | 73 | 71 | 74 | 72 | 7.1 | 20 | | | | Agy.
Coll. | 5050 | 5050 | 5050
5050 | - 1 M
5050 | 5050 | 5050 | 1 M
5050 | 5050 | 5050 | 5050 | | State Well
Number | | Dote Sampled
Time | 30S/25E- 7P
6-23-64 5 | 30S/25E- 8P
6-23-64 5 | 305/25E- 9A
6-23-64 5 | 30S/25E- 9L
6-23-64 5 | 305/25E-10C 1
6-23-64 505 | -10C 1
8-27-64 50 | 30S/25E-14H 1 M
7- 7-64 5050 | 305/25E-18A 1
6-23-64 50 | 30S/25E-18C 1
6-23-64 509 | 25E-26A | | | | ŏ | 305 | 308 | 308 | 305 | 305 | ec . | 305 | 30 | 308 | 305/
7- | | | TOTAL | os
CoCO 3 | 67 | 29 | 23 | ٥ | 91 | 252 | 8 4 | 89 | 23 | 157 | |--|------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | ints in | Camputed | | 173 | 163 | 113 | 112 | | 675 | 131 | 218 | 116 | | | neral constituents
parts per millian | Sili; | SIO 2 | 1 | ; | ŀ | 1 | 1 | 1 | 1 | 1 | ! | 1 | | Mineral constituents in parts per millian | Boron | 83 | 0.10 | 0.10 | 00•0 | 0.10 | | 0 80 | 0.10 | 0.10 | 0.10 | 1 | | | Fluo-
ride | ı. | 1 | 1 | i | - | 1 | 1 | 1 | 1 | 1 | 1 | | | rate trate | NO 3 | 0.4 | 1 • 1
0 • 02
1 | 2.9 | 1.6 | | 43
0.69
0.69 | 0.0 | 1.7 | 1 • 3
0 • 0 2
1 | 1 | | | Chlo | CI | 16
0•45
15 | 1.92 | 0.17 | 0.28 | 0.31 | 2 • 26
19 | 0.25 | 0.48 | 16 0.45 23 | 542 5 197 32 32 32 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | 50 4 | 30 | 0.21 | 0.17 | 0.27
13 | ł | 100
2 • 08
18 | 0.31 | 38 | 0.35 | 1 | | milligrams per liter
equivalents per millian
percent reactance value | Bicar-
banate | нсо з | 120
1•97
65 | 86
1•41
40 | 106
1.74
82 | 1.46 | 126 | 418
6.85
58 | 110 | 153
2.51
66 | 1.15 | 3.23 | | | Carban-
ate | CO 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.17 | | | Patas-
sium | ¥ | 0.03 | 0.03 | 0.03 | 0 | 1 | 0.15 | 0.08 | 0.10 | 0.05 | | | Mineral Constituents in | Sodium | Ž | 1.74 | 30
1•30
68 | 1.36 | 1.78
91 | 1 | 154 6.70 | 1.35 | 57
2.48
63 | 36
1.57
76 | 1 | | Mineral Co | Magne- | Mg | 0.08 | 0.08 | 0.25 | 0.08 | - | 23
1,89
16 | 0.16 | 0.25 | 0 | 1 | | | Calcium | კ | 25
1.25
40 | 0.50 | 0.20 | 0.10 | 1 | 63
3•14
26 | 16 | 22
1•10
28 | 9 0 • 45 22 | 1 | | Specific canduct- | (micro- | mhos
at 25°C) | 321 | 171 | 186 | 214 | 318 | 1150 | 243 | 394 | 215 | 542 | | | I. | | &
• | 8 0 | &
•
• | &
•
• | ω
• | 8 • 2 | 7.7 | 8 0 | φ
• | 8 • 4 | | Tamp. | Sampled | ٠
ع | 76 | 70 | 1 | 1 | 67 | 80 | 8 | 89 | 68 | 76 | | State Well | | Date Sampled Agy.
Time Call. | 305/25E-31P 1 M
6-25-64 5050 | 30S/26E-22P 1 M
4- 8-64 5050 | 305/26F-22P 2 M
4- 8-64 5050 | 30S/26E-22P 3 M
4- 8-64 5050 | 30S/27E-19L 1 M
8-27-64 5050 | 305/28E-10N 1 M
4- 8-64 5050 | 305/28E-10N 2 M
4- 8-64 5050 | 305/28E-10N 3 M
4- 8-64 5050 | 305/28E-10N 4 M
4- 8-64 5050 | 305/28E-11R 1 M
8-28-64 5050 | | State Well | | | Specific | | Minor of L | Mineral Constituents in | | E | milligrams per liter
eauivalents per millian | er liter
ser millian | | | | Mineral constituents in | onstitue | nts in | | |---------------------------------|----------|----------|------------------|--|--|-------------------------|----------------|------------------|---|-------------------------|--------------------|--------------|---------------|-------------------------|-------------------|------------|--------------| | Number | Temp. | | conduct- | | in i | ansumoenns m | | | ercent read | percent reactance value | | | | parts | parts per million | | | | | Sompled | Ξ. | (micro- | Calcium | Mogne-
sium | Sodium | Potas-
sium | Carban- | Bicar-
bonate | Sulfate | Chloride | role. | Fluo-
ride | Boron | Sili- | Computed | TOTAL | | Date Sampled Agy. Time Coll. | 0 | | mhos
at 25 C) | 3 | 6W | Ž | × | co 3 | нсо з | 504 | CI | NO 3 | u. | 80 | SIO 2 | Evap 180°C | °s
CoCO 3 | | 305/28E-25A 1 M
8-28-64 5050 | 78 | 8 • 1 | 266 | 1 | 1 | ! | 1 | 0 | 3.61 | - | 35 | 1 | 1 | 1 | ł | | 165 | | 315/24E-28B 1 M
8-26-64 5050 | 78 | 8 • 1 | 6030 | 1 | 1 | 1 | 1 | 0 | 91 | } | 886 | 1 | 1 | 1 | 1 | | 1810 | | 315/25E-27F 1 M
4- 9-64 5050 | 64 | 7.6 | 2330 | 362
18•06
64 | 2.14
8 | 179
7.78
28 | 0.15 | 0 | 71
1•16 | 1260
26.23
93 | 0.62 | 3.2 | | 0.40 | 1 | 1894 | 1011 | | 31S/25E-27F 2 M
4- 9-64 5050 | 6 | 7.6 | 2080 | 245
12•23
54 | 0.33 | 228
9.91
44 | 0.08 | 0 | 1.02 | 1060
22.07
94 | 0.31 | 2.6 | 1 | 0.10 | 1 | 1584 | 629 | | 31S/25E-27F 3 M
4- 9-64 5050 | 64 | 7.2 | 898 | 2.50 | 0.08 | 136
5.91
69 | 0.05 | 0 | 74
1•21
14 | 330 | 15 | 3.0 | 1 | 1.00 | 1 | 574 | 129 | | 31S/25E-27F 4 M
4- 9-64 5050 | 64 | 7.7 | 898 | 1.10 | 0 | 157 | 0.03 | 0 | 99
1•62
20 | 254
5.29
65 | 44
1.24
15 | 3.0 | 1 | 1.00 | 1 | 531 | 5.5 | | 315/26E-32C 1 M
8-26-64 5050 | 79 | ec | 496 | | 1 | | 1 | 0 | 123 | - | 0.23 | 1 | 1 | | 1 | | 61 | | 31S/27E-14F 1 M
8-27-64 5050 | 67 | 8
4 • | 372 | 1 | 1 | 1 | ł | 0.13 | 121 | 1 | 17 | 1 | - | 1 | 1 | | 92 | | 315/30E-20B 1 M
7-17-64 5645 | 1 | 11.1 | 80 83 33 | 1.20 | 0.16 | 116
5.04
79 | 1 | 3.30 | 0 | 23 | 97
2.74
41 | 14.3
0.23 | 1 | 0.64 | 1 | 376 | 6.8 | | 315/30E-20B 2 M
7-14-64 5645 | - | 8 • 5 | 435 | 0.13 | 5 0 • 41 11 | 3.17
85 | - | 13
0.43
11 | 127
2•08
55 | 0.12 | 1.13 | 0•1 | - | 0.38 | t | 203 | 28 | | DWR 1982 | | | STATE | STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF WATER RESOURCES | NIA - THE F | RESOURCES | AGENCY C | OF CALIFO | SRNIA DE | PARTMENT C | JE WATER RE | SOURCES | | | | | | | | TOTAL | hardness
as
CaCO 3 | 2 88 | 112 | 139 | 1430 | 34 | 248 | 303 | 74 | 139 | 52 | |--|---------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------|---------------------------------|---------------------------------|--| | ents in
ian | SQI | Evap 180°C | 210 | 183 | | | | | | | 378 | 245 | | neral canstituents
parts per millian | Silli | SIO 2 | 1 | 1 | ŀ | 1 | 1 | 1 | l | 1 | 1 | } | | Mineral canstituents in
parts per millian | Boron | æ | 0.34 | 0.10 | 1 | 1 | 1 | 1 | 1 | 1 | 0.60 | 0•40 | | | -bnl- | F T | 1 | 1 | 1 | ; | l | 1 | 1 | l | ł | 1 | | | ż | NO S | 0•1 | 11.5
0.19 | 1 | - | 1 | 1 | 1 | 1 | 0.0 | 0.0 | | | Chlo | G C | 1.41 | 0.45 | 28 | 1.38 | 10 | 25 | 27 0 . 76 | 13 | 20 0.56 | 145 14 4 70 4 12 113 69 16 0.0 0.0 17 1.85 1.84 0.45 1.8 17 8 73 2 10 45 35 11 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 50 4 | 0.08 | 0.12 | 1 | 1 | 1 | 1 | { | 1 | 137 2.85 | 69
1.44
35 | | milligrams per liter
equivalents per mill | Bicor- | HCO 3 | 121
1•98
51 | 171
2.80
79 | 146 | 137 | 127 | 3.15 | 208 | 131 | 176
2.88
46 | 113
1•85
45 | | | è | 0 g | 12
0•40
10 | 0 | 0 | 0 | 0 | 0.27 | 0.27 | 0.07 | 0 | 12
0.40
10 | | | Potos- | E × | 1 | 1 | 1 | 1 | ľ | l | l | 1 | 0.10 | 0.10 | | Mineral Constituents in | Sodium | Ž | 3.30
85 | 26
1.13
34 | 1 | 1 | ł | i | ł | 1 | 3.52 | 3.04 | | Mineral C | Magne- | Was W | 0.41 | 0.74 | 1 | į | Į
Į | + | 1 | - | 10
0.82
13 | 0.33 | | | a iii | ვ | 0.15 | 30 | 1 | 1 | 1 | 1 | 1 | 1 | 39
1.95
31 | 0.70
17 | | Specific
canduct- | ance | mhos
at 25°C) | 416 | 357 | 471 |
3420 | 415 | 860 | 977 | 375 | 646 | 445 | | | 1 | <u>.</u> | 80
6 | 7.6 | 0 • | 7.7 | 8.1 | 8 5 | 8 • 4 | 8.5 | 7.9 | 8.7 | | Temp. | when | 4. | 1 | 1 | 70 | 4 | 73 | 89 | 89 | 1 | 70 | - | | State Well | Number | Date Sampled Agy.
Time Call. | 315/30E-20B 3 M
7-20-64 5645 | 315/30E-29M 1 M
8- 6-64 5645 | 315/30E-30C 1 M
8-28-64 5050 | 325/25E-34G 2 M
8-27-64 5050 | 32S/27E- 6D 3 M
9-15-64 5050 | 32S/27E-16R 2 M
9-15-64 5050 | -16R 2 M | 325/28F-12F 1 M
R-28-64 5050 | 32S/28E-30D 1 M
4- 7-64 5050 | 325/28E-30D 2 M
4- 7-64 5050 | | | | | 31 | 31 | 31 | 32. | 32 | 32 | | 32 | 32. | 32 | | State Well
Number | Temp. | | Specific conduct- | | Minerol Co | Mineral Constituents in | | e a m | milligroms per liter
equivolents per million
percent reoctance volue | er liter
er million
ance volue | | | | Mineral constituents in ports per million | neral constituents
ports per million | nts in
on | | |----------------------------------|----------|-------|-------------------|--|-----------------|-------------------------|------------------|----------------|--|--------------------------------------|------------------|---------|---------------|---|---|-----------------|--------------| | | Sompled | Ξ, | micro- | Colcium | Mogne-
sium | Sadium | Potos- | Carbon-
ate | Bicar-
bonote | Sulfote | Chlo- | i Zi | Fluo-
ride | Boron | Sili | TDS
Computed | TOTAL | | Dote Sampled Agy.
Time Coll. | L | _ | mhos
at 25°C) | S | Mg | ž | ¥ | CO 3 | нсо з | 504 | Ū | NO 3 | u. | g) | SIO 2 | €vap 180°C | os
CoCO 3 | | 0505 49-7-4
4- 7-64 5050 | 70 | 7.9 | 067 | 0.95
20 | 8
0.66
14 | 3.04 | 0.10 | 0 | 154
2 • 52
54 | 81
1.69
37 | 15 | 0.0 | <u></u> | 0.50 | 1 | 273 | 81 | | 325/29E-19H 2 M
4- 7-64 5050 | 70 | 0 • 0 | 741 | 3.44.6 | 1.56 | 2.39 | 3 0.08 | 0 | 3.23 | 92
1.92
26 | 76
2•14
29 | 3.4 | 1 | 0.20 | i | 414 | 250 | | 325/29E-19H 3 M
4- 7-64 5050 | 70 | 7.9 | 333 | 1.35 | 0.49 | 1-43 | 3
0 • 08
2 | C | 155
2.54
78 | 21 0.44 | 0.23 | 1.8 | 1 | 0.20 | 1 | 176 | 92 | | 325/29F-35M 1 M
8-28-64 5050 | 70 | 7.9 | 1390 | | | 101 | 1 | i | 1 | - | 130 | 3.66 | - | 1 | 1 | | 414 | | 104/19W- 8A 1 S
11- 7-63 5050 | \
 | 80 | 1190 | 2.94 | 3.78
3.78 | 127 5 52 44 | 10 | 0 | 328
5 • 38
43 | 294 6 12 49 | 32 0.90 | 3.1 | - | 1.30 | 1 | 734 | 336 | | 11N/18W-14M 1 S
8-28-64 5050 | ; | 8 • 2 | 486 | - | 1 | - | 1 | 0 | 126 | - | 24 | 1 | 1 | 1 | 1 | | 181 | | 11N/19W-25F 1 S
8-28-64 5050 | | 8 • 7 | 561 | <u> </u> | | | 1 | 12 | 3.79 | ; | 19 | 1 | - | 1 | 1 | | 216 | | 11N/20W- 8R 1 S
8-28-64 5050 | 78 | | 1570 | 1 | - | l | 1 | 0 | 1.28 | <u> </u> | 1.52 | 1 | 1 | ł | ł | | 517 | | 11N/20W-25K 1 S
8-28-64 5050 | 1 | 8•1 | 2320 | | - | 1 | 1 | 0 | 1.43 | 1 | 1.78 | | 1 | ; | 1 | | 859 | | 11N/21W- 5M 1 S
8-27-64 5050 | 78 | 7.9 | 1480 | 1 | 1 | 1 | 1 | 0 | 117 | 1 | 23 | l | | ; | ŀ | | 559 | | DWR 1982 | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | NIA - THE R | RESOURCES | AGENCY (| OF CALIFO | RNIA DEI | PARTMENT | JE WATER RE | SOURCES | | | 1 | | | MINERAL ANALYSES OF GROUND WATER SAN JOAGUIN DISTRICT | | TOTAL | hordness
os | 20003 | 199 | 396 | 408 | 1290 | 95 | 587 | 556 | | | |--|---------|-------------------|-------|---------------------------------|----------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|---| | ints in | TDS | Computed | | | 858
910 | | | | | | | | | neral canstituents
parts per million | Sili: | 8 6 | 310.2 | 1 | 30 | 1 | 1 | ł | 1 | 1 | | | | Mineral constituents in parts per million | 200 | | p | ! | 0 • 4 0 | - | 1 | ł | 1 | } | | | | | Flvo | ē . | - | 1 | 0.2 | 1 | 1 | 1 | 1 | 1 | | | | | ż | a Late | 2 | 1 | 0.0 | 1 | 1 | 1 | 1 | ţ | | | | | Chlo | e c | 5 | 0.54 | 0.65 | 0.73 | 151 | 0.20 | 28 | 18 | | П | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | | 504 | 1 | 498
10.37
82 | 1 , | } | 1 | 1 | 1 | 1 | | | milligrams per liter
equivalents per mill
percent reactance v | Bicar | bonote | HCO3 | 105 | 98
1.61 | 1.57 | 1.34 | 153 | 1.25 | 99 | | | | | ė | - | 83 | 0.07 | 0 | C | 0 | 5 0 17 | 0 | 0 | 1 | | | | Potos | En: | ¥ | 1 | 0.13 | 1 | 1 | ł | 1 | 1 | | - | | Mineral Constituents in | Codium | | Z | 1 | 112
4.87
38 | 1 | l | <u> </u> | 1 | 1 | | | | Mineral C | Magne- | £ : | 6W | 1 | 2.22 | - | | 1 | 1 | - | | П | | | Colcina | | 3 | 1 | 114 5.69 | 1 | 1 | l | 1 | - | | | | Specific
canduct- | ance | mhos | 25.5 | 951 | 1040 | 1260 | 3210 | 359 | 1540 | 1540 | | | | | I | ۵ | | 8 • 4 | 7.9 | 8 • 1 | &
• | 80 | 8 • 1 | 8 • 2 | | | | Temp. | when | o F | | 60
60 | 1 | 7 80 | 83 | 74 | 79 | 80 | | | | Stote Well | Jagunos | Date Sampled Agy. | 1 | 11N/21W-11N 1 S
8-27-64 5050 | 11N/21W-110 1 S
12- 6-63 5124 | -110 1 S
8-27-64 5050 | 11N/22W- 8G 1 S
8-27-64 5050 | 12N/19W-33R 1 S
R-2R-64 5050 | 12N/21W-33N 1 S
8-27-64 5050 | 12N/22W-25N 1 S
8-27-64 5050 | | | PERCHED AQUIFER # MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | State Well | Тепр | | Specific
conduct- | | Mineral Co | Mineral Constituents in | | E # 6 | milligrams per liter
equivalents per millian
percent reactance value | er liter
ser millian
ance value | | | | Mineral constituents in
parts per million | neral constituents
parts per million | ants in | | |----------------------------------|------|------------|----------------------|--|------------------|-------------------------|--------|------------|--|---------------------------------------|---------------------|---------------|--------|--|---|------------|--------------| | Number | when | I | ance (micro- | Calcium | Magne- | Sodium | Patas- | Carban- | Bicar- | Sulfate | Chlo- | . Z . | Fluo- | Boron | SII: | TDS | TOTAL | | Date Sampled Agy.
Time Coll. | | a . | mhas
at 25 C) | S | 6W | ž | * | ° 0, | нсо з | \$04 | 5 | 0
2 | u. | œ | sio 2 | Evap 180°C | 03
CoCO 3 | | 115/14E- 3K 1 M
10- 8-64 5000 | 1 | 8.2 | 1902 | 1 | 1 | 1 | 1 | 0 | 174 | 1 | 496 | 1 | 1 | | - | | 685 | | 115/14E- 6G 1 M
10- 9-64 5000 | - | φ
Φ | 2760 | 1 | - | l
} | 1 | 0 | 132 | 1 | 817 | ŀ | 1 | ł | 1 | | 8 7 6 | | 115/14E-21N 2 M | 67 | 7.8 | 7890 | 1 | i i | 1 5 | 1 | 0 | 0 9 6 0 | ŧ (| 2560 | \$
\$ | 1 | 1 7 | 1 | | 2270 | | 11S/14E-33P 1 M
9- 4-64 5000 | 67 | 7.5 | 6410 | 408 | 88
7.24
13 | 610 | 0.20 | 0 | 164
2 • 69
5 | 135
8 6 1
5 | 1720
48.50
90 | 4.6 | m
• | 0.10 | 68 | 3470 | 1381 | | 11S/15E-35P 1 M
9-29-64 5000 | 99 | φ
• | 782 | 3.04
3.04 | 22
1.81
23 | 3.04 | 0.08 | 0.13 | 376
6•16
76 | 19 0 • 40 | 1.38 | 2 • 5 | 0 • 2 | 0.10 | 19 | 482 | 243 | | 12S/14E- 3N 1 M
9-23-64 5000 | ; | 0
% | 6250 | 239
11.93 | 3.29 | 1000 43.48 | 0 • 10 | 0 | 3445 • 64 | 211
4•39
8 | 1680
47•38
82 | 7.7 | 0 | 0.10 | 61 | 3412 | 762 | | 125/14E- 4J 2 M
13- 7-64 5000 | 99 | 7.9 | 2090 | i
t | §
1 | - | 1 | 0 | 173 | - | 1520 | 1 | 1 | 1 | - | | 1060 | | 125/14E-12N 1 M
10- 8-64 5000 | 8 9 | 7•7 | 2060 | 113
5•64
28 | 34 2 80 14 | 260
11.30
57 | 0.05 | 0 | 296
4 • 85
25 | 1.75 | 452
12.75
66 | 1.5 | 0 | 0 • 10 | 24 | 1146 | 422 | | 125/14E-26G 1 M
10-23-64 5000 | 1 8 | φ
• | 1390 | 59 2.94 23 | 0 0 0 | 209 | 0.05 | 0 | 161 2.64 20 | 107
2.23
17 | 288
• 12
62 | 0 0 0 0 0 0 1 | 1 | 0.20 | 1 | 753
810 | 180 | | 125/15E-27L 1 M
10-26-64 5000 | 1 | 0 | 646 | 1 | 1 | 1 | 1 | 3.
1.03 | 273 | 1 6 | 1.07 | 9 | 1 | đ
t | 1 | | Q
Q | | DWR 1982 | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | RNIA - THE | RESOURCES | AGENCY | OF CALIFC | DRNIA - DE | PARTMENT | OF WATER R | ESOURCES | | | | | | TABLE E-2 PERCHED AQUIFER # MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | TOTAL | | 9 | |--|------------------|----------------------|---| | ents in
lion | TDS | Evop 180°C | 310 | | neral constituents
parts per million | Sili: | SIO 2 | | | Mineral constituents in parts per million | Boron | 8 | 00•0 | | | Fluo-
ride | L. | | | | N:
trote | NO 3 | 0 • 0 0 0 • 0 0 1 | | | Chloride | Ū | 1 • 1 0 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 50 4 | 33
0•69
14 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar-
bonate | нсо з | 3 • 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | E 0 11 | Carbon-
ote | co 3 | 0 | | c | Potos-
sium | ¥ | 5 m m 0 0 | | Mineral Canstituents in | Sodium | ž | 3.074 | | Mineral C | Mogne-
sium | Wg | 0
0
0
0
0
0 | | | Calcium | 3 | 0.000 | | Specific conduct- | (micro- | mhas
at 25°C) | 514 | | | Ξ. | | 8 • 5 | | Тетр | Sompled | u . | 9 | | | $\neg \tau$ | Agy.
Call. | 5000
5000 | | State Well
Number | | Date Sampled
Time | 135/15E-18R
10-23-64 | | Щ. | | | | | State Well | Temp. | | Specific
conduct- | | Mineral Co | Mineral Constituents in | | E & 5 | milligrams per liter
equivalents per million
percent reactance volue | er liter
ser million
ance volue | | | | Mineral constituents in parts per millian | neral constituents
parts per millian | nts in
an | | |---------------------------------|-----------------|-----|-------------------|--|--------------------|-------------------------|-----------------------|----------------|--|---------------------------------------|---|---------------------------------------|--------|---|---|--------------|--------| | . - | when
Sampled | I. | micro- | Calcium | Magne-
sium | Sodium | Patas-
sium | Carban-
ate | Bicar-
benate | Sulfate | Chloride | trate. | Fluo- | Boron | Siji 8 | TDS | TOTAL | | Dote Sampled Agy.
Time Coll. | <u></u> | | mhas
at 25 C) | 3 | ₩
W | Ž | × | 03 | HCO 3 | \$0.4 | ō | ε
0
Z | u. | 80 | SIO 2 | Evep 180°C | CaCO 3 | | 95/16E-30B 3 M
7-26-57 5050 | 70 | 7.1 | 202 | 17 | 0.33 | 15 0 65 34 | 0
80
84 | 0 | 79
1•29
69 | e 0.00
0.00 | 17
0.48
26 | 1.8 | 0.0 | 00.0 | 62 | 162 | 59 | | -30B 3 M | 72 | 8 | 204 | 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
4 % 4
7 L | 0.65 | 0
0
0 8 4 | 0 | 1.38
70 | 0.04 | 0.51
26 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0.03 | 20 | 174 | 9 | | -306 3 M
7-21-59 5128 | 1 | 7.9 | 203 | 19 0.95 | 0.23 | 0.74 | 0.00% | 0 | 86
1•41
70 | 0.02 | 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.0
0.03 | 0 • 1 | 0000 | 77 | 184 | 09 | | -30B 3 M
7-20-60 5128 | 73 | 7.6 | 216 | 0 980 | 0.41 | 0.889 | 0
6
0 8 4 | 0 | 1 • 3 8
6 4
6 4 | 8
0 • 1 7
8 | 0 | 0.03 | 0 | 0.11 | 84 | 162 | 61 | | -30B 3 M
7-25-61 5128 | 72 | 8 2 | , 198 | 170 0 85 | 0
• 8
1
7 | 16 0 36 | 0
0
8
0
4 | 0 | 1.33 | € 00 m | 18
0.51
26 | 0
0
0
0
0 | 0 • 1 | 0.03 | o | 173 | 50 | | -30B 3 M | 7.1 | 7.9 | 197 | 14
0 • 0
36 | 0.49 | 16 0 36 | 0
W 80 4 | 0 | 1.31 | 0.02 | 18 0.51 27 | 0 0 0 0 2 | 0 • 1 | 90.0 | 70 | 169 | 09 | | -30B 3 M
8- 7-63 5050 | 74 | | 207 | 1 | ł | 17 | 1 | 1 | i | 1 | 18 | 1 | 1 | 00.0 | - | | 61 | | -30B 3 M | i | 7.9 | 201 | 1 | 1 | 16 | 1 | i | 1 | 1 | 17
0.48 | 1 | i
t | 0 | 1 | | o J | | 10S/14E- 8B 2 M
1- 5-53 5001 | 1 | į | 306 | 0.20 | 0.08 | 2.70 | 0.03 | 0.13 | 135 | 0 10 2 | 21 | 1 | - | 1 | 1 | 750 | 14 | | - 83 2 M | 99 | 7.9 | 530 | 2.89
2.89
51 | 0.99 | 39 | 0.10 | 0 | 261 | 0.12 | 0 9 9 0 1 6 | 14.0 | 0 . 2 | 00.00 | 80 | 374 | 194 | | DWR 1982 | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | NIA - THE R | ESOURCES | AGENCY (| OF CALIFO | RNIA - DE | PARTMENT O | P WATER RI | SOURCES | | | | | | # TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER | | | , | | | | 16 | + | | | ~ | .0 | | ~ | |--|----------|--------------|------------|------------------------|------------------|------------------|-------------------|-------------------|-------------|---------------|-------------------------------|----------------------------------|---------------------------------| | | TOTAL | 8 | CaCO 3 | 160 | 195 | 125 | 134 | 131 | 176 | 217 | 136 | 119 | 223 | | ents in
lion | Computed | • | Evap 180 C | 327 | 365 | 272 | 301 | 299 | | | | | 422 | | neral constituents
parts per million | Sil: |] | SIO 2 | 89 | 69 | ъ
О | 9 | 68 | ł | i | ł | 1 | 85 | | Mineral constituents in parts per million | Boron | | 8 | 00•0 | 0000 | 0.11 | 90•0 | 0.07 | 0.10 | 00.0 | 1 | 1 | 0.00 | | | Fluo- | | F | 0.1 | • | 0 | 0.1 | 0 • 1 | 1 | 1 | ! | 1 | 0 • 0 | | | ž tat | | NO 3 | 15.0
0.24
5 | 14.0 | 12.0
0.19 | 15.0 | 15.0 | 1 | 1 | 1 | 1 | 9•3
0•15
2 | | | Chlo | | Ü | 30 | 32 0.90 | 1.04 | 31 0.87 | 0.93 | 0 0 0 | 35 | 1.40 | 1.35 | 121
3•41
55 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | | 50 4 | 0.12 | 0.10 | 0.08 | 0.12 | 0.10 | 1 | 1 | 1 | 1 | 0.12 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar. | | нсо з | 224
3.67
75 | 264 | 174 2.85 | 190
3•11
72 | 187
3•06
71 | 1 | 1 | 138
2•38 | 139 | 156
2.56
41 | | . E & O. | Corban- | } | co 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | c | Potas- | | ¥ | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 1 | i | 1 | 1 | 0.10 | | Mineral Constituents in | Sodium | | Na | 37
1.61
33 | 1 • 7 4 0 | 37
1.61
38 | 38
1.65
37 | 36
1.57
37 | 38 | 1.74 | - | ł | 39
1•70
27 | | Mineral C | Magne- | | Mg | 11
0.90
18 | 11 0 0 90 16 | 12 0 99 | 0 8 8 2 | 10 | ! | ! | 1 | ! | 1.07 | | | Calcium | | ვ | 2.30 | 2 . 99 | 1 . 30 | 37 | 36 | 1 | 1 | 1 | 1 | 3.39 | | Specific canduct- | micro- | mhos | at 25 C) | 491 | 532 | 426 | 440 | 448 | 533 | 594 | 414 | 464 | 658 | | | I | . | | 7.8 | 7.6 | 7 • 6 | 8 • 0 | 7 • 7 | 1 | 7.7 | ω
• | 80
• | 8 • 1 | | Temp | Sampled | п. | | 67 | 67 | 8 9 | 72 | 69 | 67 | 67 | 1 | 1 | 68 | | | | Agy. | | 3 2 M
5050 | 3 2 M
5128 | 3 2 M
5128 | 3 2 M
5128 | 5050
5050 | 8B 2 M 5050 | 3 2 M
5050 | 5000 | 1 M
5000 | 1 M
5050 | | State Well | | Date Sampled | lime | 10S/14E- 8B
8- 7-58 | 7-21-59 | 7-26-60 | 7-25-61 5 | 6-19-62 | 8-15-63 | 5-28-64 5 | 10S/14E-13A 1
10-22~64 500 | 105/14E-20N 1 M
10- 7-64 5000 | 10S/14E-24B 1 M
7-24-57 5050 | | State Well | Temp. | ė | | Specific
conduct- | | Mineral Co | Mineral Constituents in | | E & 6 | milligrams per liter
equivalents per million | er liter
ser million | | | | Mineral canstituents in parts per million | neral canstituents
parts per million | ants in | | |----------------------------------|---------|----------|-------|----------------------|---|----------------|-------------------------|------------------|-----------|---|--|-----------------------|---|-------|---|---|------------|---------------| | H | | | I. | ance
(micro- | Calcium | Magne-
sium | Sadium | Potas-
síum | Carbon- | Bicar-
banate | Sulfate | Chlo | role trale | Fluo- | Boran | Sili | TDS | TOTAL | | Date Sampled Agy. Time Coll. | <u></u> | | | mhos
at 25°C) | 3 | Wa | Ž | × | 0 | нсо з | 504 | ō | ε
0
2 | u. | 80 | 510 2 | Evap 180°C | 030
CaCO 3 | | 10S/14E-24B 1 M
8- 7-58 5128 | | 7 89 | 2. | 707 | 3.54 | 1.07 | 1.74 | 0.13 | 0 | 165
2•70
42 | 0.12 | 120
9 9 8 8
5 3 | 10.0 | 0 • 1 | 00•0 | χ
9 | 414 | 231 | | -243 l M
7-21-59 5128 | | 68 7 | 7 . 5 | 746 | 3 - 8 - 5 - 6 - 5 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | 1.23 | 1.91 | 0.15 | 0 | 181
2•97
42 | 0.15 | 134
3•78
54 | 9 • 6 | 0•1 | 0000 | 71 | 454 | 256 | | -243 1 M
7-20-60 5128 | | 72 7 | 7 .5 | 748 | 8
6
424
449 | 1.32 | 2 • 0 0
0 % | 0.10 | 0 | 125
2•05
31 | 8
0.17
8 | 153
• 91
60 | 7.0 | 0 | 0.22 | 64 | 410 | 228 | | -24B 1 M
8-12-62 5128 | | 10 | | 808 | - | 1 | 50 | 0.10 | 1 | 1 | 1 | 136 | 1 | 1 | 0.04 | 1 | | 261 | | 10S/14E-26H 1 M
10-13-64 5000 | | 00 | 2 | 550 | ; | 1 | 1 | 1 | 0 | 114 | 1 | 2.51 | - | İ | ł | 1 | | 173 | | 10S/14E-33M 1 M | | 8 9 | w. | 668 | ; | 1 | 1 | i | 0 | 98 | 1 | 219 | + | - | 1 | 1 | | 300 | | 105/14E-35K 1 M
10- 8-64 5000 | | 0
1 | 4 | 589 | 1 | 1 | | 1 | 0.10 | 105 | 1 | 113 | 1 | - | ł | ; | | 151 | | 10S/15E- 2J 1 M
9-28-61 5050 | | <u> </u> | + | 390 | 34 2 19 62 | 0 0 8 8 7 | 1.18 | 0.11 | 0 | 106 | 0.04 | 1.27 | 9.4
0.11 | 0 • 2 | 0 0 8 0 | 4 | 243 | 661 | | 105/15E-31A 1 M
7-24-57 5050 | | 7 07 | 0 | 3 2 3 | 32 | 0 • 6 6 9 | 1 . 1 . 2 | 0 0 0 0 0 0 | 0 | 127 2.08 60 | 4 80 6 | 1.021
9.03 | 4 • 3 | (n | 00.0 | 78 | 261 | 113 | | -31A 1 M | | 7 07 | 7.7 | 459 | 1
9 0
4 4
8 | 0 • 74 | 1 • 2 2
3 1 | 0
• 10
0 m | 0 | 139
2•28
58 | 4 0 0 8 2 2 | 1.52 | 0 | 0 . | 0 0 | 73 | 284 | 132 | | DWR 1982 | | | | STATE | STATE OF CALIFORNI | NIA - THE R | ESOURCES | AGENCY C | OF CALIFO | RNIA - DE | A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | OF WATER R | ESOURCES | | | | | | # TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER | State Well | Temp. | | Specific
conduct- | | Mineral Co | Mineral Constituents in | | E # 6 | milligrams per liter
eqvivalents per million
percent reactance value | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | nts in
ion | | |---------------------------------|------------|-------|----------------------|--------------------|----------------|-------------------------|--------|---------|--|--|---|--------------|---------------|---|---|---------------|---------| | - | _ <u>`</u> | I. | ance
(micro- | Colcium | Mogne-
sium | Sodium | Potos- | Carbon- | Bicar-
bonote | Sulfate | Chlo-
rida | Ni-
trote | Fluo-
ride | Boron | Sij 8 | Computed | TOTAL | | Date Sampled Agy. | | | mhas
at
25°C) | ડ | 8
W | ž | × | 03 | HCO 3 | 50 4 | ō | NO 3 | L. | æ | SIO 2 | Evop 180°C | 00°CO 3 | | 10S/15E-31A 1 M
7-21-59 5128 | 102 | 8 0 | 964 | 2.40 | 11 0.90 | 31
1,35
28 | 0.10 | 0 | 155
2.54
53 | 0.12 | 2.06 | 5.8 | 0.1 | 00.0 | 75 | 350 | 165 | | -31A 1 M
7-25-60 5128 | 72 | 7 • 8 | 625 | 5.9
2.94
5.0 | 1.32 | 36 | 0.08 | 0 | 173
2•84
48 | 0.12 | 101 2.85 49 | 4.0
0.06 | • | 0.22 | 51 | 361 | 213 | | -31A 1 M | 72 | 7 • 4 | 662 | 3.49 | 1.23 | 1.65 | 0.13 | 0 | 3.06 | 0.17 | 3.10
3.10 | 7 • 3 0 • 12 | 0 • 1 | 0 • 0 5 | 72 | 417 | 236 | | -31A 1 M
6-21-62 5128 | 69 | 1 | 707 | 1 | ! | 1.78 | 0.13 | 1 | ł | ! | 3.13 | 1 | 1 | 0 0 8 | 1 | | 249 | | -31A 1 M
8-15-63 5050 |
 | ! | 772 | 1 | 1 | 1.87 | i | 1 | i | 1 | 3.38 | 1 | 1 | 0.10 | + | | 268 | | 10S/16E- 6J80 M
9-27-61 5050 | | 88 | 268 | 26
1.30
48 | 0.58 | 18
0•78
29 | 0.05 | 0 | 116
1•90
73 | 0 | 0 | 5.9 | • 0 | 0.07 | 56 | 194 | 42 | | 10S/17E- 4J 1 M
8-10-60 5050 | <u> </u> | 8 • 1 | 418 | 1 | 1 | 21 0.91 | ì | 0 | 3.06 | 1 | 26 | 1 | 1 | 1 | 1 | | 170 | | 10S/18E- 8J80 M
7- 8-59 5050 | 1 | 7•7 | 699 | - | 1 | | i | 0 | 230 | 1 | 1.24 | 1 | 1 | 1 | i | | 242 | | 10S/18E- 8L 1 M
7- 8-59 5050 | - | 8 • 1 | 439 | 1 | 1 | 1 | ł | 0 | 194
3•18 | 1 | 21 | 1 | 1 | ; | - | | 126 | | 10S/18E-20M 1 M
8-10-60 5050 | ! | 7 • 8 | 295 | 1 | 1 | 200.87 | į. | 0 | 68 | ł | 25 | 1 | 1 | 1 | - | | 06 | | State Well
Number | Tamp. | | Specific canduct- | | Mineral Co | Mineral Constituents in | | E & & | milligrams per liter
equivalents per million
percent reactance value | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | ion | | |---------------------------------|---------|--------|-------------------------------|--|----------------------------|-------------------------|----------|-----------|--|--|----------------------------|---------|---------------|---|---|------------|-------------| | . - | Sampled | Ŧ. | (micro- | Colcium | Magne-
sium | Sodium | Palas- | Carban. | Bicar-
banate | Sullate | Chlo-
ride | trate. | Fluo-
ride | Boran | Sij: 8 | Camputed | TOTAL | | Date Sampled Agy. Time Call. | OF. | | mhas
of 25 [°] C) | ß | w _g | Ž | ¥ | 00 3 | нсо з | 504 | ō | 0
Z | u. | 80 | SIO 2 | Evap 180°C | 03°C | | 10S/19E-16D80 M
7- 8-59 5050 | 1 | 8.2 | 445 | t i | 1 | 1 | 1 | 0 | 198
3•25 | | 16 | 1 | 1 | 1 | 1 | | 161 | | 115/12E-13J 1 M
7- 3-57 5641 | 1 | 7.1 | 1870 | 98
4.89
27 | 4.11
23 | 200
8 • 70
49 | 0.13 | 0 | 188
3•08
17 | 108 | 460
12.97
71 | 1.3 | 0 • 1 | 0.28 | 31 | 1046 | 450 | | -13J 1 M
8-16-58 5641 | 1 | 8 • 1 | 1570 | 4
• 14
28 | 3.13
2.13
2.1 | 168 | 0.18 | 0 | 131
2•15
15 | 87
1.81
12 | 381
10•74
73 | 3.0 | 0 | 0.30 | 21 | 1004 | 364 | | -13J 1 M | 1 | 7.3 | 1900 | 100 | 4
200
400
400 | 203
8 8 8 3
4 8 8 | 0 13 | 0 | 197
3•23
18 | 117 | 443
12•49
6 9 | 1.0 | 0.2 | 0.35 | 0 8 | 1051 | 476 | | -13J 1 M
7-23-60 5641 | 1 | 7.7 | 1395 | 3.84 | 3
8
2
2
5
5 | 128 | 14 0.36 | 0 | 223
3•65
28 | 54
1•12
9 | 290
8•18
63 | 1.0 | 0 | 0.22 | 23 | 736 | യ
ന
പ | | -13J 1 M
7- 7-61 5641 | 1 | 7.1 | 1810 | 4
• 6
• 6
• 6
• 6
• 6
• 6
• 6
• 6
• 6
• 6 | 4.0.4
4.4.4
2.0.0 | 195
8 • 4 8
4 8 | 0.10 | 0 | 3.11
17 | 116 2 42 14 | 435
12•27
69 | 1.5 | 0 • 2 | 0 • 34 | 59 | 1021 | 454 | | -13J 1 M
7-23-63 5641 | 1 | 1 | 1770 | 1 | 1 | 192
8 • 35 | 1 | 1 | 1 | 1 | 407 | 1 | 1 | 0 30 | 1 | | 417 | | 115/13E-17L 1 M
7- 3-57 5641 | 1 | 7.3 | 1190 | 36
1 80
16 | 21
1•73
16 | 173 | 0.10 | 0 | 171
2.80
25 | 75
1.56
14 | 248
6 • 99
62 | 0.01 | • | 0 • 5 1 | 8 | 675 | 177 | | -17L 1 M
8- 3-59 5641 | 1 | ∞
• | 1240 | 2.00 | 201.64 | 181 7.87 68 | 0.08 | .0 | 183
3.00
26 | 79 | 250 | 0.0 | 0 • 2 | 09. | 30 | 469 | 182 | | 7-23-60 5641 | 1 | 8 • 1 | 1326 | 41
2.05
17 | 23
1.89
15 | 189 | 0.08 | 0 | 180
2.95
24 | 81
1.69
14 | 275 | 0 | 0 | 0 0 | 22 | 723 | 197 | | DWR 1982 | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | NIA - THE | ESOURCES | AGENCY (| OF CALIFO | RNIA - DE | PARTMENT (| OF WATER RE | SOURCES | 1 | | 1 | | 7 | # TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | , | 2 | | | 70 | 10 | ~ | • | + | | .0 | | | |---|------------------|-------------------|------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|---------------------|--------------------------|--------------------------|--------------------------| | Mineral constituents in
parts per millian | TOTAL | 5 5 6 6 F | 2000 | 204 | 198 | 205 | 197 | 199 | 104 | 110 | 126 | 129 | 134 | | | Computed | ° | 2 not dons | 726 | | | | | 605 | 643 | 658 | | | | | Sili: | 3 5 | 310.2 | 30 | 1 | ł | 1 | 1 | 52 | 51 | 37 | Ì | - | | | Boron | ٠ | a | 0.60 | 1 | 09• | 0 9 • | 0 9 • | 0 • 2 9 | 0 • 30 | 0.51 | 0 • 30 | 0.40 | | | Fluo- | , | - | 0 • 1 | 1 | - | 1 | ł | 0 | 0 • 2 | 0 | 1 | : | | milligrams per liter Mineral Constituents in equivalents per millian percent reactance value | řoř. | ģ | 500 | 1.0 | 1 | 1 | i | 1 | 0 • 1 | 0.01 | 0 | - | - | | | S S | | 5 | 262
7•39
61 | 272 | 275 | 267 | 272 | 186
5•25
56 | 204 | 222
6 • 26
59 | 6 6 3 | 241 | | | Sulfate | : | 30.4 | 1.79 | 1 | 1 | 1 | - | 1.87 | 1.92
1.92
1.9 | 1.96
1.96
1.8 | 1 | 1 | | | Bicar-
bonate | 9 | 203 | 181
2•97
24 | ; | 1 | 1 | 1 | 137
2•25
24 | 147
2•41
24 | 146
2•39
23 | 1 | | | | Carbon- | i (| 23 | 0 | ł | i | ł | ł | 0 | 0 | 0 | 1 | | | | Potos- | | ¥ | 0 0 0 9 | 0.08 | • | } | 1 | 0.08 | 0.05 | 0.05 | 0.05 | | | | Sodium | ž | 200 | 188
8•17
66 | 192 | 195 | 186 | 188 | 169
7.35
77 | 181
7•87
78 | 186
8•09
76 | 192 | 195 | | | Magne-
sium | : | 6w | 1.97 | 1 | ! | ŧ
I | i | 0.58 | 0
• 4
0 | 0 0 | g
1 | | | | Colcium | | 3 | 2.10 | 1 | i | 1 | 1 | 30 | 34 | 37 | ŧ | 1 | | Specific
canduct- | (micro- | mhos | | 1290 | 1310 | 1360 | 1330 | 1330 | 1010 | 1060 | 1160 | 1190 | 1240 | | Ξ | | | | &
.3 | 1 | 1 | 7.9 | 8 . 2 | 7.7 | 0 • | 0 . | 1 | 1 | | Temp.
when
Sompled | | | 1 | 1 | 1 | 1 | 29 | 1 | 1 | 1 | ì | ! | 1 | | State Well
Number | | Date Sampled Agy. | | 115/13E-17L 1 M
7- 7-61 5641 | -17L 1 M
7- 6-62 5641 | -17L 1 M
7-23-63 5641 | -17L 1 M
4-15-64 5050 | -17L 1 M
7-13-64 5641 | 115/13E-36B 1 M
7- 3-57 5641 | -3-59 5641 | -36B 1 M
7-23-60 5641 | -36B 1 M
7- 6-62 5641 | -36B 1 M
7-23-63 5641 | | Da | | Da | | 115 | | 7 | 4 | 2 | 115 | ω | 7 | . 2 | 7. | | State Well | | Temp. | | Specific conduct- | | Mineral Co | Mineral Constituents in | | E 9 9 | milligrams per liter
equivalents per million
percent reactance value | er liter
ser million
tance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | ants in
ion | | |---------------------------------|---------------|---------|-------------|-------------------|--------------------|-------------------|-------------------------|----------------|----------------|--|--|---|---|--------|---|---|----------------|--------------| | . - | \top | Sampled | Ξ | (micro- | Calcium | Magne-
sium | Sodium | Patas-
sium | Carban.
ate | Bicar-
bonate | Sulfate | Chloride | rote. | Fluo- | Boran | Sij: 8 | TDS | TOTAL | | Date Sampled Ag | Agy.
Coll. | ů. | | mhos
at 25°C) | 3 | W ₉ | Ž | ~ | 003 | HCO 3 | 504 | σ | NO 3 | u | æ | SIO 2 | Evap 180°C | os
CoCO 3 | | 115/14E- 58 1 M
8- 7-58 5050 | Σ03 | 69 | 6 • 2 | 267 | 1.05 | 0.41 | 0.96 | m & m | 0 | 91
1•49
62 | 0.04 | 0.76 | 7.4
0.12
5 | 0.1 | 00.0 | 74 | 206 | 73 | | - 58 1 M
8-12-59 5050 | Σ 0 | 1 | 7.4 | 313 | 28 | 0.49 | 1,004 | m & m | 0 | 101 | 0 | 1.24 | 0 | 0 | 0 | 77 | 258 | 95 | | - 58 1 M
7-26-60. 5128 | 2 8 | 8 9 | 7.8 | 422 | 38
1 • 90
50 | 0.58 | 1.26 | 0.05 | 0 | 96
1•57
41 | 0 0 0 8 4 | 2.14 | 0.03 | 0 | 0 | w
w | 258 | 124 | | 7-25-61 5128 | Z 88 Z | 72 | 00 0 | 506 | N
500
000 | 9 0 • 7 4 16 | 29
1.26
28 | 0 0 0 0 0 | 0 | 93
1.52
34 | 0.12 | 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1.7
0.03 | 0 • 1 | 0.0 | 75 | 519 | 162 | | 6-21-62 564 | 3 1 M
5641 | 6 8 | | 909 | 1 | | 1.43 | 0.10 | ł | 1 | 1 | 123 | 1 | ł | 0 0 0 | - | | 198 | | 8-15-63 500 | 5050 | 8 9 | O
•
• | 610 | 3 444 | 12
0•99
16 | 36 | 0.10 | 0 | 110
1•80
29 | 17 0 • 35 | 142 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0.10 | 57 | 394 | 222 | | 115/145- 9G 1 M
7-25-57 5050 | Σ00 | 6.8 | 7.2 | 562 | 3.26 | 0.82 | 1,43 | 0.13 | 0 | 154 2 2 2 4 6 | 0.16 | 2.33 | 2 0 0 8 | ·
• | 00000 | 95 | 347 | 411 | |
115/14E-16A 1
8- 7-58 513 | 5128 | 70 | 7 • 7 | 340 | 28
1.40
45 | 6
0 • 49
16 | 1.17 | m & m | 0 | 119
1•95
62 | 0.10 | 9200.00 | 11.0
0.18 | 0 • 1 | 0 | 92 | 247 | 95 | | -16A 1 M
7-21-59 5128 | ≥ 8 | 70 | 7.5 | 420 | 1.900 | 0 • 66 | 32
1.39 | 0.10 | 0 | 122
2 • 00
50 | 0.17 | 1.64 | 11.0 | 0 | 0000 | 78 | 297 | 128 | | -16A 1 M
7-26-60 5128 | ≥ 80 | 70 | 7.8 | 507 | 46
2.30
49 | 10
• 82
18 | 1.43 | 0.10 | 0 | 126 2 07 45 | 0.15 | 2.26 | 6.0
0.10
2 | 0 | 0.11 | 6 | 301 | 156 | | DWR 1982 | | | | STATE | STATE OF CALIFORNI | NIA - THE R | RESOURCES | AGENCY C | DF CALIFC | JRNIA - DE | A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | OF WATER R | ESOURCES | | | | | | # TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | Temp. | | Specific
canduct-
ance | | Mineral Co | Mineral Constituents in | | 1 | milligrams per liter
equivalents per million
percent reactance value | r liter
er million
ance value | - | į | Ī | Mineral constituents in parts per millian | neral constituents
parts per millian | ints in | | |------------|----------------|------------------------------|--------------|--------------------|-------------------------|---------|-----------------|--|---|-----------------------|----------------------|----------|---|---|------------|-------------------------| | Sompled °F | Ŧ _Q | micro- | Colcium | Magne-
sium | Sodium | Potos. | Carbon-
ate | Bicar-
bonote | Sulfate | ride o | Ž t | Fluoride | Boron | i∮ 8 | Computed | TOTAL
hordness
os | | | | at 25 C) | S | Мв | ν̈́ | ¥ | co ₃ | нсо з | SO 4 | Ü | NO 3 | u. | 8 | SIO 2 | Evap 180°C | CoCO 3 | | 72 | &
 | 539 | 2 52 50 50 | 12
0 • 99
19 | 34
1•48
29 | 0.10 | 0 | 126
2•07
41 | 0 25 | 91
2•57
51 | 8
0
13
3 | 0.2 | 0.05 | 79 | 354 | 179 | | 69 | 8 1 | 290 | <u> </u> | 1 | 36 | 0.10 | 1 | - | 1 | 104 | 1 | 1 | 0.10 | 1 | | 196 | | 70 | 8 • 2 | 0
10
10 | 2 . 54 4 4 3 | 21
1.73
2.8 | 1.74 | 0.10 | 0 | 137
2•25
37 | 0.12 | 3
126
555
58 | 11.0
0.18 | 0 • 1 | 000 | n
n | 384 | 221 | | 69 | φ
• | 428 | 1 | 1 | 1 | 1 | 0 | 146 | 1 | 1. 0.30 | 1 | 1 | 1 | - | | 136 | | 69 | 8 • 6 | 347 | 1 | i i | 1 | 1 | 8 0 27 | 136 | 1 | 0.62 | 1 | 1 | 1 | 1 | | 102 | | 69 | 8 • 2 | 1010 | 1 | 1 | 1 | 1 | 0 | 1.32 | 1 | 8
• 56
59 | 1 | 1 | { | 1 | | 288 | | 1 | 8 • 6 | 616 | 1 | 1 | 1 | 1 | 0.27 | 172 | 1 | 84 | 1 | 1 | 1 | 1 | | 146 | | 1 | 7.8 | 925 | 84 | 22 | 2.87 | 0.03 | 0 | 234 | 58 | 1413.98 | 7.6 | 1 | 0•10 | 1 | 559 | 300 | | 8 9 | 7•1 | 339 | 1 600 | 0 • 6 6
19 | 28
1•22
34 | 0 0 8 8 | 0 | 169
2•77
80 | 0 | 0 • 51 | 6 • 2
0 • 10
3 | 0.2 | 0.02 | 29 | 249 | 113 | | 69 | 7.8 | 368 | 31 | 10 0 82 | 1 22 33 | 0 0 8 8 | 0 | 180
2 • 95
8 1 | 0 0 0 8 | 18
0•51
14 | 7.3 | 0.5 | 00•0 | 70 | 260 | 119 | # SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | State Well | Temp. | | Specific
canduct- | | Mineral Co | Mineral Canstituents in | | E & 6 | milligrams per liter
equivalents per million
percent reactance value | er liter
er million
ance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | nts in | | |---------------------------------|----------|-------------|----------------------|---|----------------|--|----------------|----------------|--|--------------------------------------|--|---|---------------|---|---|------------|--------------| | _ - | Sampled | I | ance
(micro- | Colcium | Magne-
sium | Sodium | Potos-
sium | Carbon-
ote | Bicar-
bonate | Sulfate | Chlo-
ride | trote | Fluo-
ride | Baron | ij 8 | TDS | TOTAL | | Date Sampled Agy. | * | | mhas
at 25°C) | 3 | W | ž | × | co 3 | нсо з | SO 4 | C | NO 3 | ч. | В | SIO 2 | Evap 180°C | °5
C°CO 3 | | 11S/15E-23L 1 M
7-21-59 5128 | 89 | 8.2 | 365 | 33
1.65
42 | 0.82 | 1,35 | 0.08 | 0 | 171
2.80
69 | 0.10 | 38
1.07
26 | 5.6 | 0 • 1 | 00•0 | 70 | 280 | 124 | | -23L 1 M
7-26-60 5128 | 70 | 7.3 | 358 | 1 . 80
4 . 5 | 10 | 1.000 | 0.08 | 0 | 190
3•11
78 | 0.12 | 24 | 0 | 0 | 0.97 | 8 4 | 255 | 131 | | -23L 1 M
7-25-61 5128 | 73 | φ
• | 365 | 1
• 6
• 6
• 6
• 6
• 6
• 6 | 10 | 1
9
9
9
4 | 0.08 | 0 | 183
3.00
78 | 0.12 | 0.59 | 7.7 | 0 .2 | 0.07 | 71 | 272 | 124 | | _23L 1 M | 6 8 | 1 | 407 | • | i
i | 1.26 | 0 8 3 | 1 | 1 | 1 | 0 0 0 0 0 0 |)
I | 1 | 0 0 8 | 1 | | 140 | | -23L 1 M | 6 9 | | 422 | ; | 1 | 1 • 3 5 | 1 2 | ı | 1 | | 0.62 | 1 | 1 | 00 | - | | 144 | | 11S/15E-29H 1 M
7-24-57 5050 | 8 9 | 7.7 | 385 | 37 | 11 0.90 | 34
34 | 0.08 | 0 | 188
3.08
71 | 8 0.17 | 34 0 0 0 2 2 2 2 2 2 2 | 0 0 1 0 2 | 0 • 2 | 0.01 | 29 | 293 | 138 | | -29H 1 M | 69 | ω
• | 432 | 1.85 | 11 0.90 21 | 1
9
9
9
9
9 | 0.08 | 0.13 | 184
3 • 02
7 0 | 0.15 | 0.93 | 4 • 2
0 • 0 7
2 | 0 • 2 | 0 | 74 | 299 | 130 | | -29H 1 M
7-21-59 5128 | 72 | 0 • 8 | 454 | 2.40 | 0 • 41 | 1
• 0
0
0
0
0
0
0
0
0 | 0.08 | 0 | 193
3•16
72 | 0.15 | 1.02 | 2•7
0•04
1 | 0 • 1 | 0.10 | 78 | 310 | 141 | | -29H 1 M
7-26-60 5128 | 70 | 7.8 | 418 | 34 | 11 0.90 | 1 900 | 0 0 0 0 | O. | 176
2.88
70 | 0.15 | 38 | 2.0 | 0 | 00.0 | 53 | 270 | 130 | | -29H 1 M | 70 | η
•
• | 426 | 1,995 | 10 | 1
• 4
9 4 8
9 4 4 | 0 0 0 0 0 | 0 | 188
3•08
71 | 0.17 | 36 | 3.6 | 0 | 90 • 0 | 79 | 305 | 139 | | DWR 1982 | | | STATE | STATE OF CALIFORN | | RESOURCES | AGENCY (| OF CALIFO | RNIA - DE | PARTMENT | A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | ESOURCES | | | | | | # SEMI-CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | TOTAL | as
CoCO 3 | 142 | 148 | 54 | 52 | 20 | ŭ
® | 64 | 54 | 5.3 | 51 | |--|------------------|------------------------------|---------------------------------|--------------------------|---------------------------------|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------|--------------------------| | ents in
lian | Camputed | Evap 180°C | | | 172 | 169 | 174 | 135 | 163 | 166 | | | | neral constituents
parts per millian | Silis | SIO 2 | 1 | 1 | 62 | 65 | 4 9 | 26 | 67 | 68 | 1 | 1 | | Mineral constituents in parts per millian | Boren | 83 | 0.07 | 0.10 | 9000 | 0 • 0 4 | 0 | 0.11 | 0 • 0 5 | 0.07 | 00.0 | 0 | | | Fluo- | F | - | 1 | 0 • 2 | 0 • 2 | 0.1 | • | • | 0 • 1 | 1 | 1 | | | - N- | NO ₃ | 1 | 1 | 6.8
0.11
5 | 1.5 | 1.4 | 1.0 | 1 • 6 | 1.0 | 1 | 1 | | | Chloride | ט | 36 | 1.13 | 18
0.51
25 | 18
0.51
26 | 18
0.51
25 | 0.59 | 13
0•37
21 | 16 | 0.51 | 14 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 504 | - | ! | 0 0 4 8 4 | 0.04 | 0.12 | 0.00 | 0 0 0 8 4 | 0.04 | ! | 1 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar-
banate | нсо з | 1 | 1 | 82
1.34
66 | 84
1•38
71 | 1.38
6.8 | 1,39 | 1.31 | 80
1•31
72 | 1 | 1.31 | | C + 0 | Carban-
ate | င်တ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | c | Patas.
sium | × | 0.08 | 1 | 0
6 8 4 | 0.00 | 0.08 | 60.0
4 | 0.10 | 0.08 | - | 1 | | Mineral Canstituents in | Sodium | Ž | 35 | 1.00 | 19
0 • 83
42 | 0.83 | 21
0•91
43 | 0.83 | 17
0•74
41 | 18
0•78
40 | 20 | 19 | | Mineral C | Magne-
sium | W _g | 1 | 1 | 0.33 | 0.33 | 0.41 | 0.41 | 0.33 | 0.33 | 1 | | | | Calcium | 3 | 1 | 1 | 0.75 | 0.75 | 0.70 | 0.75 | 0.65 | 150.75 | ł | 1 | | Specific
canduct- | ance
(micro- | mhas
at 25°C) | 436 | 460 | 207 | 204 | 200 | 210 | 184 | 197 | 205 | 205 | | | I. | | 1 | 1 | 6 • 9 | 7.6 | 7.4 | 7.7 | 7.6 | 7 • 8 | 1 | 7.2 | | Temp. | Sampled | ٠
٢ | 1 | 68 | 70 | 70 | 72 | 72 | 72 | 71 | 72. | 70 | | Stote Well | | Date Sampled Agy. Time Call. | 115/15E-29H 1 M
6-21-62 5641 | -29H 1 M
8-15-63 5050 | 115/17E-25B 1 M
7-22-57 5050 | -25B 1 M
8-58 5050 | -258 1 M
7-23-59 5050 | -258 1 M
7-26-60 5128 | -258 1 M
7-26-61 5128 | -25B 1 M
6-19-62 5050 | -258 1 M | -25B 1 M
3-19-64 5050 | | | | Date | 115/ | 8 | 115/ | 0 ∞ | 7- | 7- | 7 | -9 | <u>ω</u> | В | | | TOTAL | ž | CaCo 3 | 000 CO | 51 | 6, 51
6, 51 | 8 2 2 2 8 8 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 5 8 0 1 0 0 3 3 1 0 0 0 3 3 1 0 0 0 0 0 0 0 | 663
663
663
677 | Cocco 3
6 3
177
177
4 48 | 78 | 1 | 780 | |--|------------------|------------------------------|---------------------------------|--------------------------------|----------------------------------|-----------------------|---|--|--|---
---|---|---| | | TDS
Computed | 2 Evap 180°C | | | | 121 | 1.2 | 1 2 | 122 | 12 | 75 | | | | neral constituents
parts per million | : <u>\$</u> 8 | SIO 2 | 2 | | | | | | | | | | | | Minero | Boron | es . | - 0.02 | 0.04 | | • | | | | | | | | | | Fluoride | ű. | i | | | • | | | | | | | | | | rote trote | N
0
3 | 1 | | | 1 • 0
0 • 0 2
1 | 0 0 0 0 0 0 1 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 0 | 0 | | | | | Chloride | Ū | 18 | 18 | | 19
0•54
23 | 19
0•54
23
39
1•10 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | equivalents per million
percent reactance volue | Sulfota | 504 | - | 1 | ď | 0.10 | 0 10 4 | 0 1 1 1 | 0 1 1 1 | 0 1 1 1 1 | 0.10 | 0 | 0.10
1.39
1.39
1.39 | | equivalents per mill
percent reactance v | Bicar.
bonote | нсо 3 | - | 1 | 100 | 1.64 | 1.64
71
104
1.70 | 1.64
1.71
1.70
1.70
1.00 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 2 2 3 3 4 4 5 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 6 | | : o c. | Carbon-
ate | 00 | 1 | 1 | 0 | | 0 | 0 0 | 0 0 8 2 7 | . 2 | N N O | N N O | N N O | | _ | Potos-
sium | ¥ | - | ŀ | 0.08 | m | m | m | m | m | 0 | | • • | | Mineral Canstituents in | Sodium | Z | 0.70 | 0.74 | 22 | 45 | 42
29
1•26 | • • | • • | • • | • • | 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . | 1 | | Mineral C | Magne-
sium | W ₉ | 1 | ł | 0.41 | 18 | 18 | 18 | 1 1 1 8 | 1 1 1 8 | | | | | | Calcium | 3 | 1 | 1 | 0.85 | 20 | 37 | h | m 1 1 1 | F | 11 0 555 | 0.0000000000000000000000000000000000000 | 0 | | Specific
conduct- | (micro- | mhas
at 25°C) | 194 | 187 | 229 | | 316 | 316 | 316 218 618 | 316 218 618 | 316
218
618
474
474 | 316
218
618
783
788 | 316
218
618
783
783 | | | Ξ. | | 7.8 | 8 • 1 | 7.7 | | 0 8 | 8 .0 | 8 7 8 | 8 | 8 | 8 8 8 9 7 9 1 8 | 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 | | Темр | Sompled | u. | 1 | 1 | 1 | | 1 | 1 1 | 1 | 1 8 1 | 1 8 1 8 | 1 8 1 8 9 | 1 1 8 1 8 6 6 | | State Well | H | Date Sampled Agy. Time Call. | 15/17E-35A 1 M
11- 2-61 5050 | 15/17E-35K 1 M
5- 1-62 5050 | 15/18E-17H 1 M
7-25-60 · 5050 | | 15/19E- 6E80 M
8-10-60 5050 | 15/19E- 6E80 M
8-10-60 5050
15/19E-32C 1 M
8-10-60 5050 | 15/19E- 6E80 M
8-10-60 5050
15/19E-32C 1 M
8-10-60 5050
15/21E-32E 1 M
7-22-59 5050 | 15/19E- 6E80 M
8-10-60 5050
15/19E-32C 1 M
8-10-60 5050
15/21E-32E 1 M
7-22-59 5050
25/14E- 3J 1 M
10- 8-64 5000 | 15/19E- 6E80 M
8-10-60 5050
15/19E-32C 1 M
8-10-60 5050
15/21E-32E 1 M
7-22-59 5050
25/14E- 3J 1 M
10- 8-64 5000
25/14E-16K 1 M
7-25-61 5128 | 15/19E- 6E80 M
8-10-60 5050
15/19E-32C 1 M
8-10-60 5050
15/21E-32E 1 M
7-22-59 5050
25/14E- 3J 1 M
7-25-61 5128
10- 8-64 5000
25/14E-16K 1 M
7-25-61 5128 | 15/19E- 6E80 M
8-10-60 5050
15/19E-32C 1 M
8-10-60 5050
15/21E-32E 1 M
7-22-59 5050
25/14E- 3J 1 M
10- 8-64 5000
25/14E-16K 1 M
7-25-61 5128
7-25-61 5128
7-25-61 5128 | | | | | _ | | | | | | | | | | | |--|-----------------|--------------|------------|-------------------------|-------------------------|------------------------------|-----------------------------|------------------|-------------------|-------------------|--------------------------|----------------------|------------------------------| | | TOTAL | hardness | CoCO 3 | 47 | 79 | 92 | 72 | 87 | 96 | 63 | 26 | 101 | 100 | | ents in
Ion | 201 | | Evap 180 C | | 152 | | 211 | 265 | 239 | 258 | | | | | neral constituents
parts per million | Sili | 8 | SIO 2 | ł | 1 | 1 | ra
M | 42 | 52 | 73 | ł | 1 | - | | Mineral constituents in parts per million | Boron | | В | 1 | 000 | 1 | 0 • 0 3 | 0 0 • 0 | 0 88 | 0 • 0 5 | 0.07 | 0000 | - | | | Fluo | 9 | F | 1 | 1 | - | 0.2 | 0.1 | 0 | 0 • 2 | 1 | 1 | 1 | | | ż | | NO 3 | 1 | 2 · 8
0 • 05
2 | 1 | 1 • 3 | 1.2 | 1.0 | 1.2 | 1 | 1 | - | | | Chlo | | ō | 205 | 19 0 54 | 16 | 26 0 73 25 | 32 0 90 26 | 32 0 90 25 | 29
0•82
24 | 32 | 32 | 25 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | | 504 | 1 | 0.10 | 1 | 0.12 | 0.15 | 0.12 | 0 • 15 | 1 | 1 | 1 | | milligrams per liter
equivalents per mill
percent reactance vo | Bicor- | 90000 | нсо з | 131 | 130
2•13
76 | 127 | 126
2.07
70 | 149 2 • 44 70 | 152
2•49
71 | 150
2•46
71 | 1 | 1 | 178 | | | Carbon- | 9 | co 3 | 14 | O | 21 | 0 | 0 | 0 | 0 | 1 | 1 | 14 | | Ę | Patos- | E | ¥ | | 0.05 | 1 | 0.083 | 0.10 | 0 0 8 8 9 | 0 0 0 8 8 | 0.05 | 1 | 1 | | Mineral Constituents in | Sodium | | Ž | 1 | 300 1 • 30 | 1
5 | 34
1.48
4.9 | 36 | 36 | 37
1•61
45 | 37 | 2 99 | - | | Mineral C | Magne- | | Mg | - | 0.33 | 1 | 0.33 | 0.33 | 0.66 | 0 • 41 | 1 | 1 | - | | | Colcium | | 3 | 1 | 1.25 | 1 | 1.10 | 28
1.40
41 | 1.25 | 1.45 | 1 | 1 | 1 | | Specific
conduct- | ance
(micro- | mhos | at 25 C) | 1210 | 304 | 327 | 302 | 333 | 355 | 348 | 366 | 381 | 414 | | | Ξ | Q. | | 8.6 | 7.7 | Φ
Φ | 7.3 | 0
•
8 | 7 • 8 | 8 • 1 | 1 | 1 | &
•
& | | Temp. | Sampled | , | | 1 | 6 8 | 1 | 4 9 | 7.1 | 73 | 72 | 69 | 71 | 1 | | | | Agy. | Coll. | 5000 | 1 M
5000 | 1 M
5000 | 6 1 M
5050 | -27G 1 M | 5 1 M
5128 | 5 1 M | 1 M
5641 | 5050 | 5000 | | State Well | | Date Sampled | lime | 125/14E-360
10-23-64 | 125/15E-20L
10-28-64 | 12S/15E-24H 1
10-26-64 50 | 12S/15E-27G 1
7-23-57 50 | -27G
7-21-59 | -27G
7-26-60 5 | -27G
7-25-61 5 | -27G 1 M
6-22-62 5641 | -27G 1
8-15-63 50 | 125/15E-36J 1
10-26-64 50 | | | | | | | | | · | | | _ | | | | | | JA Š | , e | 71 | 70 | 67 | 29 | 104 | 0 1 | 61 | 62 | 232 | 116 | ٦ | |--|------------------|----------------------|---------------------|---------------------------|---------------------|---------------------|---------------------|----------------------|---------------------|------------------------|------------------------|--------------------------|--| | | TOTAL | 00°03 | | | | | 7 | | | | | | | | ents in
lion | Camputed | Evap 180°C | 185 | 178 | 152 | 174 | | | | 183 | 351 | 203 | | | neral canstituents
parts per million | S 8 | SIO 2 | 65 | 5 | 4 | 4 9 | 1 | 1 | 1 | 71 | 1 | 94 | | | Mineral canstituents in
parts per million | Boron | ۵ | 0.05 | 00000 | 0.11 | 90.0 | 0.10 | 0 0 • 0 | 0 | 0.10 | 00.00 | 0 • 0 5 | | | | Fluo-
ride | ı. | 0.1 | 0 • 1 | 0 | 0.2 | 1 | - | 1 | 0 | - | 0 | | | | Ni-
trote | o
Z | 2.7 | 4 • 0 • 0 • 0 • 0 • 0 • 0 | 1.0 | 0 0 | 1 | 1 | 1 | 27 • 0
• 8 3
3 5 | 41.0
0.66 | 10 0 0 0 16 | ESOURCES | | | Chlo | ō | 0.34 | 0.28 | 0.45 | 13
0•37
18 | 0.28 | 10 | 0.28 | 11
0•31
13 | 22
0•62
10 | 0.17 | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | | milligrams per liter
equivalents per million
percent reactance value | Sullote | 504 | 0.15 | 0 0 0 0 | 0.02 | 0.12 | 1 | 1 | 1 | 0.10 | 1.04 | 13 | EPARTMENT | | milligrams per liter
equivalents per mil
percent reactance v | Bicor-
banate | нсоз | 106 | 102 | 1.62 | 92
1.51
73 | 1 | 1 | 1 1 | 91
1•11
47 | 238 | 151
2•47
81 | ORNIA DI | | | Carban-
ate | 003 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | OF CALIF | | c | Patas-
sium | ¥ | 0.10 | 0.10
0.10 | 0.10 | 0.10 | 0.10 | 1 | 1 | 0 0 0 | 0.13 | 0.02 | AGENCY | | Mineral Constituents in | Sodium | ž | 0.74 | 0 • 1 6 | 0.70 | 0.65 | 0.65 | 0.70 | 0 0 0 0 | 18
0•78
32 | 38
1•65
26 | 13
0•57
19 | RESOURCES | | Mineral C | Magne-
sium | Wg | 0.41 | 0.49 | 0.58 | 0.49 | 1 | 1 | • | 0.58 | 1.89 | 0.82 | RNIA - THE | | | Calcium | ů | 1.00 | 18
0.90
41 | 0.15 | 0.85 | 1 | 1 | 1 | 20
1.00
41 | 2 • 7 4
4 3 | 1.50 | OF CALIFO | | Specific
conduct- | (micro- | mhos
at 25 C) | 230 | 214 | 226 | 205 | 205 | 202 | 204 | 262 | 614 | 259 | STATE | | | Ŧ | | 8•1 | 8 0 | 7.1 | 7.9 | } | 1 | į į | 7.2 | 7.2 | 7.6 | | | Temp. | Sampled | F | 68 | 69 | 72 | 6.8 | 68 | 68 | 8 9 | 1 | 71 | 99 | | | Well | | oled Agy. | - 7L 1 M
58 5050 | - 7L 1 M
59 5128 | - 7L 1 M
60 5128 | - 7L 1 M
61 5128 | - 7L 1 M
62 5641 | - 7L 1 M
-63 5050 | - 7L 1 M
63 5050 | - 60 1 M
53 5000 | -17L 1 M
54 5050 | -31P 1 M | | | State Well
Number | | Date Sampled
Time | 125/18E-
8- 5-58 | 7-23-59 | 7-25-60 | 7-26-61 | 6-22-62 | 8- 7-6 | 8-28-63 | 125/21E-
8-20-63 | 125/21E-17L
6- 3-64 | 125/21E-31P
7-25-57 5 | DWR 1982 | FRESNO - MADERA AREA | | _ | w | | | | | | | | | | | | |--|---------|--------------
------------|------------------------|----------------------|-----------------------|-----------------------|---|--------------------------|------------------------------|------------------------------|-----------------------|--------------------------| | | TOTAL | hardness | CaCO 3 | 129 | 130 | 100 | 146 | 261 | 193 | 160 | | 102 | 106 | | ents in
lion | TDS | Camputad | Evap 180°C | 206 | 203 | 180 | | 376 | 277 | 210 | | | 1643 | | neral constituents
parts per million | Sili | 8 | SIO 2 | 47 | 9 7 | 80 4 | 1 | 64 | 45 | 64 | 1 | - | 48 | | Mineral constituents in parts per million | Borns | 8 | 60 | 0.05 | 0 • 0 5 | 0.07 | 00•0 | 00.0 | 90.0 | 0000 | 1 | 1.00 | 1.20 | | | Fluo- | 6 | 4 | 0.0 | 0.2 | 0.5 | 1 | 0.1 | 0 • 2 | 0.1 | 1 | ! | 4.0 | | | ż | frate | NO 3 | 8.5
0.14 | 8.5 | 7.0
0.11 | 1 | 6 • 0
0 • 10
2 | 13.0 | 17.0 | 1 | 1 | 0.0 | | | ek : | a pi. | Ū | 0.14 | 0.11 | 0.11 | 5 | 0 • 65 5 | 14 0 39 | 13 | 251 | 260 | 300
8 • 46
34 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | | 504 | 0.21 | 0.17 | 0.25 | 1 | 0.35 | 0.17 | 0.31 | 582 | 528 | 635
13 • 22
53 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar- | banate | нсо з | 161
2•64
84 | 162
2.66
86 | 126
2.07
81 | 1 | 334
• 47
83 | 23.
3.84
83 | 188
3.08
76 | 3.10 | 646 | 202 | | E & a | ė | 9 | co 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | _ | Patas- | E S | ¥ | 0.05 | 0.05 | 0.05 | ! | 0.08 | 0 0 0 0 | 0.05 | ł | 1 | 0.08 | | Mineral Constituents in | Sodium | | Ž | 0.52 | 0.52 | 0.52 | 13 | 1 - 30 | 19
0.83
17 | 0.83 | i | 430 | 516
22.44
91 | | Mineral C | Magne- | E O S | Mg | 1.23 | 1.15 | 0.90 | ! | 2 9 7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 | 22
1•81
38 | 20 | 1 | 0.58 | 0 • 41 | | | Calcium | | 3 | 1.35 | 1.45 | 1.10 | 1 | 2.59 | 2.05 | 1.55 | 1 | 29 | 34
1.70 | | Specific
conduct- | (mirro- | whos | at 25 C) | 310 | 295 | 258 | 344 | 602 | 444 | 388 | 1 | 2230 | 2410 | | | I | ۵ | | 8 0 | 7.6 | 8 • 1 | 1 | 7.7 | ω
• | 7.5 | 7.8 | 7.4 | 7.8 | | Темр. | Sampled | - L | | 99 | 1 | 80
57 | 1 | 70 | 1 | 73 | 1 | 1 | 75 | | | | Agy. | Coll. | 1 M
5050 | 1 M
5050 | 1 M
5050 | 1 M
5631 | 1 M
5000 | 5050
5050 | 5000
5000 | 5702 | 1 M
5050 | 1 M
5050 | | State Well | | Date Sampled | Time | 12S/21E-31P
7-31-58 | -31P 1
7-20-60 50 | -31P 1
6-18-62 505 | -31P 1
7-11-63 563 | 128/22E-20R 1 M
8- 8-63 5000 | 125/22E-30C
7-20-60 5 | 12S/22E-32R 2
8-13-63 500 | 13S/14E-15B 1
2-13-50 57C | -158 1
8-15-51 505 | -158 1 M
7-14-59 5050 | | | | | | | | | | | | | | | | | State Well | | Temp | | Specific
conduct- | | Mineral Co | Mineral Canstituents in | | E & & | milligrams per liter
equivalents per million | milligrams per liter
equivalents per million | | | | Mineral constituents in parts per million | neral constituents
parts per millian | ents in
Iian | | |----------------------------------|-------|------|-------------|----------------------|--|------------|-----------------------------|---|-----------|---|---|------------------------|----------|-------|---|---|-----------------|----------| | Lagunder | | when | I | ance | Colcius | Magne | - Initial | Patas- | ė | Bicar | Sulfate | Chlo | Ż | Fluo- | 0 | Sili | TOS | TOTAL | | | Agy. | o F | ۵. | mhos | | En s | | E | e e | Banate | | e
0 | frote | | 2 | 8 | Camputed | hordness | | Time | | | | at 25 ^C) | 3 | Mg | S. | ¥ | co 3 | нсо з | 50 4 | ō | NO 3 | ı. | 8 | 510 2 | Evap 180°C | CaCO 3 | | 135/14E-15B 1 M
8-13-59 5050 | Σ O Z | 77 | α
• Γ | 2400 | 1.75 | 0.41 | 491
21•35
91 | 0.08 | 0 | 203
3•33
14 | 581
12•10
52 | 284
8•01
34 | 0.3 | 4.0 | 1.20 | 51 | 1552 | 108 | | -15B 1 M
7-19-60 5050 | Σ Ο 3 | 1 | &
•
• | 2170 | 34 | 0
4 % 1 | 494
21•48
91 | 0 0 8 9 | 0.17 | 186
3 • 05
13 | 584
12•16
52 | 286
8•07
34 | 0.01 | 4.0 | 1.20 | 51 | 1555 | 102 | | -158 1 M
8-25-61 5050 | Σ O 3 | 77 | α
•
• | 2300 | 32 | 0 • 4 1 2 | 488
21•22
91 | 0.05 | 0.27 | 180
2.95
12 | 540
11.24
46 | 350
9.87
41 | 0.0 | 4.0 | 1.10 | 57 | 1573 | 101 | | -158 1 M
4-26-62 5050 | ΣΟ | 77 | 80
 | 2320 | 3.6 | 0.16 | 497
21• 6 1
91 | 0 | 0 | 3.39 | 591
12•30
53 | 270 | 0 | 0 | 1.19 | 43 | 1544 | 9 8 | | -15B 1 M
8-26-63 5050 | ΣΟ | 76 | 1 | 2450 | 1 | 1 | 488 | 1 | 1 | - | 1 8 | 8
• 4
0 0
4 6 | 1 | 1 | 1.10 | 1 | | 108 | | 135/15E- 6E 1 M
4-10-56 5050 | Σ Ο | i | 7.8 | 913 | 1.50 | 0.08 | 155
6•74
80 | 0.08 | 0 | 158
2 • 59
30 | 70 | 159
4•48
52 | 1.0 | 0 | 2.00 | t
a | 499 | 79 | | 135/15E-11P 1 M
10~23-64 5050 | Σ Ο 3 | 1 | 8 • 4 | 596 | 18
0.90
15 | 0 2 4 | 110 | 0.05 | 0.20 | 276 | 14 0 • 29 | 38
1.07
18 | 1.4 | 1 | 0.20 | ł | 328 | 58 | | 135/15E-24D 1 M
10-26-64 5000 | Σ 0 | 1 | 0.6 | 411 | 1 | 1 | 1 | 1 | 23 | 3.20 | 1 | 12 | 1 | 1 | 1 | 1 | | 51 | | 135/15E-35E 1 M
5-28-51 5001 | Σιο | 1 | 1 | 110 | 1 | 1 | 0.04 | 1 | 1 | ! | 1 | 0.17 | - | 1 | 1 | 1 | | | | -35E 1 M | 0 Ω | 29 | 1 | 100 | 0.50 | 0 52 3 | 0.30 | 0 0 0 0 | - | 0.10 | 0 | 13 0 37 34 | 0.0 | 1 | 1 | 1 | 57 | 38 | | DWR 1982 | 1 | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | NIA - THE | RESOURCES | AGENCY (| OF CALIFO | JRNIA - DE | PARTMENT | OF WATER R | ESOURCES | | | | | | | _ | - | | | | | | 0.1 | | | | | | _ | |---|-------------------------|------------------|------------|-------------------------|---|---|---|---|-----------------------|----------------------|------------------|----------------------------------|------------------------------| | | Ĭ | hardness | ů | 51 | 7.7 | 67 | 82 | 81 | 103 | 114 | 130 | 117 | 62 | | ents in | | Computed | Evap 180°C | 216 | 202 | 222 | 236 | 210 | 253 | | | | | | neral constituents | I | Sil: 8 | SIO 2 | 1 | 58 | 8 3 | о
6 | r.
8 | 78 | 1 | 1 | 1 | 1 | | Mineral constituents in parts per million | | Boron | 8 | 90•0 | 0 0 | 0 • 12 | 0 | 60.0 | 0 • 0 5 | 0 0 | 0000 | 1 | 1 | | | ı | Fluo- | ı | 1 | ο
• | 0 5 | 0.1 | 0.1 | 0 . 2 | 1 | 1 | 1 | 1 | | | | rote
et ort | NO 3 | 6 • 2
0 • 10 | 2.0 | 0.02 | 1.3 | 0 | 2.7 | 1 | 1 | 1 | 1 | | | | Chlo-
ride | ū | 1.21 | 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 | 16 0 45 17 | 18
0.51
17 | 19 0 54 18 | 18
0.51
15 | 18 | 19 | 3.22 | 1.78 | | milligrams per liter
equivalents per million | percent reactance value | Sulfate | 504 | 10 0.21 | 0
4 8 6
4 | N W N | 0 | 0 0 0 0 0 0 | 0.10 | 1 | 1 | 1 | - | | milligrams per liter
equivalents per mill | ercent read | Bicar-
bonate | HCO 3 | 145
2•38
61 | 133
2•18
80 | 129
2•11
80 | 142 2 • 33 80 | 143
2•34
79 | 165
2.70
81 | 1 | 1 | 125 | 169 | | E e | a | Carbon-
ate | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | + | 10 | 1.60 | | - | | Potas.
sium | × | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 1 | ! | 1 | | Mineral Constituents in | | Sodium | ž | 2.91
73 | 1.22 | 1.26 | 0 %
• 1
• 4 % | 0 0 0
0 0 0
0 0 0
0 0 0 | 1
9
9
9
8 | 1.30 | 1.35 | 1.39 | 1 | | Minerol C | | Magne-
sium | Wg | 0.41 | 0.58 | 0 • 8 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • | 0 • 49 | 10
0.82
28 | 0.66 | 1 | 1 | * | - | | | | Calcium | 3 | 0.60 | 19 0.95 | 1.00 | 1.15 | 0.80 | 28
1.40
41 | 1 | ! | 1 | 1 | | Specific
conduct- | ance | (micro- | at 25°C) | 427 | 270 | 282 | 280 | 298 | 328 | 351 | 395 | 691 | 639 | | | | =_ | | 7.6 | 7.8 | 8 • 1 | 7.9 | 7.6 | 8 • 1 | 1 | ; | 8 - 7 | 9•1 | | I eme | 4 | Sampled | | 67 | 71 | 70 | 71 | 72 | 72 | 69 | 71 | 1 | 1 | | | | 7 | Coll. | 1 M 5001 | 2 M
5050 | 2 M
5050 | C 2 M
5128 | C 2 M
5128 | 5128 | 2 M
5641 | 2C 2 M
3 5050 | R 1 M
5000 | 5000 | | State Well | Number | pelo | | -35E | - 2C | - 2C 2 M
6-58 5050 | - 2C | 2 | 52 | - 2C 2 M
-62 5641 | 63 5 | - 7R
64 | -18F | | State | No | Date Sampled | Time | 13S/15E-35E
12-14-60 | 135/16E- 2C 2 M
7-25-57 5050 | 8 | 7-23-59 | 7-25-60 | 7-25-61 | 6-21-62 | 8-15-63 | 135/16E- 7R 1 M
10-26-64 5000 | 135/16E-18F 1
10-26-64 50 | | | _ | | | | | | | | | | | | | | State Well | Temp | à | Specific conduct- | | Mineral Co | Mineral Constituents in | | الخ ق مَا | milligrams per liter
equivalents per millian
percent reactance value | er liter
ser million
tance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | on sin | | |---------------------------------|----------|----------------|-------------------|--------------------|------------------|--|---|----------------|--|---|---|---|--------|---|---|------------|--------------| | | | H
_d | | Calcium | Magne-
sium | Sodium | Potas-
sium | Carban-
ate | Bicar-
banate | Sulfate | Chlo-
ride | tate. | Fluo- | Boran | <u>≅</u> 8 | Camputed | TOTAL | | Date Sampled Agy. Time Coll. |
 | | mhos
at 25°C) | 3 | Wg | Ž | ¥ | S | нсоз | \$0.4 | ö | ε
Ο
Z | u. | 6 | SIO 2 | Evap 180°C | 25
CaCO 3 | | 13S/16E-36R 3 M
8-14-63 5000 | | 9.7 69 | 756 | 3.94 | 1.40 | 2.00 | 0.13 | 0 | 212 3 • 47 46 | 1.02
1.3 | 110
3•10
41 | 0.01 | 0.2 | 00.0 | 20 | 461 | 267 | | 135/17E- 1L 1 M
9- 3-63 5000 | | 71 7.4 | 237 | 17 0.85 | 0 • 41 | 22 0.96 | 0.05 | 0 | 1.51 | 444 0 . 92 | 0 52 50 50 50 50 50 50 50 50 50 50 50 50 50 | 8 • 1
0 • 13
4 | ο
• | 000 | 77 | 244 | 63 | | 13S/17E- 5P 1 M
7-22-57 5050 | | 7.5 | 760 | 21
1.05
41 | 0.33 | 1.13 | 0.05 | 0 | 11111-82 | 0.15 | 19
0.54
21 | 4.0 | 0 | 0 | 77 | 215 | 69 | | 8- 6-58 5050 | ω
Σ O | 0 7.9 | 265 | 1.00 | 0.49 | 1.13 | 0 | 0 | 113 | 8 0.17 | 24
0.68
25 | 0 | 0 • 2 | 0 | 000 | 225 | 75 | | 7-23-59 5128 | | 72 7.9 | 252 | 22
1•10
42 | 0.25 | 1.22 | 0.05 | Э | 11111-82 | 0 • 10 | 0 | 2.5 | 0 • 1 | 0 | 81 | 221 | 8 | | - 5P 1 M
7-25-60 5128 | | 79 8.0 | 661 | 3.54 | 1.15 | 2.04 | 0.05 | 0 | 274 | 900000000000000000000000000000000000000 | 1.52 | 8.0
0.13 | 0 | 0.22 | 53 | 414 | 235 | | - 5P 1 M
7-25-61 5128 | | 77 8.0 | 6 38 | 3.49 | 1.07
1.07 | 2 • 0 9
3 1 | 0.05 | 0 | 277 | 27 0 . 56 | 40
1•13
17 | 21.0 | 0 • 2 | 0.16 | 72 | 0 8 4 | 228 | | - 5P 1 M
6-19-62 5050 | | 78 8.2 | 794 | 4.34 | 1.56 | 2,39 | 0.08 | 0 | 342
5.61
68 | 0.83 | 52
1.47
18 | 23.0 | 0 • | 0 18 | 72 | 519 | 295 | | - 5P 1 M
8-15-63 5050 | | 52 | 718 | ! | 1 | 2.91 | 1 | 1 | ! | 1 | 1.41 | 1 | 1 | 0.20 | 1 | | 226 | | - 5P 1 M
3-19-64 5050 | <u>.</u> | 76 7.9 | 530 | 2.40
4.5
4.5 | 11
0.90
17 | 2.04 | 0.05 | 0 | 2.18 | 25 0 52 10 | 0.85 | 0.88.0 | ł | 0.10 | 1 | 358 | 165 | | DWR 1982 | | | STATE | OF CALIFO | RNIA - THE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | AGENCY | OF CALIFC | SRNIA - DE | PARTMENT C | JE WATER RI | ESOURCES | | | | | | AREA FRESNO - MADERA | State Well | Temp. | | Specific conduct- | | Mineral Co | Mineral Constituents in | _ | [E & & | milligrams per liter
equivalents per mill
percent reactance v | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in
parts per million | neral constituents
parts per million | ion | | |----------------------------------|----------|---------|-------------------|---------------------------------|--------------------|---|----------------|----------------|---|--|------------------|----------------------|----------|--|---|-----------------|--------| | - | Sompled | ī | (micro- | Colcium | Magne-
sium | Sodium | Potas-
sium | Carbon-
ote | Bicar-
banate | Sulfate | Chlo-
ride | rote | Fluoride | Boron | Sili: | TDS
Computed | TOTAL | | Time Coll. | 4. | | at 25°C) | J | Mg | N _a | × | co 3 | нсо з | SO 4 | ū | NO 3 | ı. | 8 | SIO 2 | Evap 180°C | CoCO 3 | | 13S/17E-12J 1 M
9-26-63 5050 | ! | 8.3 | 009 | 2.54 | 20
1•64
25 | 2.00 | 0.089 | 0 | 304 | 43
0•90
14 | 16 | 9 • 5
0 • 15
2 | 1 | 0.20 | | 345 | 209 | | 135/17E-14R 1 M
7-20-60 5050 | 99 | 80
W | 389 | 0.95 | 10 | 7 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . | 0.03 | 0.07 | 216
3.54
83 | 0.31 | 0 | 5.9
0.10
2 | 0.2 | 0.11 | 9 | 291 | 89 | | 135/17E-22B 1 M
6-25-63 5631 | 1 | 7.6 | 747 | 2 . 5 . 9 4 | 18
1.48
19 | 3.30 | 0.05 | 0 | 372 | 42
0•87
11 | 21 0.59 | 25.0 | 0.1 | 0.16 | 50 | 485
467 | 221 | | 135/17E-27J 1 M
6- 4-64 5050 | 7.1 | 7.9 | 473 | 2.15 | 1.32
29 | 1.04 | 0 0 0 8 3 | 0 | 160
2.62
59 | 14 0 • 29 | 1.24 | 19.0 | 1 | 00•0 | i | 318 | 174 | | 135/18E- 2L 1 M
6-11-64 5050 | 8 | 7.7 | 664 | 1
• 8 0
9 0
9 0
9 0 | 1.15 | 2.04 | 0.18 | 0 | 251
4•11
81 | 0.27 | 17
0•48
10 | 12.0
0.19 | 1 | 0.10 | 1 | 340 | 148 | | 135/18E-33L 1 M
7- 5-57 5050 | 99 | ω
• | 525 | 24
1•20
24 | 21
1•73
34 | 2.00 | 0.15 | 0.20 | 169
2•77
56 | 14 0 • 29 | 1.05 | 11.0
0.18
4 | 0 • 5 | 00•0 | 96 | 362 | 147 | | -33L 1 M
7-20-60 5050 | 9 | 8 .2 | 498 | 28
1•40
29 | 20 1 • 64 | 1.74 | 0.13 | 0 | 189
3•10
65 | 8 | 1 • 3 5
2 8 | 11.0 | 0•1 | 0.10 | 58 | 311 | 152 | | 135/19E-27L 1 M
 8-12-63 5000 | 1 | 7.4 | 385 | 1 34 | 1 23 | 22
0 96
24 | 0.135 | 0 | 201
3.29
82 | 0.23 | 10 | 12.0 | 0 | 00.0 | 70 | 278 | 147 | | 13S/19E-29E 1 M
7-17-63 5050 | 1 | 7•7 | 311 | 30
1
50
4
45 | 0.66 | 18
0.78
25 | 0.13 | 0 | 141 2.31 | 0.12 | 13 | 13.0 | 0 • 2 | 90•0 | 102 | 265 | 108 | | 135/19E-30L 1 M
7-20-60 5050 | 75 | 7.5 | 231 | 15
0 • 75
32 | 10
0 • 82
35 | 0.70 | 0.10 | 0 | 125
2•05
86 | 0.00 | 0.25 | 0.5 | 0.2 | 0.05 | 59 | 178 | 79 | FRESNO - MADERA AREA | State Well
Number | Temp. | | Specific conduct- | | Mineral Co | Mineral Constituents in | | F & & | milligrams per liter
equivalents per million
percent reactance volue | er liter
ser million
ance volue | | | | Mineral constituents in ports per million | nerol constituents
ports per million | ants in | | |----------------------------------|---------|-------|-------------------|---------------------|------------------|-------------------------|----------------|-----------------|--|--|------------------|-------------------|---------------|---|---|-----------------|---------| | | Sampled | Ξ_ | (micro- | Calcium | Magne. | Sodium | Patas-
sium | Carban-
ate | Bicar-
bonate | Sulfate | Chlo-
ride | Ni-
trate | Fluo-
ride | Boran | Sili. | TDS
Camputed | TOTAL | | Time Coll. | | | at 25°C) | 3 | Mg | Z | × | co ₃ | нсо з | 504 | ū | NO 3 | ш. | 89 | SIO 2 | Evap 180°C | CaCO 3 | | 135/19E-30L 1 M
10-18-61 5050 | 1 | 8.2 | 253 | 1.00 | 10
0.82
31 | 17
0•74
28 | 0.10 | 0 | 122
2•00
78 | 0.10 | 10
0•28
11 | 11.0 | 0.1 | 00.0 | 77 | 214 | 91 | | -30L 1 M | 71 | 1 | 257 | 1 | 0.16 | 0.74 | 0.10 | - | i
i | - | 0.25 | 1 | 1 | 0.07 | 1 | | œ | | 135/19E-32D 1 M
6-13-63 5050 | i | 7•4 | 356 | 26
1.30
37 | 1.15 | 21
0.91
26 | 0.13 | 0 | 157
2•57
74 | 0.19 | 15 | 17.0 | • 0 | 0.07 | 73 | 257 | 123 | | 135/19E-32M 1 M
5- 9-52 5050 | 65 | 7.7 | 486 | 30 | 1.40 | 1.96 | 0.13 | 0 | 215 | 0.23 | 31 0 87 18 | 15.0 | 0 • 1 | 0 • 0 3 | 72 | 332 | 145 | | -32M 1 M | 1 | 7.5 | 832 | 2.50 | 21
1•73
19 | 105 | 0.15 | 0 | 373
6.11
71 | 0.56 | 1.41 | 31.0 | 0 | 0.20 | 62 | 536 | 212 | | 135/19E-36E 2 M
5-28-63 5050 | 72 | 8 • 0 | 281 | 16 | 0.66 | 14
0•61
28 | 0.13 | 0 | 108
1•77
84 | 0.00 | 0.11 | 10.0
0.16
8 | 0 • 2 | 0 • 0 5 | 73 | 186
180 | 73 | | 135/20E- 3C 1 M
7-20-60 5050 | - | 0 | 214 | 10.05 | 0.66 | 11 0 • 48 22 | 0 0 0 8 4 | 0 | 109
1•79
85 | 0.04 | 6
0.17
8 | 6.7 | 0 • 2 | 0.11 | 63 | 173 | 81 | | - 3C 1 M
6-12-63 5050 | 1 | 1 | 1 | 1 | ! | 1 | i i | 1 | 1 | 1 | 1 | 10.0 | 1 | ł | t | | | | - 3C 1 M
6- 9-64 5050 | 73 | 7 • 8 | 215 | 18
0.90
41 | 0 • 74 | 11 0.48 | 0 0 8 9 4 | 0 | 110
1 • 80
85 | 0.04 | 0.17 | 7.6 | 1 | 0.10 | 1 | 162 | 82 | | 135/20E- 3P 1 M
7- 5-61 5060 | 1 | 7.6 | 1 | 19
0.95
39 | 10
0.82
34 | 0 • 5 7 2 3 | 0.10 | 0 | 122
2•00
83 | 0 | 0.17 | 12.0
0.19
8 | 0.2 | 1 | 1 | 127 | φ
0, | | DWR 1982 | | | STATE | STATE OF CALIFORNIA | | RESOURCES | AGENCY | OF CALIFO | DRNIA - DE | - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | OF WATER RI | ESOURCES | | | | | | | Sulfate ride trate SO 4 CI NO 3 O • 06 O • 05 O • 07 O • 02 O • 02 O • 02 O • 06 O • 02 O • 06 | 10 | color 1 | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
--|--|--|--
--| | 0.06
0.06
0.06
0.025
0.07
0.02
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020 | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | 0 0 0 0 | O H O O O H I | 00 0 1 0 0 0 0 1 1 480 | WOW OLO HUH WOW WOW WO4 1 40W 1 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00 400 017 018 108 1
00 400 157 400 188 8 8 7 1 | | | | 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0.66 0.57 0.0
30 26
0.41 0.65 0.0
19 0.52 0.1 | 0.06 0.57 0.0
30 0.57 0.0
19 0.65 0.0
19 0.52 0.1
33 23 0.15 |
0.066
0.066
0.066
0.074
0.074
0.074
0.074
0.065
0.074
0.065
0.074
0.065
0.074
0.065
0.074
0.065
0.074
0.065
0.074
0.074
0.075
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0. | 0.0668
0.0668
0.057
0.074
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.074
0.055
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075 | 0.0668
0.668
0.057
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.052
0.074
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0 | | | 212 21 21 48 40 40 40 40 40 40 40 40 40 40 40 40 40 | 212 21 1.055
| 212
1.05
1.05
1.05
20
20
20
20
20
39 | 212
1 • 05
4 8
18
0 • 90
0 • 90
0 • 90
0 • 90
18
18
18
0 • 90
19
19
19
10 • 90
10 90
1 | | | 7.7 | 1 02 | | 70 70 | | 20 | 18 9 15 4 0.65 0.10 | 18 0.90 0.74 0.65 0.10 38 31 27 4 | 18 9 15 4
0.90 0.74 0.65 0.10
38 31 27 4
 | 18 9 15 4
0.90 0.74 0.65 0.10
38 31 27 4
0.95 0.82 0.57 0.08
39 34 24 3 | | State Well
Number | | Temp. | | Specific conduct- | | Mineral Ca | Mineral Constituents in | | E ad | milligrams per liter
equivalents per million
percent reactance value | er liter
ser million
ance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | ants in
ion | | |------------------------------|---------------|---------|---------|-------------------|--|------------------|---------------------------------|------------------------|----------------|--|---|------------|---|---------------|---|---|-----------------|--------------| | . - | | Sompled | Ξ° | (micra- | Calcium | Mogne-
sium | Sodium | Patas. | Carban-
ate | Bicar-
bonate | Sulfate | Chlo | rate. | Flua-
ride | Boron | | TDS
Camputed | TOTAL | | Date Sampled A
Time C | Agy.
Call. | ٠, | | mhas
at 25°C) | ß | М | Ž | × | co 3 | нсо з | 504 | CI | NO 3 | ıL | 83 | SIO 2 | Evop 180°C | os
CaCO 3 | | 135/20E-12L 1
7-20-60 50 | 1 M
5050 | 1 | 6.7 | 219 | 18
0.90
41 | 10
0.82
37 | 10 0.43 | 0.05 | 0 | 115
1.88
87 | 4
0
0
4 | 0.11 | 6 • 4
0 • 10
5 | 0.1 | 90•0 | 09 | 171 | 86 | | -12L 1
4-26-62 50 | . 1 M
5050 | 02 | 89 % | 264 | 1 . 20 + 42 + 42 | 0 99 | 0.61 | 0 0 0 2 2 | 0 | 160 | 0 | 0 23 8 | 0 | 0 | 90.0 | 27 | 166 | 110 | | -12L 1
6-14-63 50 | . 1 M
5050 | 1 | 7 . 8 | 155 | 14 0 10 45 | 0 • 41 | 0.000 | 0 0 0 0 0 | 0 | 1.31
86
86 | 0.10 | 0.11 | 0 • 8 | 0 0 | 0 • 0 5 | 23 | 102 | υ
9 | | 135/20E-16L 2
8- 7-57 50 | 2 M
5060 | 1 | 7.5 | 1 | 1.30 | 0.90 | 0.65 | 0.10 | 0 | 129
2•11
71 | 0.15 | 0.34
11 | 24°
0 • 3 9
1 3 | 0.1 | t
B | 1 | 163 | 110 | | 135/20E-16L 3
8- 7-57 50 | 3 × 2000 | 1 | 8 • 1 | 1 | 0.85 | 900 | 0.57 | 0
• 1
0 0
0 0 | 0 | 104 | 0 0 0 0 | 0 28 | 6.6 | 0 • 1 | i
i | 1 | 115 | 76 | | 135/20E-17G 1
3- 6-51 506 | 5060
5060 | 1 | 7•1 | 1 | 170.85 | 0 • 7 4 4 3 8 | 0
10
10
10
10
10 | l | i
3 | 1.56 | 0.15 | 0.17 | 0 | 0 | 1 | 1 | 66 | 8 | | -176 1
9- 3-63 50 | 5060 5060 | + | 7 • 7 | 1 | 0.95 | 0 982 | 0.57 | 0 • 10 | 0 | 120
1.97
85 | 0 | 0.14 | 7.1
0.11 | 0•1 | - | 1 | 122 | 9 | | 138/20E-17G 2
5- 5-55 50 | 5 2 M
5060 | 1 | • 1 | 1 | 17
0.85
37 | 0 • 74 | 0.65 | w & w | 0 | 122
2•00
90 | m 90 m
0 | 0.11 | 0 | 1 | 1 | 1 | 114 | 0 8 | | -17G 2
9- 3-63 50 | 5060
5060 | 1 | δ0
• | ţ | 1.65 | 1307 | 17 0 • 74 21 | 0.13 | 1 | 172
2•82
81 | 8 0 • 17 | 0.23 | 15.9 | 0 • 1 | 1 | 1 | 185 | 136 | | 135/20E-17J 1
8- 7-57 50 | 1 M
5060 | 1 | 6.7 | į. | 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.58 | 11
0•48
23 | 0.10 | 0 | 108 | 4 0 0 0 4 | 0 11 6 | 11.
0.18
8 | 0 • 2 | 1 | 1 | 112 | 74 | | DWR 1982 | | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | NIA - THE R | ESOURCES | AGENCY C | JF CALIFO | RNIA - DE | PARTMENT C | JE WATER R | ESOURCES | | | | | | # SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | State Well | Temp. | | Specific conduct- | | Mineral Co | Mineral Canstituents in | | E 9 8 | milligrams per liter
equivalents per mill
percent reactance v | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in parts per million | neral constituents
parts per millian | ants in
ion | | |----------------------------------|-------|-------|-------------------|---|----------------|-------------------------|--|----------------|---|--|---|-----------------------|-------|---|---|----------------|---------------------------------| | | when | I | (micro- | Colcium | Magne-
sium | Sodium | Potas- | Carbon-
ote | Bicar-
bonate | Sulfote | Chloride | rote. | Fluo- | Boron | Sili: | TDS | TOTAL | | Date Sampled Agy. | L. | 1 | mhos | | | : | | · . | | | | | | | | ۰ | 50 | | | | | at 25 C) | S | Mg | Ž | ¥ | 8 | нсо з | 504 | ō | 20 3 | u. | 80 | SIO 2 | Evap 180 C | C ₀ C ₀ 3 | | 135/20E-19C 1 M
8-27-57 5060 | 1 | 7 • 8 | 1 | 0.75 | 9 0 0 7 4 3 5 | 13
0.57
27 | 0.08 | 0 | 101 | 0.10 | 0.14 | 11.5 | 0 • 1 | - | 1 | 111 | 75 | | -19C 1 M
6-10-64 5050 | 70 | 7.7 | 213 | 16 | 0 • 7 • 0 | 13
0.57
26 | 0
• 10
5 | 0 | 108 | 0 0 4 8 4 | 5 0 0 1 4 7 | 8.6
0.14 | i | 00.0 | 1 | 113 | 77 | | 135/20E-20H 1 M
12-12-56 5060 | 1 | 7.5 | 1 | 0.85 | 0 66 8 | 0.65
29 | 4 0 0 0 4 | 0 | 1.56 | 0.21 | 0.25 | 12.4 | 0 | 1 | 1 | 122 | 76 | | -20H 1 M
6-10-64 5050 | 71 | 7.5 | 225 | 0.85 | 0.82 | 12
0•52
23 | 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 107 | 0.10 | 0.20 | 13.0 | 1 | 00•0 | ł | 121 | 84 | | 135/20E-20N 1 M
8-27-57 5060 | 1 | 7.7 | 1 | 0,10 | 0 • 4 9 6 2 8 | 11
0.48
27 | 0 0 0 | 0 | 80
1•31
75 | 0.12 | 0.14 | 10.6 | 0.2 | 1 | 1 | 95 | 09 | | -20N 1 M
6-26-63 5050 | 02 | 7.7 | 194 | 16
0.80
41 | 0.58 | 110.48 | 0.10 | 0 | 1.52 | 0.00 | 5 0 0 1 4 7 | 10.0 | 0•1 | 90•0 | 68 | 170 | 69 | | 135/20E-20R 1 M
8-27-58 5060 | 1 | 7.7 | 1 | 14
0.70
36 | 0.66 | 11 0 • 48 25 | 0.10 | 0 | 91
1.49
75 | 0.15 | 5 0 • 1 4 | 13.7
0.22
11 | 0.1 | 1 | 1 | 108 | 89 | | 135/20E-21J 1 M
8-27-57 5060 | + | 7 • 7 | 1 | 0
0
0
0
0
0
0
0
0 | 0.41 | 0.43 | 0.088 | 0 | 71
1.16
82 | 0.10 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 • 9
0 • 0 8
6 | 0 • 1 | 1 | 1 | 75 | 43 | | -21J 1 M
11-19-62 5060 | 1 | 7.5 | { | 0.50 | 0 • 4 9 | 10
0.43
29 | 0 0 0 0 | 0 | 73
1.20
84 | 4 8 9 | 0.083 | 4 • 4
0 • 0 7
5 | 0 • 1 | 1 | 1 | 76 | 000 | | 135/20E-22L 1 M
8-27-59 5060 | ; | 7.7 | 1 | 0.45 | 0.49 | 10 0 4 4 3 3 0 | 0.08 | 0 | 70
1•15
85 | 4 8 9 | 0 • 0 6 4 | 4.4
0.07 | 0 • 1 | 1 | 1 | 73 | 4 7 | FRESNO - MADERA AREA | State Well | Temp. | | Specific conduct- | | Mineral Ca | Mineral Canstituents in | _ | E & g | milligrams per liter
equivalents per millian
percent reactance value | er liter
er million
ance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | ints in | | |----------------------------------|---------|----------------|-------------------|------------------------|----------------|-------------------------|----------------|-----------|--|--|-------------|------------------|---------------|---|---|------------|-------------------| | | Sampled | Ŧ _a | (micro- | Colcium | Magne-
sium | Sodium | Patas-
sium | Carbon- | Bicar-
banote | Sulfate | Chloride | Ni-
trate | Flua-
ride | Boron | Siji 8 | Camputed | TOTAL
hordness | | Date Sampled Agy. Time Call. | ů. | | mhos
at 25 C) | კ | w 8 | ž | × | 9 | нсо з | 50 4 | Ü | NO 3 | ı | 89 | SIO 2 | Evap 180°C | coCO 3 | | 135/20E-22L 1 M
6-10-64 5050 | 69 | 7.6 | 161 | 0.50 | 0.58 | 0.39 | 0 0 0 0 0 | 0 | 80
1•31
85 | 0.06 | 0 0 0 0 0 | 6.5
0.10 | 1 | 0.10 | - | 81 | 54 | | 135/20E-23B 1 M
12-12-56 5060 | 1 | 0 8 | ļ | 0.70 | 0.82 | 0.65 | 0 0 8 9 4 | 0 | 1.43 | 0.15 | 0.17 | 12.4 | 0 | 1 | + | 110 | 92 | | -23B 1 M
6-10-64 5050 | 10 | 7.6 | 212 | 15 0 . 75 35 | 10 0 82 | 12 0 • 52 24 | 0 0 0 8 4 | 0 | 102
1•67
80 | 0.12 | 0 · 1 1 4 5 | 11.00.18 | 1 | 0.10 | 1 | 111 | 79 | | 135/20E-23J 1 M
10-14-60 5060 | 1 | 7.6 | 1 | 0.75 | 0.82 | 0.65 | 0.10 | 0 | 104 | 7 0 0 15 | 0.17 | 16.8 | 0 • 1 | 1 | 1 | 125 | 79 | | -23J 1 M
6-11-64 5050 | 6 9 | 7.7 | 229 | 0.70 | 0.82 | 150.00 | 0.08 | 0 | 106
1•74
78 | 0.12 | 0.14 | 14.0 | 1 | 0.10 | + | 176 | 76 | | 135/20E-23Q 1 M
12-12-56 5060 | ł | 2, 8 | 1 | 19 | 64.0 | 0.65 | 0
0
0 | - | 1.21 | 0.25 | 0.20 | 8 0 0 1 3 | 0 | 1 | i | 114 | 72 | | 135/20E-26D 1 M
6-11-64 5050 | 69 | 7 • 8 | 152 | 0
• 4
8 2
8 3 | 0.58 | 110.48 | 0 0 | 0 | 74
1.21
83 | 0.00 | 0 0 | 6.6
0.11
8 | 1 | 0 • 10 | 1 | 138 | 52 | | 13S/20E-27F 1 M
5- 1-52 5050 | 20 | 7.8 | 164 | 0.55 | 0.49 | 0.48 | 0 0 0 0 | 0 | 1.34 | 0.10 | 0.00 | 6.1
0.10
6 | 0 | 0.02 | 69 | 153 | 52 | | -27F 1 M
5-17-55 5060 | 1 | 7 • 7 | 1 | 0.65 | 0.58 | 0.52 | 0 0 0 0 0 0 | 0 | 1.43 | 0.12 | 0.00 | 0 0 0 | 0 | 1 | 1 | 91 | 62 | | -27F 1 M
4-15-59 5050 | 20 | 7 • 4 | 165 | 9 0 4 5 31 | 0 • 49 | 10 | 0.089 | 0 | 1.18 | 0.12 | 0 0 0 | 6.7 | 0 . | 0.15 | 41 | 120 | 47 | | DWR 1982 | | | STATE | STATE OF CALIFORNIA | 1 . | RESOURCES | AGENCY | OF CALIFC | DRNIA - DE | THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | OF WATER R | ESOURCES | | | | |] | | Specific conduct- | Specific conduct- | | Mine | Mine |
eral Co | Mineral Constituents in | | | milligrams per liter
equivalents per mill
percent reactance v | milligrams per liter equivalents per million percent reactance value | 100 | ž | <u> </u> | Minerol constituents in parts per million | parts per million | ion ion | Į. | |----------------------------------|-------------------|------------|----------------------|------------------|------------------------|-------------------------|-----------------|---------|---|--|-----------|----------------------|--------------|---|-------------------|------------|----------| | Date Sampled Agy. | Sompled P.F. | I | (micra-
mhas | Calcium | wegner. | Sodium | sium
sium | ote ote | Bicar-
bonate | Sulfore | e spir | - stort | Pluo
ebir | Boron | <u>‡</u> 8 | Computed | hordness | | Time Coll. | | | ot 25 ^C) | S | Mg | No | × | co 3 | нсо з | 504 | ō | NO 3 | ш. | 80 | SIO 2 | Evap 180°C | CoCO 3 | | 13S/20E-27F 1 M
6-10-64 5050 | 72 | 7 • 8 | 154 | 0.45 | 0
• 4
• 8
• 8 | 11
0•48
32 | 0.08 | 0 | 72
1•18
79 | 0.10 | 0.08 | 8 • 4
0 • 14
9 | 1 | 0.10 | 1 | 147 | 47 | | 13S/20E-27G 1 M
12- 1-49 5702 | 1 | 7 • 8 | i | 0 . 5 5 | 0 .58 | 21 | 1 | 0 | 1.56 | 18 | 0.20 | 1 | 1 | 1 | ŀ | 210 | 57 | | -27G 1 M
10-25-51 5050 | 65 | 8.0 | 185 | 0.600 | 0.58 | 0.57 | ω
ω
8 4 | 0 | 90
1•48
81 | 0.12 | 0 • 1 1 6 | 7.6 | 0 | 00.0 | 69 | 166 | 59 | | 13S/20E-27J 1 M
5-17-55 5060 | 1 | . σ
• α | + | 0.659 | 0.58 | 0.61 | 0 0 0 0 0 | 0 | 100 | 0.17 | 0.11 | 7.1 | 0•1 | + | 1 | 106 | 62 | | -27J 1 M | 70 | 7.9 | 213 | 1400.70 | 0
3 2 8 | 0.61 | 0.10 | 0 | 104 | 0.10 | 0.11 | 9 • 9
0 • 16
8 | 0.5 | 00.0 | 65 | 175 | 8 9 | | -27J 1 M
7-21-60 5050 | 70 | 7.9 | 219 | 0 16 | 9 0 • 7 4 6 8 9 9 | 13
0.57
26 | 4 0 0 10 ë | 0 | 107 | 6
0 • 12
6 | 0.11 | 10.0 | 0 | 90.0 | 99 | 181 | 77 | | -27J 1 M
10-19-61 5200 | 73 | 8 • 2 | 224 | 14
0•70
31 | 100.382 | 0.05 | 0.10 | 0 | 106 | 0.12 | 0.17
8 | 10.0 | 0•1 | 0 | 65 | 182 | 76 | | -27J I M
6-19-62 5200 | 71 | 1 | 243 | ! | ! | 0.65 | 0
• 0
• 0 | 1 | 1 | 1 | 0 • 1 4 | i | 1 | 0.07 | 1 | | 75 | | -27J 1 M
6-26-63 5050 | ; | 7 • 8 | 233 | 18
0.90
38 | 9 0 • 7 4 31 | 15 | 0 0 10 4 | 0 | 108 | 0.15 | 5 0 • 14 | 14.0
0.23
10 | 0 • 1 | 0.16 | 65 | 190 | 82 | | 135/20E-28C 1 M
5- 2-52 5050 | 67 | 7.7 | 182 | 0.70 | 0.58 | 0.43 | 0.10 | 0 | 92
1.51
84 | 0.10 | 0.11 | 5 • 2 0 • 0 8 4 | 0 | 00 • 0 | 63 | 157 | 64 | | EA | | |--------|--| | AREA | | | ~ | | | MADERA | | | AD | | | 2
1 | | | 9 | | | FRESNO | | | L
N | | | State Well | Temp. | | Specific
conduct- | | Mineral Co | Mineral Constituents in | | Eě | milligrams per liter
equivalents per million | er liter
er million | | | | Mineral canstituents in parts per million | neral canstituents
parts per million | ents in
lion | | |----------------------------------|-------|-------|----------------------|--|--------------------|-------------------------|--|-----------|---|------------------------|------------|---|-------|---|---|-----------------|--------------| | Number | when | I, | ance
(micro- | Calcium | Magna- | Sodium | Potos- | Carban- | Bicar. | Sulfate | Chlo- | Z sar | Fluo- | Boran | -ilis | Computed | TOTAL | | Date Sampled Agy.
Time Coll. | | ۵. | mhos
at 25°C) | კ | 6W | ž | × | g 8 | HCO 3 | 50 4 | Ū | N 0 3 | u. | 8 | SIO 2 | Evap 180°C | 03
CoCO 3 | | 13S/20E-28C 1 M
8-27-57 5060 | 1 | 7.8 | 1 | 13
0.65
32 | 0.74
37 | 0.52 | 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | 89
1•46
77 | 0.12 | 0.14 | 11•1
0•18 | 0.0 | | 1 | 104 | 70 | | -28C 1 M
6-10-64 5050 | 67 | 7.7 | 243 | 18
0.90
35 | 12 0 .99 | 0.52 | 0.13 | 0 | 120 | 0.17 | 0.17 | 11.0 | 1 | 00.0 | 1 | 131 | 95 | | 135/20E-30Q 1 M
6-11-64 5050 | 71 | 7.8 | 203 | 13
0.65
32 | 9 0 • 74 | 13
0.57
28 | 0 0 0 0 0 | 0 | 103
1•69
86 | 0.04 | 0.14 | 0 | 1 | 0.10 | 0 | 103 | 70 | | 135/20E-32D 1 M
10-14-60 5060 | 1 | 7.6 | 1 | 14 0 • 70 31 | 0.74 | 0.65 | 6 0 0 15 | 0 | 94
1.54
72 | 0.10 | 0.20 | 18•1
0•29
14 | 0 | 1 | 1 | 120 | 72 | | -32D 1 M
6-26-63 5050 | 70 | 7.7 | 239 | 0.80 | 9 0 • 74 32 | 0.61 | 6 0 0 15 | 0 | 86
1•41
72 | 4 80 0 | 0.20 | 16.0 | 0 • 2 | 0 • 0 4 | 74 | 188 | 77 | | 135/20E-32L 2 M
8-27-57 5060 | 1 | 7 • 8 | 1 | 19 0.95 | 12
0.99
34 | 0.83 | 0.15 | 0 | 99
1.62
67 | 0.23 | 0.25 | 20.4 | • | 1 | i | 145 | 97 | | -32L 2 M | 71 | 7.9 | 311 | 1.05 | 1.07
1.07
36 | 0.74 | 0.15 | 0 | 132 2.16 | 0.15 | 0.31 | 22
0 • 35
12 | ł | 0.10 | 1 | 162 | 106 | | 135/20E-33D 1 M
5- 1-52 5050 | 70 | 7 • 7 | 302 | 20
1.00 | 1.15 | 17 0 - 74 24 | 0.15 | 0 | 147
2•41
80 | 10 | 0 7 0 | 11.0
0.18
6 | 0 | 00.0 | 74 | 232 | 108 | | -33D 1 M | 1 | 7.9 | 1 | 21
1.05
34 | 13
1.07
35 | 19 0 83 | 0.15 | 0 | 142 2.33 | 0.19 | 0 0 0 0 | 17.0 | 0 • 1 | 1 | 1 | 164 | 106 | | -33D 1 M | 70 | 7 • 8 | 317 | 23
1.15
36 | 13
1•07
34 | 19 0 83 26 | 0.13 | 0 | 153
2.51
80 | 0.21 | 0.23 | 11.0
0.18
6 | 0 0 | 0 • 0 8 | 72 | 236 | 111 | | DWR 1982 | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | RNIA - THE | RESOURCES | AGENCY (| JF CALIFO | RNIA - DE | PARTMENT (| OF WATER R | ESOURCES | | | | | | # TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | TOTAL | 8 | CoCO 3 | 113 | 111 | 149 | 119 | 06 | 95 | 153 | 91 | 8 5 | 57 | |--|------------------|--------------|------------------|---|----------------------|----------------------------|--------------------------|---------------------------------|-----------------------|-----------------------------|---------------------------------|-----------------------|------------------------------| | ants in
ion | Computed | | Evap 180 C | 236 | 163 | 269 | 165 | 146 | 221 | 298 | 182 | 204 | 164 | | nerol constituents
parts per million | :is 8 | 1 | SIO ₂ | 73 | 1 | 73 | 1 | 1 | 1 | 75 | 31 | 8 | 70 | | Minerol constituents in
parts per million | Boran | | æ | 00.0 | 1 | 0 0 0 0 | 0.10 | 1 | 000 | 000 | 0.18 | 0 • 0 5 | 0000 | | | -Pluo- | | ш | 0.0 | 0 | 0•1 | 1 | 0 • 1 | 1 | 0 | e.
• | 0 . 2 | 0.1 | | | Ž į | | NO 3 | 0 | 16.0
0.26
8 | 11.0 | 12.0 | 15.0 | 16.0 | 21 • 0
0 • 34
8 | 22.0
0.35
13 | 12•0
0•19 | 5 • 2
0 • 0 8
5 | | | Chlo | | ਹ | 0
- 23
8 | 0 2 8 | 10 | 0.20 | 0.20 | 0.20 | 14 | 0
2
8
8
8
8 | 0.20 | 4
0•11
6 | | milligrams per liter
equivalents per million
percent reactonce value | Sulfate | | SO 4 | 0.19 | 0.15 | 13 | 0.17 | 0.23 | 0.17 | 0 21 5 | 0 15 | 0.12 | 0.12 | | milligrams per liter
equivalents per mill
percent reactonce v | Bicar-
bonate | | нсо з | 152
2•49
81 | 145
2•38
78 | 185
3 • 03
81 | 157
2.57
82 | 124
2.03
75 | 124
2.03
81 | 174
2.85
67 | 123
2.02
73 | 122
2•00
80 | 89
1•46
82 | | Eŏŏ | Carban | } | co 3 | 0 | 0 | 0 | 0 | 0 | 0 | 14
0.47
11 | 0 | 0 | 0 | | | Potos- | | ¥ | 0.15 | 0.13 | 0
1
2
8
8
8 | 0.15 | 0 1 0 | 0.13 | 0.15 | 0
1
0
1
0
1
0 | 0 1 2 2 2 | 0.00 | | Mineral Constituents in | Sadium | | °Z | 0.70 | 18 | 18 | 17 0 0 74 23 | 18
0.78
29 | 16
0.70
26 | 1.00 | 18
0•78
29 | 18
0•78
30 | 0.52 | | Mineral Co | Mogne. | | Mg | 0.66 | 1.07 | 1
• 1
9 4 8
3 8 | 1.23 | 0.00 | 12
0•99
36 | 19 | 0.000 | 9 0 . 74 28 | 0.33
19 | | | Calcium | | ß | 32 | 23
1•15
37 | 1
900
900 | 1.23 | 18 | 18 0.90 | 1.50 | 20
1.00
37 | 19 0.95 | 16
0.80
46 | | Specific conduct- | (micro- | mhos | ot 25 C) | 298 | 1 | 379 | 322 | 1 | 265 | 396 | 273 | 281 | 171 | | | Ŧ | 1 | | 7.7 | 8 • 2 | , œ | 7.0 | 7.7 | 7.6 | ω
•
π | 7.6 | 7.7 | 7.7 | | Temp. | Sampled | , L | | 69 | 1 | 8 9 | 02 | 1 | 71 | 1 | 02 | 71 | 89 | | | | Agy. | Coll. | 1 M
5050 | 5060 | 1 M
5050 | 1 M
5050 | 1 M
5060 | 48 1 M
5050 | 1 1 M
5050 | 1 1 X 5050 | 1 1 M
5050 | 5050 | | State Well
Number | | Dote Sampled | Time | 135/20E-33P
5- 1-52 | -33P 1
8-27-57 50 | -33P I
4-15-59 50 | -33P 1 M
6-10-64 5050 | 135/20E-34B 1 M
5-17-55 5060 | -348 1
6-10-64 505 | 135/20E-34M 1
8-30-51 50 | -34M I
4-15-59 505 | -34M 1
5- 1-63 505 | 13S/20E-35D 1
5- 1-51 50: | | | _! | | | - | | | | | | | | | | | State Well | Temp. | | Specific conduct- | | Mineral Co | Mineral Constituents in | | E & g | milligroms per liter
equivalents per million
percent reactonce value | er liter
er million
once value | | | | Mineral constituents in ports per million | neral constituents
ports per million | in shra | | |---------------------------------|---------|-------|-------------------|---|-----------------------|-------------------------|---|----------|--|--|---|-----------------------|----------|---|---
------------|-------| | | Sampled | I | once
(micro- | Calcium | Magne- | Sodium | Patos- | Carban. | Bicar-
banole | Sulfate | Chlo-
ride | rote | Fluo- | Boran | ij 8 | TDS | TOTAL | | Date Sompled Agy. | , LL | | mhos
of 25 C) | კ | Wg | ğ | ~ | 8 | нсо з | 504 | ō | ° 0
Z | u. | ω | SIO 2 | Evap 180°C | 03e2 | | 13S/20E-35D 1 M
5-17-55 5060 | 1 | 7.9 | i
i | 0.70 | 0.49 | 0.61 | 0.10 | 0 | 94
1.54
81 | 0.21 | 0.11 | 1.8 | 0•1 | 1 | 1 | 100 | 09 | | -35D 1 M | 67 | 7.4 | 229 | 16
0 80
38 | 0.66 | 0.57 | 0.10 | 0 | 98
1•61
78 | 0.19 | 0.17 | 6 • 1
0 • 10
5 | 0 • 2 | 0.22 | 36 | 147 | 73 | | 135/21E- 4P 1 M
6-13-50 5060 | 1 | 7.4 | 1 | 1.10 | 12 0.99 | 19
0.83
28 | i i | ł | 147
2•41
83 | 0 0 0 0 0 | 10 | 8 • 0
• 1 • 0 | 0 | 1 | 1 | 147 | 105 | | - 4P 1 M | 1 | 8 • 1 | 1 | 1.00 | 1.15 | 16 0.70 24 | m @ m | 0 | 142 2.33 79 | 0 0 0 0 0 0 | 1100.31 | 14.6
0.24
8 | 0 • 2 | 1 | i i | 152 | 108 | | 135/21E- 8J 1 M
4-12-59 5060 | 1 | 7 • 8 | | 1.15 | 1.15 | 18
0•78
25 | m & m | 0 | 144
2•36
78 | 0.06 | 10 | 20.7 | 0 • 1 | i | ł | 163 | 115 | | 135/21E-15N 2 M
7-29-58 5050 | 70 | 7.8 | 163 | 0 • 45 | 0.49 | 13
0 • 57
37 | 0 | 0 | 81
• 33
85 | 0 0 0 0 0 | 0
0
0
0 | 0
0
0
0
0 | φ
• | 0 | 7 + 7 | 126 | 47 | | -15N 2 M
7-20-60 5050 | | 7.8 | 167 | 10 | 0.58 | 13 | 0 | 0 | 1
• 33 8
4 8 4 | 0 10 | 0 0 0 | 5 0
• 0 0
5 5 | 0 • 5 | 0 0 | 7 7 | 131 | 54 | | -15N 2 M
4-26-62 5050 | 70 | 8•1 | 238 | 0 • 4 5 9 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0 988 7 | 16 | 0 0 0 0 0 | 0 | 81
1•33
76 | 0.15 | 0.20 | 0 4 • 0 • 0 • 0 ° 0 | <i>∞</i> | 0 • 0 5 | 29 | 121 | 52 | | -15N 2 M
5-16-63 5050 | 1 | 7.9 | 152 | 0 • 40 | 0
4
9
4
8 | 0 12 36 36 | 9 2 5 | 0 | 76
1.25
86 | 0
4
8
9
9 | 0 | 3.7 | 0 | 40.0 | 24 | 120 | 45 | | 135/21E-17F 1 M
5-16-63 5050 | 71 | 7.9 | 254 | 0 | 0.82 | 16
0•70
29 | m & m | 0 | 106 | 0.25
11 | 0.20 | 11
0
18
8 | 0 . 2 | 0 0 0 3 | 6 2 | 190 | 48 | | DWR 1982 | | | STATE | STATE OF CALIFORNI | NIA - THE R | ESOURCES | AGENCY O | P CALIFO | RNIA - DE | A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | F WATER RE | SOURCES | | | 1 | | | # SEMI-CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | State Well | 7emp. | | Specific conduct- | | Mineral Co | Mineral Constituents in | | E 9 0 | milligrams per liter
equivalents per million
percent reactance value | milligrams per liter
equivalents per million
bercent reactance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | ents in
Ion | | |----------------------------------|---------|---------------|-------------------|---|------------------|-------------------------|---------|---------|--|--|---------------|-----------------------|---------------|---|---|----------------|-----------| | | when | I | ance
(micro- | Colcium | Magne- | Sodium | Potos- | Carbon- | Bicar-
bonote | Sulfate | Chlo-
ride | rote | Fluo-
ride | Boron | Sili: | TDS | TOTAL | | Date Sampled Agy.
Time Call. | u.
0 | <u>.</u> | mhas
at 25°C) | S | 6
W | Ž | ¥ | ° ° | нсо з | 50 4 | ō | ο
2 | L. | œ | SIO 2 | Evap 180°C | 03 CaCO 3 | | 13S/216-19A 1 M
5-29-63 5050 | - | 4.7 | 230 | 0.70 | 10
0.82
36 | 14
0.61
27 | 0.13 | 0 | 111
1•82
82 | 0.23 | 0.08 | 5 • 2 0 • 0 8 | 0.2 | 0.04 | 89 | 185 | 76 | | 135/21E-31E 2 M
11-10-61 5060 | 1 | 7.6 | 1 | 0.85 | 0.58 | 11
0 • 48
32 | 0 0 0 0 | 0 | 1.10 | 4 8 0 | 0 0 0 | 7.5 | 0.2 | 1 | 1 | 76 | 47 | | -31E 2 M | 1 | 0 • 8 | 1 | 1.30 | 1.40 | 1.00 | 0.10 | 0 | 171 2.80 | 0.25 | 0.37 | 18
0.30
8 | 0 | 1 | 1 | 198 | 135 | | -31E 2 M | 1 | 7.4 | 393 | 1
9
9
9
6 | 1.40 | 24
1.04
26 | 0.10 | 0 | 178
2.92
75 | 13 | 0.37 | 20.00.32 | 0 • 1 | 60.0 | 57 | 272 | 140 | | 135/21E-31Q 1 M
5-27-63 5050 | 72 | 1 | l | 1 | 1 | - | 1 | ł | 1 | 1 | 1 | 16.0 | i | l | 1 | | | | -310 1 M
6-24-63 5060 | 1 | α
• 1 | 1 | 2 4 4 9 4 6 9 4 9 9 4 9 9 9 9 9 9 9 9 9 9 | 2.22 | 1.22 | 0.18 | 0 | 283
4•64
77 | 0.56 | 0.518 | 22 • 0
0 • 35
6 | 1 | 1 | t
t | 317 | 234 | | 13S/21E-33K 1 M
7-21-60 5050 | 8 9 | O
20
20 | 274 | 1.10 | 1.15 | 11 0.48 | 0.05 | 0 | 1.97 | 0.33 | 0.11 | 23.0 | 0 . 2 | 0.08 | 59 | 210 | 113 | | -33K 1 M
6-22-62 5050 | 69 | 8 • 1 | 242 | 1.05 | 0 0 0 0 | 0.57 | 0.05 | 0 | 113 | 0.23 | 0.11 | 16.0 | 0 • 1 | 0.04 | 57 | 190 | 94 | | -33K 1 M
3-16-64 5050 | 69 | 7.6 | 216 | 1 | 1 | 0.52 | 1 | i | 1 | 1 | 0.06 | 1 | i | 00.0 | į | | 46 | | 135/21E-36R 1 M
8-20-63 5050 | 68 | 7.8 | 173 | 0 • 45 | 0.49 | 13
0.57
37 | 0.03 | 0 | 1.20 | 0.12 | 0.03 | 1.9 | 0 | 00.00 | 44 | 120 | 47 | | State Well | Temp. | | Specific
canduct- | | Mineral Co | Mineral Constituents in | | E & 8 | milligrams per fiter
equivalents per million | milligrams per liter
equivalents per million | | | | Mineral constituents in parts per million | neral canstituents
parts per million | ents in
lion | | |---------------------------------|---------------|-------|----------------------|--------------------|---|---|---|-----------|--|--|--------------------|-----------------------|--------|---|---|-----------------|----------------| | Number | when | I | ance | Coleina | Magne | miles | Potas | è | Bicar- | Sulfahe | Chlo | ż | Fluo- | Rores | -ilis | SQI , | TOTAL | | Date Sampled Agy. | Sampled
P. | ۵ | mhas | | E O | E CONTRACTOR DE | E | e e | bonate | | e p | tote
e | a pi | | 8 | Computed | hardness
as | | | | | at 25°C) | 3 | Mg | No | × | co 3 | нсо з | SO 4 | ۵ | NO 3 | ш | 8 | SIO 2 | Evap 180°C | CoCO 3 | | 13S/22E-10M 1 M
6- 3-64 5050 | 72 | 7.7 | 515 | 2.25 | 24
1•97
37 | 1.09 | 0.08 | 0 | 259
4•25
81 | 0.19 | 20 0 • 56 11 | 14.0 | 1 | 00.0 | - | 322 | 211 | | 135/22E-14D 1 M
8- 8-63 5000 | 71 | 7.6 | 553 | 30 | N
0 20 U
0 20 U | 1.09 | 0.05 | 0 | 270
4•43
82 | 0.21 | 18 | 14.0 | 0 • 2 | 00.0 | 4 5 | 312 | 219 | | 135/22E-28C 2 M
7-20-60 5631 | 1 | 8.1 | 422 | 1.10
25
25 | 30 2 47 57 | 17 0 • 74 | 0.05 | 0 | 3 203 | 0 0 0 0 0 0 | 18
0.51
12 | 24.00.39 | • 5 | 0.07 | n
O | 272 | 179 | | -28C 2 M
6-20-62 5631 | 69 | 8 4 | 4 2 8 | 23
1.15
27 | 2.22 | 0 8 7 0 0 0 | 0 0 8 8 9 | 0.10 | 3 • 20
3 • 73 | 0.21 | 18
0 • 51
12 | 23 • 0
0 • 37
8 | 0•1 | 90•0 | 43 | 266 | 169 | | -28C 2 M
7-11-63 5631 | + | 8 | 467 | 23
1.15
24 | 2,000 | 0 8 7 | 0 0 0 0 | 0 | 210 | 0 2 2 2 2 2 2 | 0.56 | 25.0 | 0 | 0.10 | 8 4 | 287 | 189 | | 135/23E- 7N 2 M
8-13-63 5000 | 99 | 0 | 382 | 2.10 | 0 .58 | 1.17 | 0 | 0 | 180
2.95
78 | 0 . 35 | 11
0•31
8 | 10.0 | 0 4 | 0.11 | 32. | 237 | 134 | | 135/23E-30J 1 M
7-24-57 5631 | 6 9 | 7.7 | 217 | 0.50 | 0
9 0
7 0
8 0
8 0
9 0
9 0 | 1.09 | m & m | 0 | 11111-111-11-11-11-11-11-11-11-11-11-11 | 0.21 | 0 0 0 0 0 | 0 15 | 0 • 1 | 0.02 | 57 | 185 | υ.
8 | | -30J 1 M
6-20-62 5631 | 8 9 | 80 | 218 | 0.65 | 0.49 | 1.04 | 0
6 0
8 4 | 0 | 1.74 | 0 1 2 5 | 0.20 | 8 8 0 14 | 0 4 | 0.04 |
5.5 | 175 | 57 | | -30J 1 M
7-19-63 5631 | - | 7 • 8 | 232 | 14 0 0 7 0 0 3 0 | 0.49 | 1.09 | 0 0 | 0 | 112
1•84
80 | 0.12 | 0.17 | 9.7 | •
• | 0 | 62 | 187 | 09 | | 135/23E-34A 1 M
6- 3-64 5050 | 67 | 8 0 | 800 | 38
1,90
20 | 78
6•41
69 | 21 0.91 10 | 0 | 0 | 4 + 6 9
8 5 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 29 0 • 60 | 0 1 4 2 | 0.00 | 1 | 0000 | Į
Į | 444
483 | 416 | | DWR 1982 | | | STATE | STATE OF CALIFORNI | NIA - THE R | ESOURCES | AGENCY | OF CALIFC | RNIA - DE | A THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | OF WATER R | ESOURCES | | | | | | | | TOTAL | 8 8 | F 3 | 040 | ľ | 52 | | 80 | 137 | 20 | 20 | 15 | 22 | |--|------------------|----------------------|-----------|------------------------|--------------------------|-----------------------------|------------------------------|-----------------------|---------------------------------|------------------------------|---|------------------------|--------------------------| | | \vdash | | , | 930 | 441 | 969 | <u> </u> | 271
326 | 7
7
7
7
7 | 598 | 8 6 9 | 609 | 658 | | ents in
Ilion | Computed | | _ | 150 | 7 7 | | | (4 (6) | | | | | 9 | | neral canstituents
parts per million | ii 8 | 9 | 310 2 | 1 | 20 | 47 | <u> </u> | 1 | 52 | 56 | 56 | 57 | 54 | | Mineral canstituents in
parts per million | Boran | | ٥ | 1.80 | 0.18 | 0.10 | 1 | 000 | 0 4 • | 0 8 8 | 0
8
8 | 06•0 | 1.60 | | | Fluo | 1 | - | 0 | 4.0 | 0 | 1 | ; | 0.2 | 4.0 | 0.4 | 0 • 3 | 0.5 | | | N:- | 2 | EON | 0 • 2 | 0.01 | 4 • 9
0 • 08
1 | 1 | 0 | 0.6 | 0.01 | 0.4 | 1.0 | 0.04 | | | Chlo | | 5 | 3.38 | 142 | 156
4•40
47 | 989 | 1.86 | 2111 5 • 95 | 234 6 • 60 | 234 | 228 | 250
7•05
67 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | | 504 | 1160
24.15
80 | 0.02 | 1.19 | 1 | 23 | 34 0 71 | 0 · 0 · 0 · 0 · 0 · 0 | 0 0 0 0 | 0.08 | 0.04 | | milligrams per liter
equivalents per millian
percent reactance value | Bicar-
banate | | HCO 3 | 169 | 184
3 • 02
43 | 214 | 1 | 152 | 228
3•74
36 | 176
2 • 88
30 | 176
2.88
30 | 172
2.82
30 | 206
3 • 38
32 | | E # 6 | Carbon- | } { | | 0 | 0 | 0.23 | 1 | 0 | 0 | 0 | 0 | 0.20 | 0.07 | | c | Potas- | , | ¥ | 0.20 | 0.03 | 0.08 | 1 | 8
0.20
4 | 0.13 | 0.08 | 0.08 | 0.08 | 0.08 | | Mineral Canstituents in | Sodium | - | 2 | 207 | 154
6•70
98 | 195
8 • 48
88 | 46
2.00 | 66
2.87
60 | 178
7•74
73 | 206
8 • 96
95 | 206
8•96
95 | 218
9•48
96 | 235
10•22
95 | | Mineral C | Magne- | : | Wa | 13.90 | 0 | 0.08 | 1 | 0
2
8
8
8 | 0
•
•
•
•
•
• | 0 | 0 | 0 | 0.08 | | | Calcium | d | 3 | 138
6 • 89
23 | 0.10 | 0.95 | t
I | 1.50 | 2.25 | 0.40 | 0 | 9 O R | 0.35 | | Specific
canduct- | micro- | mhos | (2 CZ II) | 2500 | 765 | 973 | 330 | 513 | 1100 | 916 | 976 | 1030 | 1160 | | | Ŧ | a . | | 7.2 | 8 • 1 | 8
• • | 1 | φ
• | 7.6 | 8 | 8 • 2 | ω
• | 8 • 4 | | Temp. | when | . " | | 1 | 68 | 1 | 02 | 72 | 70 | 1 | 70 | 71 | 72 | | | | Agy.
Coll. | | 1 M
5050 | 1 M
5000 | 5000 S | 1 1 M
5001 | 1 1 M
5050 | 1 M
5000 | 80 M
5050 | 5050 | 5050 | 1 M
5050 | | State Well | | Date Sampled
Time | | 145/14E-16N
8-12-52 | 145/16E- 6A
8-27-63 5 | 145/16E-10J 1
8-12-63 50 | 14S/16E-13H 1
8-24-50 500 | -13H 1
6- 4-64 505 | 145/16E-23M 1 M
8-12-63 5000 | 145/16E-25A80
7-20-60 505 | 145/16E-36A 1
7-20-60 505 | -36A 1
10-18-61 505 | -36A 1 M
6-20-62 5050 | | | | | _ | | | | | | | | | | | FRESNO - MADERA AREA | State Well | | Temp. | | Specific conduct- | | Mineral Ca | Mineral Canstituents in | | E & G | milligrams per liter
equivalents per million
percent reactance value | er liter
er million
ance value | | | | Mineral constituents in
parts per millian | neral constituents
parts per millian | ants in | | |--|---------------|-----------------|-------|-------------------|-----------------------|------------------|--|----------------|-----------|--|---|---|-----------------------|---------------|--|---|------------|-------------------| | of the Control | Agv | when
Sampled | ±_ | (micro- | Calcium | Magne-
sìum | Sodium | Potos-
sium | Carbon. | Bicor-
banate | Sulfate | Chloride | rate et art | Fluo-
rida | Boran | <u>≅</u> 8 | TDS | TOTAL
hardness | | Time | Coll. | | | at 25°C) | ű | Wg | N O | ж | co 3 | нсо з | 50.4 | ū | NO 3 | ı. | 82 | SIO 2 | Evap 180°C | CaCO 3 | | 145/16E-36A
4-15-64 5 | 1 M
5050 | 22 | 7.8 | 875 | - | ! | 169 | 1 | + | 1 | 1 | 181 | | 1 | 0 8 0 | - | | 16 | | 14S/17E- 9A 1 M
9- 7-56 5050 | 1
5050 | 73 | 8 . 2 | 382 | 1.75 | 8
0.66
17 | | 0 | 0 | 2 · 156
2 · 56
65 | 0 | 35 | 4 • 9
0 • 0 7
2 | 0 | 90•0 | 80 | 298 | 121 | | 5-28-59 5 | 5050 | 72 | 7.7 | 514 | 1 | 1 | 1 | 36 | 0 | 164 | 1 | 1 .5 8 | - | 1 | 1 | 1 | | | | 14S/17E-13H 1 M
7-20-60 5050 | 1 M | 1 | 8 • 2 | 375 | 1.75 | 13 1 29 | 18
0•78
21 | 0.13 | 0 | 132
2•16
60 | 14.00.29 | 37 | 8 0 0 1 4 4 | 0 • 2 | 90.0 | 76 | 272 | 141 | | -13H 1
6-20-62 564 | 1 1 M
5641 | 71 | 8.2 | 457 | 2 • 0 5
4 6
4 6 | 1.32 | 22 0.96 | 0.15 | 0 | 150
2•46
56 | 19 | 1.95 | 13.00.21 | • 5 | 0.07 | 78 | 317 | 169 | | -13H 1
6-25-63 563 | 1 1 M
5631 | + | 0 | 4 444 | 38
1 • 90
47 | 1.15 | 20.87 | 0.13 | 0 | 143
2•34
57 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42
1•18
29 | 15.00.24 | 0.2 | 0 • 0 | 69 | 290 | 153 | | 145/18E-11F 1
8-28-63 500 | 1 M
5000 | 69 | 0 | 260 | 30 | 24
1.97
36 | 1.87 | 0.15 | 0 | 212
3•47
64 | 0
42.0
90.0
9 | 38
1•07
20 | 23.0 | • 5 | 0.15 | 75 | 368 | 174 | | 145/18E-160 1 M
8-12-63 5000 | 5000
5000 | 71 | 7.3 | 471 | 2.10 | 20 1.64 | 20
0.87
18 | 7 0 • 18 | 0 | 170
2.79
60 | 0.33 | 1.27 | 16.0 | e.
• | 0.10 | 75 | 325 | 187 | | 145/18E-24D 1
8-12-63 500 | 1 M
5000 | 71 | 7.7 | 339 | 1.45 | 1.07 | 18
0.78
22 | 0.18 | 0 | 154 2.52 74 | 0.12 | 17 | 17.0
0.27
8 | 0.2 | 00.0 | 76 | 259 | 126 | | 145/18E-25A 1 M
6-12-63 5050 | 1 M
5050 | 68 | 8 | 450 | 38
1 • 90
41 | 1.32 | 1.26 | 0 15 0 | 0 | 193
3•16
70 | 0 23 | 0 | 113.0 | m
• | 0.20 | 9 | 305
293 | 161 | | DWR 1982 | | | | STATE | STATE OF CALIFORNI | NIA - THE R | A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | AGENCY C | JE CALIFO | RNIA - DE | PARTMENT (| OF WATER R | ESOURCES | | | | | | | | TOTAL | hardness | CaCO 3 | 18 | 34 | 8 6 | 175 | 173 | 169 | 9.5 | 197 | 99 | 56 | |--|--------|-----------------|------------|------------------------|---------------------|---|-----------------|--------------------------|---------------------|-----------------------|----------------------|-------------------------------|--------------------| | | 07 | | | 4 2 | 1 2 | - L | 7 | 2 | 0 | <u>ع</u> | | 10.01 | 1 6 | | ents in
Ilion | TDS | Computed | Evap 180°C | 45 | 4 1 | 547 | | 32. | 32 | 34. | 346 | 18: | 181 | | neral canstituents
parts per million | .iis | 8 | StO 2 | 70 | 69 | 71 | 1 | 84 | 8 2 | 77 | 74 | 34 | 47 | | Mineral canstituents in
parts per million | | Boron
 8 | 0.26 | 0.07 | 00•0 | 0.10 | 0.04 | 0.07 | 0.11 | 0.04 | 00.0 | 0.08 | | | Fluo- | ride | F | 0.0 | 0.2 | 0•1 | 1 | 0.5 | 0.1 | 0.1 | 0 | 0•1 | 0 • 1 | | | ż | trate | NO 3 | 15.0
0.24 | 11.0
0.18 | 27.0
0.44
5 | 1 | 7.2 | 8 • 4 • 0 • 1 4 • 8 | 11.0
0.18 | 12.0
0.19 | 20.0
0.32
12 | 16.0
0.26
11 | | | Chlo | ride | CI | 1.97 | 1.78 | 105
2 • 96
33 | 1.69 | 0.42 | 16 0 45 | 0.42 | 13 | 0.20 | 0.23 | | milligroms per liter
equivolents per million
percent reactance value | | Sulfate | \$04 | 0.52 | 0.35 | 0.65 | 1 | 0 19 | 0.15 | 0.17 | 0 • 19 | 20 • 42 16 | 9
0•19
8 | | milligroms per liter
equivolents per million
percent reactance value | Bicar- | banate | нсо з | 239
3 92
59 | 256
4 • 20
65 | 5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 | 220
3.61
78 | 230 | 263
4•31
83 | 276
4•52
86 | 101 | 104
1•70
71 | | F & C | Carban | afe | co 3 | 0 | 0 | 0 | ł | 0.27 | 0.13 | 0.13 | 0 | 0 | 0 | | c | Patas- | sinm | × | 0.15 | 0.13 | 0.18 | 1 | 7 0.18 | 0.15 | 0.18 | 0.18 | 0 0 0 | 0 • 0 8 | | Mineral Constituents in | | Sodium | No | 47
2•04
31 | 1.78 | 2.48 | 1.78 | 23
1.00 | 1.04 | 1,22 | 30
1 • 30
24 | 1
9
9
8
4 | 1.22 | | Mineral C | Magne- | s ica | Mg | 22
1.81
28 | 1.89 | 4
0 8 0
0 10 0 | 1 | 1.15 | 18
1•48
32 | 1.73 | 1.73
32 | 0.66 | 0.58 | | | | Calcium | S | 2.54 | 2.79 | 38
1.90
20 | 1 | 2 • 30
50 | 38
1.90
42 | 42
2•10
40 | 44
2.20
41 | 13 | 12
0.60
24 | | Specific conduct- | auce | (micro-
mhas | at 25 C) | 640 | 654 | 857 | 559 | 438 | 431 | 764 | 503 | 290 | 261 | | | | Ŧ _a | | 7.5 | 7.6 | 8 • 1 | - | &
• | 8 • 4 | 4.8 | 0 | 7.9 | 7.4 | | Temp. | when | Sampled | | 71 | 8 9 | 70 | 1 | 1 | 69 | 71 | i | 89 | 1 | | | | Agy. | Coll. | 1 M
5000 | 1 M
5050 | 1 1 M
5050 | 1 1 M
5050 | 1 1 M
5631 | 1 1 M
5050 | 1 1 M
5641 | 1 1 M
5050 | 1 M
5050 | 5050 | | State Well | | Dote Sompled | Time | 145/18E-26N
7-24-57 | 7-20-60 | -26N
7-30-62 | -26N
8-13-63 | 145/19E- 7M
7-29-58 5 | 7-20-60 5 | - 7M 1
6-20-62 564 | - 7M 1
6-13-63 50 | 14S/19E-14P 1
10-24-62 505 | -14P
6-13-63 5 | | | Ι.: | 9 | 2 5 | | 9 | n | 0 | m | 80 | | ~ | 00 | 30 | \neg | |--|---------|--------------|-------------|---------|---|---|------------------------|---------------------------------------|------------------------|------------------------|-----------------------|--------------------------|------------------------|--------| | | TOTAL | nardness | 10 | | 376 | 353 | 220 | 363 | 148 | 111 | 123 | 136 | 106 | | | ents in
Iian | IDS CO | | 246 | 250 | 603 | 584
565 | 375 | 536 | 204 | 172 | 180 | 287 | 149 | | | neral constituents
parts per millian | Sili: | 3 | 74 | | 73 | 67 | 67 | 9 | 1 | 1 | 1 | 77 | 1 | | | Mineral constituents in
parts per millian | Boron | | 0.07 | | 0.14 | 0.27 | 0 | 60.0 | 00000 | 1 | 0.10 | 0.13 | i | | | | Fluo- | | 0.1 | | 0.1 | 0.1 | 0 | 0 0 | 1 | 0.0 | ! | 0 • 2 | 0 • 1 | | | | ż | 9 | 15.0 | 0.24 | 3 9 9 | 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 15.0 | 14.0 | 20 0 32 | 19 9 0 0 32 10 | 18 • 0
0 • 29
9 | 24.0
0.39
10 | .12.4 | | | i
: | Chlo- | | | 0.54 | 66
1.86
18 | 1.38
1.38 | 1.69 | 2.65 | 0.37 | 0.31 | 0.34 | 17 | 0.25 | | | milligrams per liter
equivalents per million
percent reactance value | Sulfote | | φ α | 0.17 | 21 0 • 44 | 14 0 . 29 | 0.31 | 0.19 | 0.12 | 0.15 | 0.15 | 0.17 | 0.12 | | | milligrams per liter
equivalents per mil
percent reactance v | Bicar- | | _ ⊸ | 2.20 | 474
7.77 | 527
8•64
84 | 3.64
6.2 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 189
3.10
79 | 148
2•43
76 | 157
2.57
77 | 173
2.84
73 | 134 2.20 | | | | Carban- | 5 | 3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | .0 | 0 | | | _ | Palos- | | | 0.18 | 0 | 0.28 | 0.135 | 0.26 | 0 • 13 | 0.15 | 0.15 | 0.15 | 0.13 | | | Mineral Constituents in | Sodium | : | | 900 | 61
2.65
2.5 | 2.96 | 31
1.35
23 | 1.78 | 0.87 | 0.83 | 0.87 | 24
1.04
26 | 17
0 • 74
25 | | | Mineral C | Magne- | | 11 | 0.90 | 2 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 . 3 7
9 3 3 | 1.89 | 3 9 3 7 3 6 | 1.56. | 1.07 | 1.15 | 1.15 | 13
1 • 07
36 | | | | Colcium | • | 24 | 1.20 | 98
4.89
47 | 3.69 | 2 . 50 | 3.89 | 28
1•40
35 | 1.15
36 | 1.30 | 3.5
1.60
4.1 | 21
1.05
3.5 | | | Specific conduct- | (micro- | mhos | 331 | | 1040 | 928 | 594 | 851 | 391 | ļ | 348 | 395 | 1 | | | | Ŧ | ۵ | 7.7 | | Ο
• | ω
• | 7 • 7 | 7.3 | 7 • 7 | 7 • 7 | 7 • 7 | 7.9 | 7•4 | | | Тетр | Sampled | | 1 | | 89 | 65 | 10 | 6 9 | 73 | i | 72 | 74 | 1 | | | _ | | Agy. | | 5050 | P 1 M
5050 | A 1 M
5050 | A 1 M
5050 | A 1 M
5050 | 20 1 M
5050 | 3C 2 M | 3C 2 M
5050 | M 1 M
5050 | 5060
5060 | | | State Well
Number | | Date Sampled | 14S/19E-20M | 6-12-63 | 145/19E-28P
6-26-63 5 | 14S/19E-29A
6-26-63 | 14S/19E-31A
4-30-52 | -31A
6-12-63 | 145/20E- 20
6-10-64 | 145/20E- 30
8-27-59 | 6- 9-64 | 14S/20E- 3M
6-13-63 5 | 145/20E- 5
8-27-57 | coo. | | | TOTAL | hardness | CoCO 3 | 102 | 173 | 101 | 157 | 199 | 141 | 144 | 151 | 148 | 140 | |--|---------|-----------------|--------------|------------------------|------------------------|----------------------|--------------------------|---|------------------------------|-----------------------|-------------------|-----------------------------|----------------------| | nts in
an | TDS - | 70 | Evap 180°C C | 151 | 308 | 224 | 303 | 369 | 299 | 221 | 315 | 300 | 293 | | neral constituents
parts per millian | Silis | 8 | SIO 2 | 1 | 9 | 73 | 76 | 74 | 78 | 1 | 73 | 62 | 80 | | Mineral constituents in parts per millian | | Boron | 8 | 00 • 0 | 40.0 | 0 | 0.07 | 0.07 | 0000 | į. | 0.10 | 1 | 0.02 | | | Flvo- | ride | F | 1 | 0.1 | i | • 0 | 0 • 2 | 0 | 0 | 0 • 1 | - | 0.0 | | | ź | trate | NO 3 | 14.0
0.23 | 5 0 0 0 0 2 | 15.0 | 32.0 | 41.0
0.66
13 | 25.0 | 27.4
0.44
11 | 28.0 | 0.10 | 16.0
0.26
6 | | | Chlo | do r | ū | 0 2 9 | 0.82 | 0.28 | 0.51 | 26 0 • 73 | 24 0 68 | 24
0•68
17 | 24
0•68
15 | 0 2 8 2 0 2 0 2 0 | 200.56 | | milligrams per liter
equivalents per millian
percent reactance value | | Sulfate | 504 | 0.15 | 0.31 | 0
4 0
8 0
8 | 13 | 17 0 . 35 | 15
0 • 31
8 | 13 0.27 | 0 • 3 5 | 0.12 | 9 0 19 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar- | banate | нсо з | 132 2.16 | 212 | 138
2•26
79 | 173
2•84
69 | 215
3•52
67 | 162
2.66
66 | 2 158
- 59
65 | 180
2.95
67 | 183
3.00
75 | 167
2•74
67 | | Εŏŏ | Carbon- | ote | co 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.33 | | c | Patos- | si e | × | 5
0.13 | 0.13 | n & n | 0.18 | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.18 | 0.15 | 0.15 | 0.10 | 0.15 | | Mineral Canstituents in | | Sodium | Na | 17
0•74
25 | 1.04 | 0.83 | 21
0•91
22 | 1.17 | 1.04 | 1.13 | 1.22 | 0.96 | 1.09 | | Mineral Co | Magne- | Enis | Mg | 12
0 • 99
34 | 1.00 | 1.07 | 1.0
1.0
3.5
3.5 | 1.23 | 1 932 | 1.32 | 1.32 | 1.40 | 1-40 | | | | Colcium | S | 21
1.05
36 | 1.90 | 0.95 | 1
• 0 0 0
0 0 0 0 | 2.74 | 1.50 | 1.55 | 1.70 | 1.55 | 28
1•40
35 | | Specific conduct- | auce | (micro-
mhas | at 25°C) | 289 | 1 | 285 | 425 | 531 | 415 | 1 | 448 | 400 | 383 | | | | = _ | | 7.6 | 7.8 | 8 • 0 | 7 • 8 | 7.5 | 7.7 | 7.6 | 7.8 | 7.7 | 8 • 6 | | Tamp | when | Sampled | | 71 | 1 | 76 | 74 | 70 | 71 | 1 | 73 | ; | 72 | | | | Agy. | Coll. | 1 M
5050 | 1 M
5702 | 1 M
5000 | 5050 | 1 M | 1 1 M
5050 | 1 1 M
5060 | 1 1 M
5000 | 1 1 M
5702 | 1 1 M
5050 | | State Well | | Date Sampled. | Time | 145/20E- 5H
6-10-64 | 145/20E- 8A
5- 2-47 | - 8A
10-19-51 | - 8A
4-15-59 | 7-16-63 | 14S/20E- 9N 1
5-12-52 505 | - 9N 1
8-27-57 500 | 4-15-59 | 14S/20E-10M 1
5- 2-47 57 | -10M 1
8-30-51 50 | | | = 1 | ۳ | 140 | 129 | 31 | 0 | 34 | 9 | 2 | 7 | | 크 | |--|-----------------|----------------------|-------------------------|-------------------------|--------------------------|------------------------------|--------------------
---|---------------------------------|-------------------------|-------------|------------------| | | TOTAL | | 17 | | | 11 | ~ | 276 | 16 | 15 | | 13 | | ents in
lion | 105
Popurado | Evap 180°C | 287 | 252 | 178 | 229 | 260 | 437 | 303 | 237 | | 250 | | neral constituents
ports per million | Silit | sio 2 | 80 | 67 | 1 | 78 | 73 | 74 | 36 | 1 | 1 | 63 | | Mineral constituents in ports per million | Boron | æ | 0.50 | 0.54 | 0000 | 0.57 | 0 • 0 | 0 | 0 0 | 1 | - | 900 | | | -Fluo- | IL. | 0 | i | ; | 0 | 0 | 0 | 0.2 | 0 | 1 | 0 • 1 | | | .i. Z | ς
0
2 | 22.0
0.35 | 14.0 | 20.0 | 9 8 0 16 | 111.0 | 25 ° 0
0 • 40
6 | 16.0 | 25•3
0•41 | 26.0 | 16.0 | | | Chlo | ō | 0.51 | 0.37 | 0.31 | 0.20 | 16
0 • 45
13 | 1.35 | 40
1•13
22 | 15 | 1 | 0.31 | | milligroms per liter
equivalents per million
percent reoctonce volue | Sulfote | 50 4 | 0.19 | 0.17 | 0.12 | 0.08 | 0.17 | 18 0 • 37 | 10 0.21 | 13 | 1 | 1.30 | | milligroms per liter
equivalents per million
percent reoctonce volue | Bicar- | HCO 3 | 172
2 • 82
73 | 172
2•82
79 | 158
2•59
78 | 151
2•47
85 | 169
2•77
78 | 283
4•64
69 | 212 3.47 68 | 204 | 1 | 2.77 | | | Carbon- | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | ł | 0 | | | Potas- | ¥ | 0 130 | 0.10 | 0.10 | 0.13 | 0.15 | 0.18 | 0.10 | 7 | 1 | 0 • 10
0 • 10 | | Mineral Constituents in | Sodium | Ž | 1.00 | 19 0.83 | 0.74 | 0.65 | 0.83 | 1.17 | 1.17 | 25
1.09
25 | | 25
0•96
26 | | Mineral Co | Mogne- | 6₩ | 1.40 | 1.23 | 1.32
1.32
38 | 1.15 | 1.53
1.23
34 | 18
1•48
22 | 1.73
34 | 18
1.48
34 | 1 | 1.32 | | | Colcium | ა | 28
1.40
36 | 1.35 | 26
1.30 | 21
1.05
35 | 29 | 81
4: 004
59 | 42
2•10
41 | 1 . 653 | 1 | 1.30 | | Specific conduct- | (micro- | mhos
ot 25 C) | 378 | 347 | 340 | 277 | 367 | 672 | 511 | ; | - | 359 | | | I, | | 7.6 | 7 • 8 | 7.8 | 7.7 | 8 | 7 • 7 | 8 • 1 | ω
• | 1 | 7.5 | | Temp. | Sompled | u.
0 | 1 | ŀ | 73 | 1 | 73 | 1 | 1 | 1 | 73 | 1 | | | | Agy.
Coll. | 1 M
5000 | 1 M
5200 | 1 M
5050 | 1 M
5000 | 1 1 M
5050 | ± 5000 € | 2 M
5000 | 1 M
5060 | 1 M
5050 | 5050 | | State Well | | Dote Sompled
Time | 14S/20E-10M
10-17-51 | 14S/20E-14F
10-17-51 | -14F 1 M
6-10-64 5050 | 145/20E-15M 1
10-17-51 50 | -15M
5-16-63 | 14S/20E-19A
7-17-63 | 145/20E-34R 2 M
8-22-63 5000 | 145/21E- 6E
11-19-62 | 5-16-63 | 10-29-63 | | State Well | Temp. | | Specific conduct- | | Mineral Co | Mineral Constituents in | | | milligrams per liter
equivalents per mill
percent reactance v | milligrams per liter
equivalents per millian
percent reactance value | | | | Mineral canstituents in parts per millian | neral canstituents
parts per millian | ents in
ion | | |---------------------------------|---------|----------|-------------------|-----------------------|------------------|---|---|---------|---|--|------------------------|-----------------------|-------------|---|---|----------------|-------------| | | Sampled | I | ance
(micro- | Colcium | Magne. | Sodium | Patas- | Corban. | Bicar-
banate | Sulfate | Chlo | rote
trote | Fluo- | Boran | Sili: | Computed | TOTAL | | Date Sampled Agy.
Time Coll. | | | mhos
at 25°C) | ڻ
ٽ | W ₉ | Ž | × | 80 | HCO 3 | 504 | ō | NO 3 | u. | 80 | SIO 2 | Evop 180°C | %
CoCO 3 | | 14S/21E- 9R 1 M
5-28-63 5050 | 71 | ω
• | 452 | 1.95 | 21
1•73
36 | 1.09 | 0.05 | 0 | 219 | 0.31 | 15 | 21.0 | 0 • 1 | 0 • 0 5 | 47 | 293 | 184 | | 14S/21E-13B 1 M
9- 7-56 5050 | 1 | 7.3 | 500 | 1.55 | 33 2 44 | 1.87 | 0.08 | 0 | 213 | 1.64 | 0.65 | 21 • 0
0 • 34
6 | 0 | 0.01 | 89 | 406 | 213 | | 14S/21E-23F 1 M
6- 4-64 5050 | 1 | 8 • 4 | 434 | 1.50 | 1.56 | 1.30 | 0.08 | 0.13 | 196
3•21
73 | 0.50 | 12
0 • 34
8 | 12.0 | 1 | 0000 | 1 | 230 | 153 | | 14S/21E-27R 1 M
7-24-57 5050 | 69 | 7.5 | 694 | 38
1 • 90
39 | 1.56 | 1.30 | 0.10 | 0 | 226
3•70
74 | 23
• 48
10 | 21 0.59 | 13.0 | 0 | 0.05 | 09 | 319 | 173 | | 14S/21E-30N 1 M
6-13-63 5050 | 1 | 7.9 | 381 | 1
0
4
0
0 | 1.32
34 | 21 0.91 24 | 0.08 | 0 | 162
2.66
70 | 0.15 | 24
0 • 68
1 8 | 19.0
0.31
8 | η
•
• | 0.24 | 0 4 | 241 | 144 | | 14S/21E-34J 1 M
9- 7-56 5050 | 1 | 7.6 | 281 | 22
1•10
37 | 11
0.90
31 | 0.87 | 0 0 | 0 | 134 2.20 75 | 0.19 | 0
4 0
4 0
0 0 | 10.0 | 0 • 1 | 0 • 0 | 64 | 204 | 100 | | 14S/22E- 18 1 M
7-21-60 5050 | 8 9 | 0 | 242 | 1,05 | 9 0 • 7 4 30 | 0 | 0.03 | 0 | 1.67 | 22
0•46
18 | 0.20 | 11.0 | 0 • 2 | 90•0 | 4 0 | 185 | 06 | | 145/22E- 4R 1 M
9- 7-56 5050 | 1 | ∞
• ⊔ | 270 | 18 | 1.23 | 18
0•78
26 | 0 | 0 | 160
2.62
88 | 0.15 | 0.14 | 4.3 | 0 | 00 • 0 | 47 | 195 | 107 | | 145/22E- 9P 2 M
6- 4-64 5050 | 42 | 7.9 | 256 | 22
1•10
39 | 10
0.82
29 | 20 0.87 | 0.05 | 0 | 140
2.29
84 | 0.15 | 0.17 | 7.2
0.12 | 1 | 00 • 0 | 1 | 143 | 96 | | 145/23E- 3G 1 M
6- 4-64 5050 | 70 | 7.0 | 192 | 20
1.00
52 | 0 9 8 8 8 | 0.30 | 0.03 | 0 | 92
1•51
79 | 10
0•21
11 | 0 • 11 | 0 • 0 8 0 4 | + | 0000 | 1 | 99 | 79 | | | | | | Specific | | | | | Ε | milligrams per liter | er liter | | | | Mineral constituents in | onstitue | ints in | | |---------------------------------|---------------|---------|-------------|------------------|------------------------|------------------|-------------------------|-----------------|----------------
--|--|--|------------------------|---------------|-------------------------|-------------------|-----------------|--------------| | State Well
Number | | Temp. | | canduct- | | Mineral C | Mineral Canstituents in | | ŭă | equivalents per millian
percent reactance value | equivalents per millian
percent reactance value | | | | parts | parts per million | .uo | | | | <u> </u> | Sampled | I. | (micra- | Calcium | Magne-
sium | Sodium | Patas-
sium | Carban-
ate | Bicar-
bonate | Sulfate | Chlo- | N:
trate | Fluo-
ride | Вогоп | Sil; | TDS
Computed | TOTAL | | Date Sampled A | Agy.
Coll. | | | mhas
at 25°C) | J | 6W | ž | ¥ | ° CO | нсо з | SO 4 | ō | _ε
ο
z | L. | 8 | SIO 2 | Evap 180°C | os
CaCO 3 | | 14S/23E- 8D 1
8-13-63 50 | 5000 | 89 | 7 • 3 | 215 | 16
0.80
41 | 10 0.82 | 0.30 | 0.05 | 0 | 1.56 | 0.15 | 5 0 • 14 | 9 • 6
0 • 1 5
8 | 0 | 0000 | 26 | 129 | 81 | | 14S/23E-20F 2
8- 4-59 50 | 5050
5050 | 16 | 8 • 1 | 191 | 1 | 1 | 1 | 1 | 0 | 108 | 1 | 0.06 | 1 | 1 | 1 | i | | 74 | | 14S/23E-33C 1 M
9-15-58 5050 | ΣΟ | 70 | 7.9 | 367 | 34 | 13
1.07
31 | 14
0•61
18 | 0 0 0 | 0 | 114 | 44
0 • 92
26 | 0.17 | 32.0
0.52
15 | • 5 | 0 • 0 | id
O | 215 | 139 | | 145/24E- 9P 3
6- 4-64 50 | 5050
5050 | 76 | 7.6 | 349 | 1.60 | 1.07 | 0.70 | 0 0 0 | 0 | 161
2.64
78 | 0.17 | 0.23 | 22.0
0.35
10 | 1 | 0 | 1 | 181 226 | 134 | | 14S/24E-14B 1
7-21-60 50 | 3 1 M
5050 | 65 | 7 • 8 | 239 | 20 1 44 | 10.82 | 0.39 | 0.05 | 0 | 1.23 | 32 0.67 | 0.145 | 21.0 | 0 | 0 | 29 | 165 | 91 | | 145/24E-36L 1 M
8- 8-63 5000 | M 000 | 02 | ₹• 5 | 244 | 1 • 90
40 | 1.40 | 31
1.35
29 | 0.08 | 0 | 218
3•57
76 | 0.23 | 14
0•39
8 | 30.0 | 0 0 | 0 9 • | 20 | 302 | 165 | | 155/17E-14G 1 M
2- 4-53 5050 | Σ09
200 | 1 | 7 • 7 | 545 | 1
900
900
900 | 0 • 7 4
1 5 | 2.57 | 0 10 | 0 | 140
2 • 29
46 | 14
0.29
6 | 2.43 | 0.01 | 0 • 1 | 0 | 53 | 327 | 120 | | -146 1 M
4-20-54 5050 | Σ O 3 | 46 | 7•7 | 2300 | 203
10.13 | 3.54 | 167 | 10
0.26
1 | 0 | 164
2 • 69
13 | 27 0 . 56 | 620
17.48
84 | 2.6 | 0 | 0.26 | 62 | 1216 | 684 | | -14G 1
9-29-55 50 | 5050
5050 | 1 | 1 | 5590 | 1 | 1 | 602 | 1 | | i
t | 1 | 1790 | 1 | 1 | 1 | 1 | | 1300 | | -14G 1
10-18-55 50 | 1 M
5050 | 7.1 | 1 | 8320 | ł | 1 | 946 | 1 | 1 | t
t | 1 | 2700 | 1 | 1 | 2 • 70 | i | | 2100 | | DWR 1982 | | | | STATE | OF CALIFOR | SNIA - THE | RESOURCES | AGENCY | OF CALIFG | RNIA - DE | PARTMENT | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | SOURCES | | | | | | AREA FRESNO - MADERA | State Well | Temp | | Specific
conduct- | | Mineral Co | Mineral Canstituents in | | E 9 0 | milligrams per liter
equivalents per mill
percent reactance v | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral canstituents in
parts per millian | neral canstituents
parts per millian | ants in
ian | | |---------------------------------|---------|-----|----------------------|---|----------------|-------------------------|----------------|------------------|---|--|---------------------|-------------|--------|--|---|----------------|-------| | - | Sampled | Ξ | ance
(micro- | Calcium | Mogna-
sium | Sodium | Pates- | Carbon- | Bicar-
banate | Sulfote | Chloride | N:
frofe | Fluo- | Boran | ± 8 | Computed | TOTAL | | Date Sampled Agy. Time Coll. | u. | | mhos
at 25 C) | ß | Mg | Ž | × | c o ₃ | нсо з | 50 4 | 5 | ε
0
2 | u. | æ | 510 2 | | °° c | | 15S/17E-14G 1 M
9-27-56 5050 | 02 | 1 | 397 | 1 | 1 | 3.48 | - | | 1 | 1 | 1.66 | 1 | 1 | 0.08 | 1 | | 11 | | -14G 1 M | 62 | 7.5 | 413 | 0 | 0 0 0 8 | 3.48 | 0 10 | 0 | 128
2•10
54 | 40.08 | 1.000 | 0.02 | 0 • 5 | 0.04 | 9 9 | 282 | 12 | | -14G 1 M
7-30-58 5050 | 80 | 8 5 | 456 | 0 35 | 0 | 3.91 | 0.10 | 0.27 | 138
2•26
51 | 0.04 | 1.80 | 1.0 | 0 | 0.16 | 99 | 310 | 18 | | -146 1 M
7-13-59 5050 | 105 | 7.4 | 645 | 0.65 | 0 • 25 | 112 | 0.10 | - | 133
2.18
37 | 0.08 | 3.58 | 0 • 3 | 0 4 | 0.01 | 09 | 98.89 | 45 | | -14G 1 M
7-21-60 5050 | 1 | 8•1 | 885 | 1.55 | 9 4 4 0 | 136 | 4
0•10
1 | 0 | 116 | 0.08 | 215 | 0.0 | 0 4 | 0.20 | 79 | 518 | 102 | | -14G 1 M
8-22-63 5000 | 1 | 89 | 855 | 1.
1.
1.5 | 0.16 | 141
6•13
81 | 0.13 | 0 | 138
2•26
30 | 0.06 | 186
5 • 25
69 | 0 | 0 4 | 0.16 | 41 | 624 | 99 | | 15S/17E-15H 1 M
4-20-54 5050 | 1 | 8 | 1090 | 0.60 | 0.16 | 217 | 0.13 | 0 | 244
4•00
38 | 24 0 0 50 | 212
5.98
57 | 0.01 | e
• | 0.77 | 67 | 099 | 98 | | -15H 1 M
10-18-55 5050 | 73 | 1 | 1070 | 1 | 1 | 214 | } | 1 | 1 | 1
1 | 192 | - | 1 | 1.40 | - | | 35 | | -15H 1 M
7-31-58 5050 | 74 | 0 8 | 1080 | 0 • 60 | 0.08 | 214 | 0 0 13 | 0 | 252
4 • 13
40 | 24
0 • 50
50 | 202
5•70
55 | 0•1 | 4.0 | 1.80 | 67 | 651 | 34 | | -15H 1 M
7-13-59 5050 | 72 | 7.4 | 1090 | 0.50 | 0.08 | 222
9•65
93 | 0.10 | 0 | 248
4•06
40 | 26
0 • 54
5 | 198
5 • 58
55 | 0.07 | 9 • 0 | 2.00 | 61 | 647 | 29 | | | _ | | | | | | | | | | | | 7 | |--|------------------|----------------------|------------------------|---------------------------------|----------------------|-----------------|-------------------|-------------------|----------------------------|-------------------------------|---------------|------------------------|--| | | TOTAL | 200°CO | 28 | 84 | | 86 | 80 | 89 | 79 | 87 | 113 | rv
o | | | ents in
lion | Computed | Evap 180°C | 642 | 257 | | | 255 | 253 | 252 | 278 | | 265 | | | neral canstituents
parts per million | i <u>;</u> 8 | SIO 2 | 29 | 77 | 1 | 1 | 75 | 70 | 74 | 34 | 1 | 70 | | | Mineral constituents in parts per million | Boron | 80 | 1.40 | 40.0 | - | 1 | 0 | 60.0 | 0.07 | 0000 | 0.07 | 0 • 0 | | | | Fluo- | u | 0 • | 0 • 1 | 1 | 1 | 0 • 1 | 0 • 2 | 0.2 | 0 | ł | 0 • 5 | 1 | | | N:
trate | NO 3 | 0.01 | 8 • 2
0 • 13 | 1 | 1 | 7.7 | 8 0 0 1 3 4 4 4 | 7.9 | 13.0 | 1 | 4 • 0
• 0 × 2 | FCOURTER | | | Chlo-
ride | ס | 201
5•67
56 | 28 | 0.82 | 32 | 27
0•76
23 | 0.76 | 0.71 | 0.71 | 27 | 1.007 | OE WATEP P | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | SO 4 | 0.25 | 0.12 | 0.12 | - | 0.15 | 0.12 | 0.10 | 0.08 | 0.17 | 0.19 | DADTAKENIT | | milligrams per liter
equivalents per mil
percent reactance v | Bicar-
banate | HCO 3 | 235
3.85
40 | 136
2.23
68 | 1 | 1 | 137 2.25 69 | 142
2•33
70 | 140
2•29
71 | 144
2•36
67 | 1 | 136
2•23
63 | Allyac | | E & C. | Carbon-
ate | 00 | 0.20 | 0 | 1 | į
į | 0 | 0 | 0 | 0.17 | 1 | 0 | 20110 | | _ | Patas- | × | 0.13 | 0.18 | 1 | i | 0.18 | 0.18 | 0.18 | 0.18 | 1 | 0.18 | AGENION | | Mineral Canstituents in | Sodium | ž | 216
9•39
93 | 1.00.00 | 1 | 1.74 | 36 | 1.52.2 | 35
1.52
46 | 38
1.65
46 | 1.17 | 2.09
61 | STATE OF CALLEORNIA THE BESOIBLES ACENCY OF CALLEORNIA DEBABTMENT OF WATER RECOLLEGE | | Mineral C | Magne-
sium | 6W | 0 | 0.58 | 1 | i | 0.49 | 0.41 | 0
• 9
10
10
10 | 0 • 49 | 1 | 0.16 | DAILA TUE | | | Calcium | 3 | 0.08 | 1.10 | 1 | 1 | 22
1.10
33 | 1.25 | 1.25
1.35
38 | 1.25
1.35
35 | | 1.00
1.29 | 051147 30 | | Specific conduct- | micro- | mhos
at 25 C) | 1007 | 333 | 338 | 2,962 | 68.83 | 346 | 326 | 349 | 377 | 372 | CTATE | | | Ξ. | - | 8•4 | 7.8 | 1 | - | 7.3 | 8
• I | ν
∞ | ω
• | 1 | 7 • G | | | Тетр. | Sampled | u. | 73 | 73 | 1 | 74 | 74 | 74 | 72 | 74 | 1 | 7.5 | | | _ | - | Agy.
Coll. | H 1 M
5050 | 6 1 8
5050 | G 1 M
5050 | 6 1 N
5631 | G 1 M
5050 | | | State Well | | Date Sampled
Time | 155/17E-15H
7-19-60 | 155/18E-16G 1 M
8-13-53 5050 | -16G 1
5-24-54 50 | -16G
7-28-55 | -16G
8- 6-57 5 | -16G
7-13-59 | -16G
7-19-60 5 | -16G 1
7-30 - 62 50 | -166 | 155/18E-20G
8-13-53 | DWR 1982 | | | TOTAL | coco 3 | | 62 | 60 | | ,0
co | 70 | 92 | 190 | 184 | 100 | |--|------------------|----------------------|---------------------------------|--------------------------|----------------------|---------------|-------------------------------|---------------------------------|---------------------------------|---------------------------------|---|---| | ants in | TDS
Camputed | Evap 180°C | | | 278 | | 277 | 280 | 251 | 549 | 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 255 | | neral constituents
parts per millian | : 8
:: | SIO 2 | - | i | 71 | i | 4 9 | 6 9 | 0,0 | 70 | 47 | 1 | | Mineral constituents in parts per millian | Boron | В | | i | 0 • 0 3 | - | 90•0 | 0.14 | 0 | 0 | 0.07 | 0.00 | | | Fluo- | LL. | - | 1 | 0 • 2 | - | 0 • 3 | 0 • 3 | 0.2 | 0 • 1 | 0 • 2 | 1 | | | Ni:
frate | NO 3 | | 1 | 4 • 7
0 • 08
2 | 1 | 5 • 5
0 • 0 9
2 | 5 • 5
0 • 0 9
2 | 13.0
0.21
6 | 10
0 • %
0 0 0 | 5.7 | 7.1
0.11 | | | Chloride | ט | 1.18 | 1.18 | 1.18
32 | 1.18 | 1.21 | 1.18 | 0.51 | 1
1
1
1
1 | 51 | 0 9 8 5 2 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | milligrams per liter
equivalents per
million
percent reactance value | Suffate | 504 | 0.17 | i | 0.15 | 1 | 0.10 | 0.17 | 0.23 | 0.65 | 26
0 • 54
10 | 26
0.54
15 | | milligrams per liter
equivalents per million
percent reactonce value | Bicor-
bonate | HCO 3 | 1 | 1 | 139
2•28
62 | 1 | 143
2•34
61 | 140
2.29
61 | 153
2.51
73 | 331
6.91
75 | 198
3•25
61 | 128
2•10
58 | | t o o | Carban-
ats | co 3 | 1 | ŧ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | c | Patas-
sium | × | 1 | 1 | 0.208 | 1 | 0.18 | 0.18 | 0.18 | 13 | 0.18 | 0.18 | | Mineral Canstituents in | Sodium | Z O | 1 | 2 9 9 9 | 2.35 | 1 | 2
• 9
• 0
• 0
• 0 | 2
8
8
8
8
8
8 | 36
1.57
44 | 2.17 | 1.57 | 33
1•43
40 | | Mineral C | Magne-
sium | Mg | 1 | 1 | 0.25 | ! | 0.25 | 0 0 0 0 | 0.58 | 3.33 | 12
0•99
18 | 0.25 | | | Calcium | S | ! | 1 | 1.00 | 1 | 22
1•10
29 | 23
1.15
30 | 1.25 | 3.97 | 2.69 | 35
1•75
48 | | Specific canduct- | (micro- | mhos
at 25°C) | 377 | 389 | n
R | 403 | 402 | 389 | 340 | 758 | 547 | 386 | | | ±α | | 1 | 1 | 7.5 | 1 | 8•1 | ω
• | 0
•
10 | 7.6 | ္
သ | 8 • 2 | | Tamp. | Sampled | ٩. | 1 | 73 | 72 | 1 | 74 | 70 | 7.1 | 89 | 1 | 71 | | _ | \vdash | Agy.
Call. | G 1 M
5001 | G 1 M
5050 | G 1 M
5050 | G 1 M
5001 | G 1 M
5050 | -20G 1 M
-60 5050 | A 1 M
5000 | C 1 M
5000 | M 1 M
5000 | A 1 M
5050 | | State Well | | Date Sampled
Time | 155/18E-20G 1 M
5-24-54 5001 | -20G 1 M
7-28-55 5050 | -20G 1 M | -20G 1 M | -20G 1 M
7-13-59 5050 | 7-19-60 | 155/18E-36A 1 M
8-14-63 5000 | 155/19E-15C 1 M
8-14-63 5000 | 155/19E-22M 1 M
8-29-63 5000 | 155/19E-25A 1 M
6- 4-64 5050 | | State Well | Teap | | Specific conduct- | | Mineral Co | Mineral Canstituents in | | E 5 6 | milligrams per liter
equivalents per millian
percent reactonce value | milligrams per liter
equivalents per millian
percent reactance value | | | | Mineral constituents in parts per millian | neral canstituents
parts per millian | an ans | | |---------------------------------|---------|-------------|-------------------|-----------------------|----------------------|--|---------------|----------------|--|--|--|---|---------------|---|---|----------------|-----------| | . - | Sompled | =_ | (micro- | Colcium | Mogne-
sium | Sodium | Potos. | Cerbon-
ofe | Bicar-
bonate | Sulfote | Chlo- | N:
trate | Fluo-
ride | Boron | Sili: | Computed | TOTAL | | Date Sampled Agy. Time Call. | u. | | mhas
at 25°C) | კ | Wg | ž | ¥ | 00 | нсо з | SO 4 | ō | ν
0 Ν | u. | æ | 510 2 | Evop 180°C | °° CO O O | | 155/19E-26F 1 M
6- 4-64 5050 | 1 | 8 • 4 | 197 | 8
0•40
19 | 0.08 | 1.52 | 0.10 | 0 | 106 | 480 | 0 • 1 1 6 | 3.000 | 1 | 00•0 | 1 | 112 | 24 | | 155/19E-28E 1 M
8-14-63 5000 | 74 | 7.6 | 286 | 0.95 | 0.33 | 3.4
1.48
5.0 | 0.18 | 0 | 120
1•97
69 | 9 0 19 | 17 0 • 48 | 13.0 | φ
• | 000 | 9 | 228 | 49 | | 155/20E- 6L 1 M
8-14-63 5000 | 67 | 7.8 | 584 | 2.45 | 24 | 1.83 | 0 0 0 0 0 1 | 0 | 288
4•72
75 | 17 0 • 35 | 27 0 • 76 | 29.0
0.47
7 | •
• | 0 • 20 | ů.
O | 60
80
80 | 221 | | 155/20E-10D 3 M
7-30-58 5050 | 72 | | 614 | 41
2.05
31 | 2.14 | 2
9
9
9
9
5
5 | 0 0 0 0 0 0 1 | 0 | 324
5.31
81 | 0.19 | 0.99 | 0 | 0 • 1 | 0.12 | r
S | 3 8 6 | 210 | | -10D 3 M
7-21-60 5050 | 1 | 20
• | 501 | 51 2.54 47 | 23
1 • 8 9
3 5 | 0.87 | 0.08 | 0.17 | 215 3 • 52 67 | 22 0.46 | 24
0.68
13 | 26.0
0.42
8 | 0 • 2 | 0.10 | e
G | 933 | 222 | | 155/20E-31K 1 M
9- 8-56 5050 | 70 | ⊙
•
∞ | 372 | 1
9 9 9
5 2 5 2 | 5
0•41
11 | H B B B B B B B B B B B B B B B B B B B | 0.08 | 0 | 157
2.57
67 | 12 0 • 25 6 | 30.00.85 | 11.0
0.18 | 0 • 1 | 0.10 | 30 | 237 | 118 | | 155/20E-36H 1 M
9- 9-56 5050 | 67 | 1 | 245 | 21
1.05
19 | 15
1 23
23 | 3.09 | 0 0 8 8 1 | 0 | 187
3 • 0 6 | 31 0.65 | 51
1.44
26 | 23.0 | 0 | 0.14 | 39 | 346 | 114 | | 155/21E- 2K 1 M
6-15-64 5050 | 70 | 8 | 383 | 1.40 | 9 0 • 74 | 3.
1.61
4.2 | 0 100 | 0 | 168
2•75
73 | 18 0 37 | 21 0.59 | 2 • 4
0 • 0 4 | 1 | 0000 | 1 | 202 | 107 | | 155/21E- 3D 1 M
5-21-52 5050 | 99 | 7 • 4 | 139 | 0 • 45 9 | 0.41 | 0 • 11 • 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 0 0 5 4 | 0 | 74
1•21
86 | 0.12 | 0.03 | 3.0 | • | 0 • 0 3 | 04 | 113 | 4 | | - 3D 1 M
7-22-59 5050 | ω
ω | 0 | 384 | 1 | 1 | • | 1 | 0 | 1 • 8 8 4 | 1 | 16 | 1 | 1 | 1 | 1 | | 139 | | DWR 1982 | | | STATE | STATE OF CALIFORN | | RESOURCES | AGENCY | OF CALIFO | RNIA - DE | PARTMENT (| A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | SOURCES | | | | | | | Mineral constituents in parts per million | TOTAL | 0 0 3 CO 3 | 249 | 143 | 144 | 8 8 | 43 | 74 | 19 | 237 | 136 | 97 | |--|----------|------------------------|---|-----------------|-----------------------------|------------------------------|---|------------------------------|------------------------------|------------------------------|------------------------------|--------------------| | | \vdash | | 94 | | N O | Ŋ | ω N | | 32 | 73 2 | | 0 % | | | IDS | Evop 180°C | 52 | 32 | m m | 88 | 68 | | 8 1 | 47 | | 170 | | | Silis | SIO 2 | 1 | 99 | ω
ω | 8 | + | 1 | 1 | 40 | 1 | 1 | | | Boron | ω | 0.10 | 0.11 | 0.07 | 0.11 | 0000 | 1 | 0000 | 0.10 | 1 | 00.0 | | | Fluo- | | 1 | 0 0 | 0 • 2 | 0.1 | 1 | 1 | 1 | 0 • 2 | 1 | 1 | | milligrams per liter equivalents per millian percent reactance value | -iZ | , o | 39.0 | 21.0
0.34 | 19•0
0•31
6 | 16.0 | 0 | 1 | 0.8
0.01
2 | 26.0
0.42
6 | ! | 28.0
0.45
15 | | | Chlo | ਹ ਹ | 1.02 | 34 0 96 18 | 0.93 | 42
1•18
21 | m & 9 | 0.06 | 0.03 | 1.95 | 16 | 0.31 | | | Sulfate | \$0 | 1.08
1.12 | 26 0 .54 | 29 | 21
0 • 44
8 | 0.12 | 1 | 0.04 | 41
0 85
11 | 1 | 0.15 | | | Bicor- | HCO ₃ | 362
5.93
68 | 205 | 219 | 222
3•64
66 | 1.00 | 0.98 | 32 0 52 | 246
4•03
54 | 3.21 | 131
2•15
70 | | | Carbon- | Š | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.27 | 0 | 0 | | | Potas- | × | 0.13 | 0.08 | 0.10 | 0.10 | 0.05 | 1 | 0.03 | 0.10 | 1 | 0.05 | | | Sodium | ž | 8 8 8 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2.93 | 2.00.4 | 3.61
66 | 6 e e o | 1 | 0.17 | 64
2.78
36 | 1 | 1.09 | | | Mogne- | . × | 1.48 | 0.90 | 10
0.82
16 | 1.07 | 0.25 | 1 | 0.08 | 1.15 | 1 | 9 0 • 7 4 2 4 | | | Colcium | S | 3.49 | 39 | 2.05
39 | 14 0 13 | 12 0.60 47 | 1 | 0.30 | 3.59 | 1 | 24
1.20
39 | | Specific conduct-
ance (micro-
mhos at 25 C) | | | 834 | 510 | 550 | 533 | 138 | 208 | 29 | 731 | 644 | 319 | | | I. | | | ω
• | 8 • 2 | 8 • 2 | 7.2 | 7.8 | 7 • 7 | χ
• 4 | 8 • 2 | 7.9 | | Temp. | Sompled | | 02 | 78 | 73 | 99 | 99 | 1 | 63 | + | 1 | 69 | | State Well Number Date Sampled Agy. Time Coll. | | 5050 | L 1 M
5050 | 1 M
5050 | 5050 | J 1 M
5050 | 5050
5050 | 1 1 M
5050 | 5000
5000 | 5050
5050 | 5050 | | | | | 155/21E-17F
6-15-64 | 155/21E-24L
7-21-60 | -24L
8-12-63 | 155/21E=32R 1
9- 9-56 50 | 155/22E- 1J 1
6-12-64 505 | 155/22E- 3D80
7-21-59 505 | 155/22E-10H 1
6-15-64 505 | 155/22E-33G 1
8-21-63 50G | 155/23E-33C80
7-22-59 505 | 15S/24E- 3A 1
6- 4-64 505 | | | Solding Policy Contains Blance Solding Nie Policy Policy Contains Blance Solding Nie Policy | Specific canduct- | Specific
canduct-
ance | | | Mineral Co | Mineral Constituents in | | | milligrams per liter
equivalents per million
percent reactance value | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in
parts per millian | neral constituents
parts per millian | ents in
I'an | |
--|--|------------------------------|--------------------|---|-------------------|-------------------------|--------|-----------------|--|--|---------------------|------------------------|--------|--|---|---------------------|-------------------| | 14 | I _Q | | Colcium | | Magne-
sium | Sodium | Potas. | Carban-
ate | Bicar-
bonate | Sulfate | Chlo- | r g t | - ebir | Boron | i <u>‡</u> 8 | Computed | TOTAL
hardness | | 0.677 0.02 | at 25°C) ca | | రి | | Mg | °Z | ¥ | co ₃ | нсо з | 504 | D | NO 3 | LL. | æ | S10 ₂ | Evap 180°C | CaCO 3 | | 1.35 0.08 0.235 0.29 0.23 32.0 0.2 0.00 58 362 0.65 0.6 | 68 7.5 385 3.85
1.85 | | 37
1.85
47 | | 1,15 | 71 80 71 | 0 | 0 | 16
• 7
7 | ÷ 0 € | निल्न | • 4 1 | • | 00.0 | | ~ | 150 | | 0.65 0.05 | 69 7.6 556 2.50
45 | | 2 .50 | | 2 6 2 | 6 6 V | 0 | 0 | 23 | 9.0 | 1.62 | • r2 | | 00.0 | rU | 362 | 207 | | | 62 7.8 270 24
1.20 | | 1.20 | | 0.82 | L 0 0 | • | 0 | 12
•9
7 | то-
по- | . 2 | 13.0
0.21
8 | i | . 2 | i | 146 | 101 | | 0.96 0.05 0.05 0.127 0.45 0.45 0.90 0.05 58 220 1 21 2.2 2.08 0.10 0.45 0.91 0.02 0.05 58 221 21 0.91 0.05 0.08 0.44 0.45 0.32 0.06 59 228 2.26 0.03 0.20 249 0.44 0.48 0.32 0.09 292 1 2.26 0.03 0.20 4.08 0.44 0.48 0.32 0.09 292 1 2.26 0.03 0.20 4.08 0.44 0.48 0.32 0.09 292 1 2.26 0.03 0.04 0.44 0.48 0.32 0.09 292 1 1.35 0.08 0.44 0.48 0.32 0.09 292 1 1.35 0.08 0.44 0.48 0.32 0.09 292 1 2.44 0.08 0.44 | | | 1 | | 1 | 1 | i | 1 | 1 | ! | 1 | | 1 | 0 • 0 8 | <u> </u> | | | | 2.21 0.05 | 69 8.1 289 27
1.35
45 | | 1,35 | | 8
0.66
22 | 200 | 0 | 0 | 127
2•08
71 | • | т 4 п | 19.0 | • | 0.05 | 58 | 220 | 101 | | 2.26 0.03 0.20 4.08 0.44 0.48 0.32 | 72 7.9 313 27 | 1.35 | | | 0.66 | 01 Q (U) | 0 | 0 | 128
2•10
71 | 0 | н
4 | 20.0 | • | 90•0 | | 220 | 101 | | 31 32 38 23.0 360 27 1.35 0.08 4.65 0.67 1.07 0.37 336 27 20 1 69 10 16 915 59 62.0 0.1 1.10 45 1603 98 5.44 0.05 3.21 19.05 1.66 1.00 45 1603 98 176 124 760 60 1.40 61 7.65 2.03 15.82 1.69 1.40 61 | 8.5 507 32
1.60
29 | 1.60 | | | 20 | N 01 4 | 0 | • 2 | 249 | 4. | 14. | 0.0 | • | 0 | | 0 | 162 | | 125 2 0 196 915 59 62.0 0.1 1.10 45 1603 98 5.44 0.05 3.21 19.05 1.66 1.00 1.00 45 1603 98 17.65 124 760 60 1.40 61 7.65 1.69 | 68 8.0 653 68 | | 89
• 89
• 49 | | 2.06 | • | 0 | 0 | 284
• 65
69 | • | <i>w</i> 0 <i>⊓</i> | 23.0
0.37
5 | i | 0000 | - | 3 6 0
376 | 273 | | 176 124 760 60 1,040 61 7,065 15,082 1,069 1,069 | 7.7 2010 147 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 147 | | - | 150
2•34
49 | 125 | • | 0 | 196
3•21
13 | 6 | n 0 | 62
1
0
0
4 | 0 • 1 | - | 45 | 1603 | 985 | | | 7.5 1721 | | 1 | | 1 | 176 | 1 | 1 | 124 2.03 | ru. | 9 9 | 1 | 1 | 1.40 | | | 615 | # SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | 8 510 | |------------------| | | | | | o _N | | so 4 | | HCO 3 | | | | ¥ | | ž | | w ₉ | | S | | | | mhos
at 25°C) | | | | mhos
at 25°C) | | . <u>s</u> | TDS TOTAL
Computed hardness | - 11 | 250 75 | 277 134 | 238 | 117 | 166 64 | 110 24 | 24 | 275 | 99 | 9 6 8 | |--|--------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|----------|---------------------------------|---|--------------------------| | Mineral constituents in parts per million | Sili- | | 25 | 31 | 1 8 | 1 | 39 | 90 | - | 1 | 1 | 17 | | Mineral co | Boron | 80 | 0.02 | 90.0 | 000 | 1 | 0 | 0.03 | 1 | 000 | 1 | 0.03 | | | Fluo-
ride | u. | 0 • 2 | 0
• | 1 | - | 0
• | 0 | i | i | 0 | e • | | | rate s | ۳
0
2 | 1 • 8
0 • 0 3 | 24 • 0
0 • 39 | 7 • 2
0 • 12
4 | 1 | 0 | 0 | 1 | 18.0
0.29 | 0 | 0 • 0 1 | | | Chloride | ō | 1.24 | 1.41 | 1
• 1
• 1
• 3
• 5 | 36 | 16
0 • 45
20 | 0.00% | 1 | 25 0 • 71 16 | 0 0 0 | 0.06 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | \$0.4 | 38 | 24 0 • 50 12 | 19
0•40
12 | 20 0.42 | 0.23
10 | 0.04 | 1 | 18 0.37 | 0
0
4 % | e 9
• 0 | | milligrams per liter
equivalents per million
percent reactance value | Bicar-
bonate | нсо з | 113 | 117 | 98
1•61
49 | 134 | 98
1•61
70 | 1.34 | 1.13 | 182
2•98
69 | 59 0 97 78 | 71 | | E & & | Corban- | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.13 | 0 | | | Potas- | ¥ | 0.03 | 0.10 | 0.13 | 0.05 | m m m | 0.03 | ł | 0 0 0 7 | 0.03 | 0.03 | | Mineral Constituents in | Sodium | Z | 2.35 | H
W W W
W D N | 1.17 | 1.78 | 1.00 | 22 0 96 65 | 1 | 1.36 | 1.28 | 28 | | Mineral Co | Magne. | 8₩ | 0 | 0.33
4 % | 46.0 | 0.58 | 0.08 | 0.08 | † | 0 0 8 2 1 8 | 0 | 0 | | | Calcium | ß | 1.50 | 2.35 | 35 | 35 | 24
1•20
51 | 8
0.40
27 | { | 41
2.05
45 | 0.05 | 0.15 | | Specific canduct- | ance
(micro- | mhas
ot 25°C) | 421 | 494 | 359 | 394 | 246 | 141 | 146 | 450 | ł | 134 | | | Ŧ, | ì. | L•L | 7.9 | 8 • 1 | 7.8 | 0 0 | 7.9 | 7.9 | 8 • 2 | 8.0 | 7.4 | | Temp. | Sampled | <u></u> | | 73 | 73 | 70 | + | 72 | 74 | 71 | | 75 | | State Well | | Date Sampled Agy. Time Coll. | 16S/18E-35Q 2 M
8- 5-59 5050 | 165/19E- 3Q 1 M
8-29-63 5000 | 16S/19E- 5P 1 M
6- 4-64 5050 | 16S/19E- 7E 1 M
5-27-54 5000 | 165/19E- 8R 1 M
8-14-63 5000 | 16S/19E-24R 1 M
9- 8-56 5050 | -24R 1 M | 16S/20E- 2P 1 M
6- 4-64 5050 | 165/20E-18G 1 M
11- 7-61 5060 | -18G 1 M
8-16-63 5000 | AINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | State Well | Temp. | | Specific
conduct- | | Mineral C | Mineral Constituents in | | E | milligroms per liter
equivalents per mill
percent reactonce v | milligroms per liter
equivalents per million
percent reoctonce volue
 | | | Mineral constituents in
parts per million | neral constituents
parts per millian | ants in
ion | | |---------------------------------|---------|-------|----------------------|-------------------|------------------|-------------------------|---|---------|---|--|---|--------------------|---------------|--|---|----------------|-----------| | | Sompled | Ξ. | (micro- | Colcium | Mogne-
sium | Sodium | Potos-
sium | Carbon. | Bicar-
bonato | Sulfote | Chlo-
ride | Ni.
frote | Fluo-
ride | Boron | Sili | Computed | TOTAL | | Date Sampled Agy.
Time Coll. | u.
0 | | mhas
at 25°C) | 3 | W | ź | ¥ | 8 | HCO 3 | 504 | ū | S O S | u. | 60 | SIO-2 | Evap 180°C | °° C°CO 3 | | 16S/21E-21F80 M
7-30-62 5050 | 69 | 8.2 | 228 | 1.10 | 0 | 1.13 | 0 0 0 | 0 | 102 | 0.17 | 0.34 | 12.0
0.19
8 | 0.1 | 00.0 | 33 | 166 | 50 | | 165/21E-30R 1 M
9-17-58 5050 | 70 | 7.9 | 293 | 1.35 | 0.08 | 1.17 | 0 0 2 2 | 0 | 1.54
1.54 | 0.17 | 0 | 16.0
0.26
13 | 0 • 1 | 0.16 | 22 | 151 | 72 | | 16S/21E-35P 1 M
8- 9-63 5000 | 69 | 7.9 | 482 | 2.54 | 10 | 1.00
30
30 | 0 | 0 | 3.11
64 | 19
0•40
8 | 36
1.02
21 | 22.0
0.35
7 | 0 • 2 | 00 • 0 | 37 | 306 | 168 | | 165/23E- 5C 1 M
2-27-61 5050 | 68 | 8 • 1 | 609 | 1 | 1 | 2.57 | 1 | 0 | 293 | 1 | 0 65 | 1 | ì | 0.07 | - | | 187 | | 16S/23E- 8P 1 M
9-13-63 5000 | 67 | 7 • 8 | 327 | 30 | 0.66 | 21 0.91 29 | 0 0 0 | 0 | 127
2.08
67 | 21 0 • 44 | 10 | 19.0
0.31
10 | 1 | 0000 | 1 | 174 | 108 | | 175/16E- 2E 1 M
8-22-51 5000 | 76 | 0 • | 1720 | 147
7.22
38 | 1.58 | 232
10.10
53 | 0.14 | 0 | 130
2.27
12 | 719
14•76
78 | 1.95 | 0.01 | 4 • 0 | 2.04 | 50 | 1300 | 433 | | 17S/17E- 2N 1 M
7-21-54 5050 | 1 | 7.6 | 1930 | 98
4.89
24 | 23 | 315
13.70
67 | 0.10 | 0 | 235 | 622
12.95
65 | 3.07 | 0.00 | 0 | 1.20 | 1 | 1289 | 939 | | 175/17E-23Q 1 M
8-15-51 5050 | 76 | 6 • 8 | 1270 | 3.49 | 20 | 164 | 1 | 1 | 116 | 476
9.91 | 1.33 | 8 | 1 | 0.50 | 1 | | 257 | | -230 1 M
8-13-52 5050 | 92 | 7 • 8 | 1280 | 3.29 | 23
1.89
14 | 183
7•96
60 | 0.08 | 0 | 115 | 487
10•14
76 | 1.24 | 0 • 2 | 0.2 | 0 .50 | 8
2 | ∞
⊅
30 | 259 | | -230 1 M
7- 8-53 5050 | 75 | 7.7 | 1210 | 63
3•14
25 | 1.56 | 181
7.87
62 | 0 0 0 0 5 | 0 | 121
1•98
16 | 449
9 • 35
75 | 1.13 | 0 • 3 | φ
• | 1.80 | 23 | 839 | 235 | | | - | | | 01 | | | | | | | - | | |--|------------------|----------------------|------------------------|-------------------|---------------|-------------------|-------------------|--------------------------------------|-------------------|---------------|---------------|---| | | TOTAL | °s
C°CO 3 | | 232 | 254 | 251 | 255 | 249 | 257 | 262 | 265 | 249 | | ents in
lion | TDS | Evop 180°C | | | | 878 | 0 98 | 869 | 858 | | | 8
6
8 | | neral canstituents
parts per million | : 8
: 8 | SIO 2 | 1 | 1 | 1 | 56 | 26 | 25 | 27 | 1 | 1 | 25 | | Mineral canstituents in parts per million | Boron | œ | 0.71 | 0.78 | 0.72 | 06.0 | 0.81 | 0.92 | 0 • 70 | 0.73 | 0 80 | 0.94 | | | Fluo- | u. | - | 1 | - | 0 • 2 | 0 • 2 | • 5 | •
• | 1 | 1 | 0 | | | rote t | ε
0
2 | 1 | 1 | 1 | 0 | 0 • 2 | 0 • 2 | 0 • 1 | 1 | 1 | 0 • 0 | | | Chlo-
ride | ō | 1.13 | 1.18 | 1.16 | 1.30 | 1.33 | 1 • 4 ¢ 10 10 | 1.47 | 1.35 | 1.41 | 20 67 20 178 2 0 119 468 48 0.01
3.34 1.64 7.74 0.05 1.995 9.74 1.35 0.01
26 13 61 15 75 10 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | 50 4 | 1 | 1 | } | 470
9•79
75 | 450
9•37
72 | 458
9 • 54
74 | 443
9•22
72 | 470 | 1 | 468
9•74
75 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar-
banate | нсо з | 1 | 1 | 1 | 121
1•98
15 | 116
1•90
15 | 127
2.08
16 | 130
2•13
17 | 1 | 1 | 119
1•95
15 | | F 0 C | Carbon-
ote | 003 | 1 | 1 | - | 0 | 11
0.37 | 0 | 0 | - | 1 | 0 | | | Potos-
sium | ¥ | 1 | 1 | 1 | 0 0 2 | 0.05 | 0.05 | 0.10 | 0.05 | ! | 0.05 | | Mineral Canstituents in | Sodium | ž | 180 | 178 | 167 | 186
8•09
61 | 178
7•74
60 | 186
8 • 09
62 | 177 | 172 | 176 | 178
7•74
61 | | Mineral C | Magne-
sium | Wg | 1 | 1 | i i | 1,73 | 1.81 | 1.73 | 1.64 | 1 | 1 | 20 | | | Colcium | ß | 1 | 1 | 1 | 3,29 | 3.29 | 9
0
0
0
0
0
0
0 | 3.49 | 1 | 1 | 3.34 | | Specific
conduct- | (micro- | mhas
at 25°C) | 1190 | 1210 | 1210 | 1250 | 1260 | 1220 | 1270 | 1290 | 1340 | 1220 | | | Ξa | | | 1 | { | 8 0 | ω
• | 8 • 1 | 8 • 0 | - | 1 | 8 • 1 | | Temp. | Sompled | | 76 | 76 | 76 | 76 | 76 | 1 | 77 | 76 | 76 | 1 | | _ | \vdash | Agy.
Call. | Q 1 M
5050 | 0 1 M
5050 | 0 1 M
5050 | 0 1 M
5050 | 0 1 M | 0 1 M
5050 | 0 1 M
5050 | 0 1 M
5050 | 0 1 M
5050 | 5050 | | State Well | | Date Sampled
Time | 175/17E-230
7-27-55 | -230
6-27-56 5 | 7-31-57 5 | 6-26-58 | 7-15-59 | 7-19-60 | -230
10-17-61 | 6-21-62 | 8-22-63 | 175/17E-25N
7-19-60 | | | - : | ŝ | m | v | 286 | ᅼ | 20 | | 301 | xo | 20 | <u></u> | 20 | |--|------------------|--------------|------------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------|--------------------------|---|---|--------------------------| | | TOTAL | | OCO | 27 | | 291 | 2,00 | | 36 | 208 | 318 | 35 | 293 | | ents in
lian | 10S
Patronted | | Evap 180 C | | 068 | 916 | 668
668 | | | | 936 | 979 | 921 | | neral constituents
parts per millian | Sili | 3 | SIO ₂ | | 23 | 24 | 24 | 1 | 1 | 1 | 24 | 26 | 24 | | Mineral constituents in parts per millian | Boron | | 8 | 08. | 1.10 | 0.61 | 0.75 | 0
30
• | 0 . 75 | 8
9
• | 0 8 | 0
8
8
5 | 0 • 86 | | | Fluo | | u. | - | 0 • 2 | m
• | o
• | ! | 1 | i | 0.5 | 0.2 | 0.5 | | | ÷ Ž | | NO 3 | 1 | 0 • 3 | →
•
• | 0 | 1 | ; | 1 | 0 | 0 • 0 0 1 | 0.04 | | | Chlo | | ΰ | 51 | 1 + 49 | 1.38 | 1 + 4 9
1 0 1 | 1 • 64 | 1
• 0
• 4 | 1 • 4 9 | 1.44 | 1 • 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 | 1.41 | | milligroms per liter
equivalents per million
percent reactance volue | Sulfate | | 50 4 | 491 | 477
9 • 93
75 | 505
10•51
77 | 488
10•16
76 | 1 | 1 | \$
1 | 518
10•78
77 | 541
11.26
76 | 509
10.60
77 | | milligroms per liter
equivalents per mill
percent reactance v | Bicar. | | нсо з | 116 | 116
1•90
14 | 112 | 1,80 | 1 | 1 | 1 | 105 | 100 | 109
1•79
13 | | | Carban- | 5 | co ₃ | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0.33 | 0 | | _ | Potos- | | х | t | 0.05 | 0.05 | 0.03 | 1 | 1 | 1 | 0.05 | 0.05 | 0.05 | | onstituents in | Sodium | | ž | 170 | 1777 | 17777.570 | 178
7•74
57 | 176 | 174 | 167 | 177 | 175
7•61
52 | 178
7•74
57 | | Mineral Constituents in | Magne. | | Wg | 1.40 | 1.48 | 1.73 | 1.81 | 1 | ŧ, | i | 2 | 2 | 22
1•81
13 | | | Colcium | | ვ | 82 4 • 0 9 | 4 85
4 24
31 | 4
• 0 9
9 0 0 | 4
82
4
30 | 1 | 1 | 1 | 4
86
4
30 | 4
8 6 6
8 0 0 | 81
4.04
30 | | Specific canduct- | ance
(micro- | mhas | at 25 C) | 1300 | 1320 | 1300 | 1130 | 1310 | 1330 | 1280 | 1350 | 1410 | 1290 | | | I | a . | | 8 • 9 | 7.7 | 7.5 | 7.6 | 1 | 1 | 1 | 7.9 | ω
•
• | 8 • 1 | | Temp. | Sompled | , u | | 77 | 76 | 77 | 76 | 75 | 77 | 75 | 76 | 76 | 76 | | | | Agy. | | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050
5050 | | Stote Well | | Date Sampled | E L | 175/17E-27R
8-15-51 | -27R 1 M
8-13-52 5050 | -27R 1 M
7- 9-53 5050 | -27R 1 M
7-21-54 5050 | -27R 1 M
7-27-55 5050 | -27R 1
6-27-56 50 | -27R 1 M
7-31-57 5050 | -27R 1 M
6-26-58 5050 | -27R 1 M | -27R 1 M
7-19-60 5050 | | State Well | Temp. | | Specific conduct- | | Mineral C | Mineral Constituents in | | E & 6 | milligrams per liter
equivalents per million | milligrams per liter
equivalents per million | | | | Mineral constituents in parts per millian | neral constituents
parts per millian | ents in
lian | | |----------------------------------|--------------------|----------|-------------------|--|---|-------------------------|---------|-----------|---|---|---|---------|----------|---|---|-----------------|--------| | Number | Sompled | I | ance
(micro- | Colcium | Mogne- | Sodium | Polos. | Carbon | Bicar- | Sulfate | Chlo | .i. N | Fluo- | Boron | Sili | TDS | TOTAL | | Date Sampled Agy. | | | | ઙ | 8
W | ž | × | 8 9 | HCO ₃ | \$04 | Ū | , ° | | 60 | SiO 2 | Evop 180°C | CoCO 3 | | 175/17E-27R 1 M
10-17-61 5050 | M 76 | 2 7 9 | 1290 | 3.94 | 1.97 | 173 | 0.10 | 0 | 109 | 482
10.04 | 1.41 | 0.01 | 0.0 | 0.80 | 30 | 168 | 296 | | -27R 1 M
4-25-62 5050 | 76
0 | | 1310 | l | 8 | 163 | 0 0 0 2 | + | 1 | 500 | 1 4 60 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | ł |
0.78 | 1 | | 292 | | -27R 1 M
8-22-63 5050 | 75
0 | <u> </u> | 1370 | 1 | 1 | 172 | 1 | 1 | 1 | 1 | 1.44 | 9 | 1 | 0.70 | 1 | | 301 | | 175/18E-24J 1 M
8-28-63 5000 | ΣΟ | 8 . 2 | 1170 | 0 9 3 2 | 0 | 246
10•70
97 | 0 • 0 3 | 0 | 307 | 1 0 0 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 | 174 | 0 • 0 | .∩.
 | 96.0 | 10 | 651 | 39 | | 175/18E-350 1 M
10-27-49 5001 | M 70 | 0 | 1000 | 1 | 1 | 190 | i | 1 | 1 | 1 | 94 | 1 | 1 | - | Į, | | | | -350 1 M | ο ₂ ο σ | 0 7.6 | 1440 | 37 | 12 | 265 | 1 | 0 | 262 | 328 | 123 | 1 | 1 | 1.20 | | | 142 | | -350 1 M
7-15-59 5050 | M 74 | 4 8 6 9 | 1320 | 2.74 | 0 0 0 0 | 238
10•35
75 | 0.03 | 20 0.67 | 294
4•82
35 | 294 | 2.23 | 0000 | ٠٠ 0 | 1 • 40 | 20 | 862 | 170 | | -350 1 M
7-19-60 5050 | M 71 | 1 8 1 | 1270 | 53
2.64
19 | 0 | 235
10•22
75 | 0.03 | 0 | 303
4 • 97
36 | 307 | 2.26 | 0.01 | φ
• | 79•0 | 20 | 855 | 165 | | -350 1 M
6-19-62 5050 | M 71 | 1 8 4 | 1440 | 2.79 | 0.74 | 258
11.22
76 | 0.03 | 0.07 | 263
4•31
29 | 387
8 06
55 | 2 · 8 8 3 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 | 0 • 2 | ω | 1.60 | 20 | 948 | 177 | | -350 1 M
8-26-63 5050 | 7 7 7 1 | 8 .5 | 1,090 | 1.03 | 0.90 | 225
9•78
78 | 0.03 | 13 | 304 | 235 | 1.92
1.92 | 0 | 9 | J • 40 | 17 | 756 | 133 | | DWR 1982 | | | STAT | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | RNIA - THE | RESOURCES | AGENCY | OF CALIFO | DENIA - DE | PARTMENT | OF WATER RI | SOURCES | 1 | | | | | TABLE E-2 SEMI-CONFINED AQUIFER #### MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | - | - 2 | ŭ | | | | | | | | | |---|-------------------------|------------------|------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---| | ents in | | TDS
Camputed | Evap 180°C | 194 | 292 | 9
0
8 | 242 | 181
186 | 174 | 205 | 144 | | anstitu | parts per million | : <u>;</u> 8 | SIO 2 | 41 | 26 | 32 | t
i | 24 | 8 4 | 1 | 26 | | Mineral constituents in | parts p | Boran | 89 | 0.05 | 1.30 | 76.0 | { | 90•0 | 0.04 | 00 • 0 | 0 | | | | Fluo-
ride | T. | 0.2 | 1 • 6 | 1.4 | 1 | 0.5 | 0 • 1 | 1 | 0 | | | | Ni-
trate | NO 3 | 1 • 9
0 • 0 3 | 0 0 | 0 | 0 | 4.4
0.07
3 | 0 | 7.4 | 0.03 | | | | Chlo-
ride | ū | 0
•
•
•
•
•
•
•
•
•
• | 1.02 | 2.17 | 0.99 | 1.04 | 0.11 | 0.70 | 0 0 0 0 0 1 | | milligrams per liter
equivalents per million | percent reactance value | Sulfore | \$0 4 | 0.35 | 0.17 | 44
0 92
11 | 22
0 • 46
10 | 20 0 • 42 16 | 0.27 | 21 0 45 | 0 34
34 | | milligrams per liter
equivalents per mil | ercent rea | Bicar-
banate | нсо з | 84
1•38
51 | 3 • 26
68 | 306
5 • 02
59 | 159
2.61
58 | 1.16 | 149
2•44
87 | 142
2•24
64 | 0000 | | E W | | Carbon. | co 3 | 0 | 0.37 | 0.00 | 0.47 | 0 | 0 | 0 | 0 | | | | Patos-
sium | × | 0.03 | 0.03 | 0.03 | 0 | 0.03 | 0.03 | 0.11 | 0 | | Mineral Constituents in | | Sodium | Na | 36.1.57 | 101 | 168
7 • 30
84 | 91
3.96
98 | 41
1.78
66 | 61
2.65
92 | 20
0.87
23 | 0.35 | | Mineral C | | Magne-
sium | Mg | 0.08 | 0.16 | 9 0 0 6 6 | 0 | 0 | 0 | 0.90 | 0 | | | | Calcium | ვ | 1.10 | 0.30 | 0.85 | 0.10 | 0.90 | 0.20 | 1.97 | 1,60 | | Specific | ance | (micro- | at 25°C) | 303 | 520 | 818 | 435 | 307 | 275 | 394 | 500 | | | | I _Q | | 7.5 | 8 . 6 | 8.5 | ω | 7.5 | 7.8 | 7.9 | 7.7 | | | Temp. | Sampled | | 7.1 | 6 8 | 1 | 70 | 1 | 99 | 69 | 1 | | State Well | Number | - | Time Coll. | 175/19E- 1G 1 M
8-14-63 5000 | 17S/19E-16H 1 M
8- 2-55 5050 | 175/19E-21P80 M
8- 3-55 5050 | 175/19E+27A 1 M
8-19-63 5000 | 175/20E- 2M 1 M
8-28-63 5000 | 17S/20E-22P 1 M
8-27-63 5000 | 17S/21E- 1J80 M
10- 7-63 5050 | 175/21E-17P 1 M
8-13-63 5000 | | | | | | | | | | | | | | U CaCO 3 TOTAL | State Well | | Tamp. | | Specific
conduct- | | Minerol Co | Minerol Constituents in | | E 6 0 | milligroms per liter
equivolents per million
percent reoctonce volue | milligroms per liter
equivolents per million
percent reactonce value | | | | Minerol constituents in ports per million | nerol constituents
ports per million | ents in | | |----------------------------------|-----------------|---------|---------|----------------------|-------------------|------------------|---|---------|-----------|--|--|--------------------|-------------|-------|---|---|------------|---------| | NOMber | | Sampled | I | (micro- | Calcium | Magne | Sodium | Patas- | Carban | Bicor- | Sulfate | Chlo | .: N | Fluo- | Boran | ± 8 | Camputad | TOTAL | | Dote Sampled
Time | Agy.
Coll. | | | mhos
at 25 C) | 3 | 5 W | 2 | | 9 | HCO ₃ | 504 | ō | ν
0
2 | L | 80 | sio 2 | Evap 180°C | 00°CO 3 | | 105/14E-11J
10-22-64 5 | 5000 | 1 | 8 5 | 331 | 1 | 8 | 1 | 1 | 0.13 | 151 | 1 | 12 0 34 | 1 | 1 | 1 | 1 | | 112 | | 10S/14E-19R 1
10- 7-64 500 | 5000
5000 | | 80
• | 399 | å t | 1 | 1 | 1 | 0.13 | 121 | 1 | 1.30 | 1 | ł | 1 | 1 | | 95 | | 10S/14E-33J 2 M
10-18-64 5000 | 2
000
000 | 68 | 8 • 4 | 372 | i | 1 | 1 | 1 8 | 0.13 | 98 | 1 | 1 5 6 | §
1 | 1 | 1 | 1 | | 112 | | 11S/14E-30H 1 M
10- 7-64 5000 | 1 M | 67 | 7.9 | 316 | 21
1,05
35 | 0.41 | 1
6
8
8
8 | 0 10 | 0 | 133 | 4 80 0 | 21
0•59
20 | 0 10 | 1 | 00.0 | 1 | 159 | 73 | | 12S/11E-13D 2 M
8-13-51 5000 | 2 M | 1 | 7.5 | 1590 | 1 | 1 | 286 | 1 | 0 | 192 | 450 | 100 | 1 | ŧ | 2.40 | 1 | | 196 | | 12S/11E-23R 2 M
758 5050 | 2 M | 1 | 8 | 2520 | 118
5.89
23 | 62
5 10
19 | 348
15•13
58 | 0 • 0 5 | 0 | 154
2.52
10 | 512
10.66 | 459
12.94
49 | 2.1 | 0.3 | 3.70 | 30 | 1613 | 550 | | 12S/11E-25G 1 M
8-14-51 5000 | 1 M | 1 | 7.3 | 2570 | 127 | 58 | 365 | 0 | 0 | 196
3•21 | 583 | 415 | 1 | 1 | 3 • 90 | 1 | | 556 | | 12S/12E-18D 1 M
8-14-51 5000 | 1 M | 8 2 | 7 • 8 | 2010 | 1 | 1 | 385 | 1 | 0 | 158 | 550 | 196 | 1 | 1 | 2.40 | 1 | | 172 | | -18D 1 M
4-10-56 5050 | 1 M | 80 | 7.9 | 2134 | 2.25 | 18
1•48 | 397
17•26
82 | 0 8 9 | 0 | 165
2.70
13 | 581
12•10
58 | 213 | 0.1 | 0 4 | 1.90 | 32 | 1373 | 187 | | 12S/12E-19N 1 M
8-13-51 5000 | 1 M | 81 | 7 • 8 | 1390 | 1 | 1 | 242 | 1 | 0 | 218 | 400 | 2.37 | 1 | 1 | 3.40 | 1 | | 180 | | DWR 1982 | | | | STATE | STATE OF CALIFORN | RNIA - THE | IA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | AGENCY | OF CALIFC | ORNIA DE | PARTMENT | OF WATER R | ESOURCES | | | | | | # TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | _ | | | | | | | | | | | | | |--|--------|-----------------|------------|------------------------|--------------------------|---|---|---------------------------------|--------------------|--------------------------|--------------------|-----------------------|--------------------------| | | TOTAL | hardness | CoCO 3 | 173 | 180 | 8 8 8 | 87 | 464 | 469 | 53 | 52 | 24 | 75 | | ents in
ion | TO S | Camputed | Evap 180°C | 1513 | | 869 | 80
R | | 1689 | 161 | 164 | 174 | 150 | | parts per million | , iii | <u> </u> | SIO 2 | 32 | 1 | 51 | 27 | 1 | 36 | 65 | 70 | 69 | 48 | | Mineral constituents in parts per million | | Boran | 8 | 1.25 | 2.90 | 0.43 | 0.40 | 2 • 90 | 3 • 60 | 00.0 | 0000 | 00 • 0 | 0.13 | | | dolla | ride | F | 1 | 1 | 0.2 | 0 • 2 | 1 | 0 | 0.2 | 0 • 3 | 0.1 | 0.0 | | | Ž | trate | NO 3 | | 1 | 1.9 | 1 • 8
0 • 0 3 | 1 | 0 • 2 | 1 • 5
0 • 0 2
1 | 0.6 | 2 • 6
0 • 0 4
2 | 2.0 | | | Chla | - Pir | ū | 181 | 180
5•08 | 1.78 | 1.78 | 280 | 272 7.67 29 | 17 | 18 0 51 28 | 0.51 | 0.51
27 | | milligrams per liter
equivalents per million
percent reactance volue | | Sulfate | 504 | 693 | 600 | 293 | 282 5 87 45 | 713 | 730
15.20
58 | m 9 m | 0 | 0.10 | 0 • 10 | | milligrams per liter
equivalents per mill
percent reactance v | Birny | banate | нсо з | 172 | 176 | 5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 329
5•39
41 | 213 | 217 | 1.25 | 1.28 | 1.29 | 78
1.28
67 | | E & 5 | 1 - C | ate ate | co 3 | 0 | 0 | 0.13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | _ | Potos | Enis
Enis | к | - | 1 | 0 0 0 5 | 0.03 | 0 | 0.10 | 0.080 | 0.080.4 | 0.10 | 0.08 | | Mineral Canstituents in | | Sodium | ₹ | 434 | 440 | 266
11.57
87 | 266
11.57
87 | 385 | 385 | 0.16 | 0.70 | 0.74 | 0.16 | | Mineral C | Money | sium | Mg | 1.56 | ! | 0.41 | 0 | 51 | 4
700
18 | 0 • 41 | 0.33 | 0.33 | 0.25 | | W | | Calcium | 3 | 38 | 1 | 1.30 | 1.25 | 102 | 4
6.4
4 8 H | 0.05 | 0.70 | 15
0.75
39 | 0.85 | | Specific
conduct- | auce | (micro-
mhos | at 25°C) | - | 2130 | 1280 | 1290 | 2470 | 2500 | 191 | 194 | 194 | 209 | | | | = _ | | 7.8 | 7.6 | δ
4 | 8.2 | 7.3 | 7.9 | 7.6 | 7 • 8 | 7.8 | 7.8 | | Temp. | when | Sampled
° F | | 1 | 83 | 70 | 77 | 79 | 80 | 70 | 72 | 71 | 72 | | | | Agy. | Coll. | 1 M
5702 | 1 M
5000 | 2 M
5050 | 2 M
5050 | 3 M | M 1 M
5050 | R 1 M
5050 | 3 1 M
5128 | 5128 | 1 M
5128 | | State Well | Number | pled | | 2E-21E
5-48 5 | -21E | 60. | - 25J | -31M | | 57 E | - 5R 1
6-58 512 | 10 | - 5R
| | State | | Date Sampled | Time | 125/12E-21E
2- 5-48 | -21E 1 M
8-14-51 5000 | 12S/12E-25J 2 M
7-22-60·5050 | -25J 2 M
8-25-61 5050 | 12S/12E-31M 1 M
8-14-51 5000 | -31
4-10-56 | 12S/17E- 5R
7-25-57 5 | 8 | 7-23-59 | - 5R 1 M
8-23-60 5128 | | | _ | | _ | | | | | | | | | | | | | | | m | 30 | m | 0 | 0 | | | .0 | <u>,0</u> | -4- | |--|------------------|-----------------------|------------------------|----------------|------------------------|------------------------|------------------------|------------------------------|-----------------------------|-----------------------------|------------------------------|--------------------| | | TOTAL | 2000
CaCO 3 | 53 | 56 | 118 | 200 | 269 | 147 | 167 | 106 | 186 | 144 | | ents in
Isan | TDS | Evap 180°C | 184 | | | | | | | | | 1050 | | neral constituents
parts per millian | : <u>‡</u> 8 | SIO 2 | 83 | 1 | 1 | ŀ | + | 1 | - 1 | 1 | 1 | ω
ω | | Mineral constituents in
parts per millian | Boron | & | 0.05 | 90•0 | 1.60 | 4.20 | 3.10 | 3.10 | 09•0 | 2 • 80 | 2.70 | 2.20 | | | Fluoride | IL. | 0.2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0
•
© | | | rate. | S ON | 2.03 | 1 | 1 | ł i | 1 | 1 | 1 | 1 | ł | 0 0 0 | | | e pir | ō | 0.48 | 17 | 1.47 | 342
9• 6 4 | 90 | 3.16 | 3.58 | 2.26 | 2.79 | 80
2.26
14 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 50 4 | 4 0 0 0 8 | 1 | 359 | 742 | 484
10•08 | 458
• 54 | 477 | 519 | 542 | 480
9.99
64 | | milligrams per liter
equivalents per mil
percent reactance v | Bicar-
banate | HCO 3 | 78
1.28
68 | { | 220 | 218 | 170 | 220 | 206
3 • 38 | 204 | 212 | 187
3•06
20 | | E & O. | Carban-
ate | 8 | 0 | 1 | 0 | O | 0 | 0 | 0 | 0 | 0 | 0.30 | | | Patas. | ¥ | 0.10 | 0 0 8 | ł | 1 | 1 | 1 | i | 1 | 1 | 0 0 0 | | Mineral Canstituents in | Sodium | Ž | 16
0.70
38 | 17 | 215 | 415 | 205 | 295
12•83 | 295 | 310 | 320 | 294
12•78
81 | | Minerol C | Magne-
sium | Wg | 0.25 | 1 | 11 0.90 | 5.10 | 2 29 | 15 | 18 | 10 | 22 | 1.32 | | | Calcium | 3 | 16
0.80
43 | 1 | 1.45 | 4
8 8
9 9 | 2.99 | 34 | 37 | 26 | 38 | 31.1.55 | | Specific conduct- | (micro- | mhos
at 25°C) | 195 | 198 | 1270 | 2690 | 1480 | 1640 | 1650 | 1670 | 1740 | 1590 | | | Ŧ, | | 8 • 0 | 1 | 7.7 | 7.3 | 7.2 | 7.5 | 7.5 | 88 | 7.9 | 8 | | Temp. | Sampled | <u></u> | 72 | 89 | 82 | 81 | 1 | 82 | 48 | 80 | 86 | 1 | | | | Agy.
Coll. | 1 M
5128 | 5R 1 M
5128 | 4N 1 M
5000 | 5N 1 7
5000 | 9R 1 M
5000 | 1 M
5000 | 5000 | 5000 | 5000 | 5050 | | State Well
Number | | Dote Sampled.
Time | 12S/17E- 5R
7-25-61 | 8-13-62 | 13S/12E- 4N
8-14-51 | 13S/12E- 5N
8-14-51 | 13S/12E- 9R
8-14-51 | 13S/12E-10N 1
8-14-51 500 | 135/12E-22Q 1
8-14-51 50 | 13S/12E-24N 1
8-14-51 50 | 135/12E-260 3
8-15-51 500 | 5-58 | | | | ٥٥ | 125/ | ∞ | 135/ | 135/ | 135/ | 135/ | 135/ | 135/ | 135/ | m
 | # TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER | | TOTAL | \$0 | C°C0 3 | 200 | 238 | 177 | 435 | 354 | 373 | 384 | 459 | 388 | 415 | |--|-----------------|-------------------|------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|---------------------------------|---|----------------------------|---|--------------------------| | ants in | Computed | 0 | Evop 180 C | | | | | 3064 | | 3171 | 3272 | 3138 | | | neral constituents
parts per million | Sili | 3 | Sio 2 | - | - | 1 | 1 | 37 | - | 74 | w
w | 47 | 1 | | Mineral constituents in parts per million | Boron | | æ | 2.60 | 3 • 80 | 3.02 | 1.10 | 2 • 54 | 1 • 80 | 1 • 30 | 1.50 | 1.60 | 1.90 | | | Fluoride | | - | 1 | 1 | 1 | 1 | 0 | 1 | ; | •
• | 0.1 | - | | | N:
trate | | NO3 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 0 9 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 | | | Chlo | i | ō | 3.95 | 3.67 | 131
3•69 | 1020 | 1330 | 1300 | 1390
39•20
75 | 1440 | 1380
38•92
76 | 742 | | milligrams per liter
equivolents per million
percent reactance value | Sulfate | | 504 | 584
12.16 | 713 | 984 | 504 | 520
10.83 | 502 | 523
10.89
21 | 509
10.60
20 | 477
9.93
19 | - | | milligrams per liter
equivolents per mill
percent reactance v | Bicor- | | HCO 3 | 211 | 233 | 214 | 162 | 145
2 • 38 | 136 | 138
2.26
4 | 136 | 139
2•28
4 | 1 | | įE & č | Carbon- | 1 | CO 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Potas- | | ¥ | ł | l | 1 | i | 0.13 | 1 | 0.18 | 0.10 | 0.15 | + | | Mineral Constituents in | Sodium | | ₽ | 355 | 390 | 395 | 33.48 | 975
42•39
85 | 970 | 1000 | 1060 | 1010483.91 | 1140 | | Mineral C | Magne | | Wg | 1.89 | 2.55 | 1.73 | 31. | 2 2 3 8 5 5 5 5 | 1.97 | 2 - 14 | 2
•
•
•
•
• | 1.32 | 1 | | Minero | Colcium | | 3 | 2.10 | 2.20 | 1 . 80 | 123 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 110 | 111 5.54 11 | 1195.94 | 1296 • 44 | 1 | | Specific canduct- | ance
(micro- | mhos | (2 CZ 1B | 1930 | 2160 | 2040 | 4290 | 5140 | 5130 | 5330 | 5360 | 5390 | 5590 | | | Ξ, | 1 | | 7.1 | 7.5 | 7.5 | 7.4 | ω
• | 7.5 | 7.8 | 7.5 | 89
-
12 | 1 | | Temp. | when | | | 48 | 78 | 88 | 98 | 88 | 88 | 88 | 8 6 | 98 | 88 | | State Well | | Date Sampled Agy. | 1 | 13S/12E-35N 1 M
8-15-51 5000 | 13S/12E-36D 2 M
8-15-51 5000 | 13S/12E-36M 1 M
8-15-51 5000 | 13S/13E- 9E 3 M
8-14-51 5000 | 13S/13E- 90 1 M
8-23-51 5000 | 135/13E-14N 1 M
8-14-51 5000 | -14N 1 M
8-11-52 5050 | -14N 1 M
7- 7-53 5050 | -14N 1 M
7-20-54 5050 | -14N 1 M
7-28-55 5050 | | ۹, | |----------| | ARE/ | | α | | 4 | | _ | | | | _ | | RA | | OZ. | | U | | a | | MADE | | ₹. | | _ | | | | • | | _ | | O | | z | | S | | ш | | FRESNO | | li. | | - | | | | | | | TOTAL | | 412 | 326 | 38
83 | 271 | 344 | 153 | 239 | 122 | 103 | 206 | |--|-----------------|----------------------|------------------------|------------------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------|------------------------------|-----------------------|------------------------------| | ents in
ion | Computed | Evap 180°C | | | | | | | | | | 1487 | | neral constituents
parts per million | ilis 8 | SIO 2 | 1 | ŀ | 1 | 1 | 1 | ł | ł | 1 | + | 75 | | Mineral constituents in
parts per million | Boron | æ | } | 1.50 | 0 • 10 | 0 8 | 1.70 | 3 • 20 | 1.90 | 1.90 | 0 • 70 | 1 • 42 | | | Fluoride | u. | 1 | 1 | - | ł | 1 | 1 | i | 1 | ł | ω
• | | | N: | ° 0 Z | ! | ł | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 0 0 3 | | | Chlo- | ō | 718 | 1040 | 1160 | 19.23 | 1100 | 139 | 2.79 | 191 | 3.02 | 291
8 • 21
37 | | milligrams per liter
equivalents per million
percent reoctance value | Sulfate | 504 | 1 | 505 | 395 | 370 | 507 | 13.93 | 630 | 626 | 436 | 478
9 • 95
45 | | milligrams per liter
equivalents per million
percent reoctance value | Bicar- | HCO 3 | 1 | 148 | 164 | 212 | 168 | 218 | 221 | 2 6 1
4•28 | 231 | 228
3•74
17 | | Eĕă | Carbon- | 8 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Potas- | ¥ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | } | 0.15 | | Minerol Canstituents in | Sodium | ž | 1070 | 840
36 • 52 | 810 | 590
25• 6 5 | 870 | 425
18•48 | 305 | 435
18•91 | 315 | 450
19•57
82 | | Minerol Co | Magne- | W 8 | 1 | 1.73 | 1.81 | 1.32 | 20 | 1,40 | 32. | 9 0 • 7 4 | 0.41 | 1.32 | | | Colcium | ß | 1 | 96 | 117 | 4 • 0 9 4 • 0 9 4 • 0 9 | 105 | 1
6
6
8 | 2.15 | 34 | 1
6 3
55 3 | 2.79 | | Specific conduct- | ance
(micro- | mhos
at 25 C) | 5660 | 4380 | 4540 | 3110 | 4540 | 2140 | 1870 | 2160 | 1620 | 2300 | | | Ξ, | 2. | 1 | 7.5 | 7.5 | 7.3 | 7.4 | 7.6 | 7.6 | 7 • 8 | 7.4 | 8 1 | | Temp. | when | o
Tr | 87 | 87 | 85 | 8 2 | 87 | 87 | 87 | 8 9 | 1 | 1 | | = 1 | | Coll. | 4N 1 M
5050 | 50 1 M
5000 | 5R 1 M
5000 | 5N 1 M
5000 | 7P 1 M
5000 | 0R 1 M
5000 | 2N 2 M
5000 | 3N 2 M
5000 | 7N 1 M
5000 | 0D 1 M
5000 | | State Well | 20110 | Date Sampled
Time | 3S/13E-14N
10-11-55 | 135/13E-16N 1
8-14-51 500 | 135/13E-16R 1 M
8-14-51 5000 | 135/13E-25N 1
8-15-51 50 | 135/13E-27P 1
8-15-51 50 | 13S/13E-30R 1
8-15-51 50 | 135/13E-32N 2 M
8-15-51 5000 | 135/13E-33N 2
8-15-51 500 | 135/14E- 7
8-15-51 | 135/14E-10D 1
8-23-51 500 | # CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | State Well | Temp. | | Specific
conduct- | | Mineral Co | Mineral Constituents in | | E & B | milligrams per liter
equivalents per mill
percent reactance v | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in
ports per million | neral constituents
parts per million | nts in
on | | |---------------------------------|----------|-----|----------------------|-------------------|---------------------------------|-------------------------|--------|----------------|---|--|----------------------|--------------------|---------------|--|---|--------------|-----------| | | Sampled | Ξ. | ance
(micra- | Calcium | Magne-
sium | Sodium | Potas. | Carbon-
ate | Bicar-
bonate | Sulfate | Chloride | Ni-
trote | Fluo-
ride | Boran | ilis 8 | Computed | TOTAL | | Date
Sampled, Agy. | a a | | mhas
at 25°C) | 3 | W | ž | × | 00 3 | HCO 3 | 50 4 | ō | ν
0
2 | 4 | 60 | SIO 2 | Evap 180°C | 03 COCO 3 | | 145/12E- 2N 1 M
8-15-51 5000 | 8 5 | 0 8 | 3280 | 3.04 | 2.96 | 6009 | 1 | 0 | 250 | 10.39 | 18+05 | 1 | 1 | 5.70 | 1 | | 300 | | 145/12E- 30 1 M
8-15-51 5000 | 9.4 | 7.1 | 4410 | 1417.04 | 7.65 | 30.44 | 1 | 0 | 205 | 780 | 925 | 1 | ł | 5.20 | 1 | | 735 | | 14S/12E-11F 1 M
8-15-51 5000 | 85 | 7.2 | 2550 | 2.94 | 3.70 | 445 | 3 | 0 | 211 | 741 | 272 | 1 | 1 | 04•4 | ł | | 332 | | 145/12E-12N 1 M
8-15-51 5000 | 84 | 7.5 | 2310 | 2.59 | 23 | 425
18•48 | 1 | 0 | 220
3.61 | 13.49 | 232 | 1 | 1 | 4.10 | i | | 224 | | -12N 1 M | 85 | - | 2400 | 2 • 40
10 | 30 2.47 | 430
18•70
79 | 0.10 | 0 | 220
3.61
15 | 640
13 • 32
56 | 240 | 1.4 | 1 | 4•10 | 1 | 1506 | 244 | | 145/12E-13N 1 M
8-16-51 5000 | 80
17 | 7.5 | 2100 | 3.19 | 3 • 42 | 389 | 1 | 0 | 3.61 | 742 | 190 | 1 | 1 | 4.10 | 1 | | 332 | | 10-16-51 5001 | 84 | 1 | 2300 | 3 . 39 | 3
5
1
1
1
1
1 | 400
17•39
71 | 0.13 | 0 | 220
3•61
15 | 730 | 190
5•36
22 | 1.6 | - | 1 | £ | 1546 | 347 | | 145/12E-14D 1 M
8-23-51 5000 | 80 | 7.9 | 4200 | 186
9.28
21 | 0 • 6 6 | 800
34•78 | 0.23 | 0 | 290
4•75
11 | 925
19.26
45 | 598
16.86
40 | 98
1
58
4 | 1 | 8 • 91 | 43 | 2818 | 497 | | 145/12E-80280 M
9-20-58 5050 | 74 | 7.4 | 16900 | 28 • 34
15 | 294
24•18
13 | 3070
133.48
72 | 19 | 0 | 110 | 0.04 | 6650
187.53
99 | 8 • 5 | 0 | 21.00 | 24 | 10711 | 2628 | | 145/13E- 7N 1 M
8-15-51 5000 | 86 | 7.5 | 1900 | 2 89 | 2.63 | 320 | ŧ | 0 | 3.33 | 687 | 98 | 1 | 1 | 2 • 70 | 1 | | 276 | | State Well | Temp. | | Specific
canduct- | | Mineral Co | Mineral Constituents in | | E & | milligrams per liter
equivalents per million | er liter
ser million | | | | Mineral constituents in ports per million | neral constituents
ports per million | ents in | | |---------------------------------|---------|-------|----------------------|-------------------|-----------------|-------------------------|----------|-----------|---|--|--|---------|-------------|---|---|---|----------| | Number | when | | ance | | Magne- | - | Patas. | ė | Biar- | fance volue | Chlo | ż | Flue | | Sili: | <u>sor</u> | TOTAL | | Date Sampled Agy. | Sampled | ۵. | mhos | English | E | Enipos | E O | 8 | banate | e de la compansión l | - join | trate | - Pir | Boron | 8 | Computed | hardness | | Time Coll. | | | at 25°C) | ვ | Mg | Š | ¥ | co 3 | нсо з | 504 | ō | NO 3 | L | B | 510 2 | Evap 180°C | CoCO 3 | | 145/13E- 8N 1 M
8-15-51 5000 | 8 | 7.4 | 1880 | 1.75 | 1.56 | 365 | 1 | 0 | 219 | 607 | 99 | ł | 1 | 3.10 | 1 | | 166 | | 145/13E-12N 1 M
8-15-51 5050 | 48 | 7.4 | 1110 | 0.95 | 0.49 | 210 | 1 | 1 | 268 | 268
5.58 | 1.21 | i | 1 | 0 80 | 1 | 678 | 72 | | -12N 1 M
8-11-52 5050 | 84 | 8 4 | 1300 | 1.05 | 0.58 | 260
11.30
87 | 0.10 | 0 | 253
4 • 15
33 | 302 | 78
2.20
17 | 1.5 | o
• | 1.90 | 6.3 | 863 | 82 | | -12N 1 M | 48 | 7.7 | 1320 | 22
1.10 | 0 0 0 0 | 263
11•44
86 | 0.10 | 0 | 257
4.21
32 | 309
6 4 9
4 9 | 86
2.43
19 | 0 • 0 | 0 0 | 2 • 50 | 47 | 869 | 3 | | -12N 1 M | 88 | 8 • 6 | 1180 | 18 0.90 | 0 28 4 | 244
10•61
87 | 0 0 0 0 | 14 0 • 47 | 271 | 274
5 • 70
47 | 1
1
1
1
1
1
1
1
1
1 | 1.9 | 0 0 | 06.0 | 61 | 813 | 74 | | -12N 1 M
7-28-55 5050 | 48 | i | 1330 | 1 | 1 | 259 | 1 | - | 1 | 1 | 88
2•48 | 1 | 1 | 1.20 | 1 | | | | -12N 1 M
6-26-56 5050 | 82 | 1 | 1190 | 1 | 1 | 228
9•91 | 1 | 1 | 1 | Į. | 1.72 | 1 | 1 | 06 • 0 | ł | | 78 | | -12N 1 M | 88 | 1 | 1280 | 1 | 1 | 259 | 1 | 1 | 1 | 1 | 8 8
2 • 4 8 | 1 | 1 | 1.20 | ł | | 78 | | -12N 1 M
6-24-58 5050 | හ
න | 7 • 7 | 1150 | 19
0 • 95
8 | 4 6 6 | 237
10•30
88 | 0.10 | 0 | 262
4.29
37 | 261 5 • 43 46 | 70
1.97
17 | 0.01 | 0
•
0 | 1.10 | 79 | 790 | 4 | | -12N 1 M
7-14-59 5050 | 92 | 8 • 1 | 1290 | 20
1,00
8 | 0
•
4 & & | 262
11•39
89 | 0.10 | 0 | 261
• 28
33 | 293
6 • 10
47 | 2.54 | 1.7 | 0 | 1.40 | 49 | 88
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 67 | | DWR 1982 | | | STATE | STATE OF CALIFORN | INIA - THE | RESOURCES | AGENCY C | F CALIFO | RNIA - DE | IA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | JE WATER RE | SOURCES | | | | | | # TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER | | TOTAL | coco 3 | 69 | 71 | 165 | 414 | 377 | 781 | | 401 | 390 | 424 | |--|------------------|-------------------|---------------------------------|--------------------------|--------------------------|---------------------------------|--------------------|---------------------|--------------------------|---------------------------|--------------------------|--------------------------| | ants in
ian | Computed | Evop 180°C | 8 8 8 8 8 8 | 900 | | | 1509 | 2045 | | | | | | neral constituents
ports per millian | ilis 8 | SIO 2 | 63 | o
o | 1 | 1 | 44 | 7 7 7 | i | 1 7 | 1 | 1 | | Mineral constituents in ports per millian | Boron | 6 | 1.12 | 0 • 93 | 1.30 | 3.20 | 9 • 60 | 2.20 | 2.60 | 1 | 3.20 | 3 • 30 | | | Fluoride | ш | 9•0 | 4.0 | I | 1 | 0
• | 0 4 | i | { | 1 | 1 | | | Ni-
frote | ε
0
2 | 1.7 | 1.0 | 1 | 1 | 0.03 | 0.01 | 1 | 1 | 1 | ! | | | Chlo- | ū | 2.54 | 2 • 3 1
1 8 | 586 | 3.30 | 114
3•21
14 | 146
4•12
13 | 3.10 | 3.10 | 3.41 | 120 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 50 4 | 287
5 • 98
47 | 292 | 1 | 797 | 769
16.01
70 | 1150
23.94
76 | ! | 1 | 1 | - | | milligrams per liter
equivalents per milt
percent reactance v | Bicar-
banate | нсо з | 254
4•16
33 | 265 | 1 | 225 | 216 | 220
3.61
11 | 1 | 1 | 1 | - | | E & Q | Carbon- | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Ĭ, | 1 | - | | | Patas.
sium | ¥ | 0.08 | 0.13 | 1 | 1 | 0.10 | 0.18 | l | 1 | 1 | * | | Mineral Constituents in | Sodium | ž | 262
11•39
89 | 267
11.61
88 | 556 | 355 | 350
15.22
67 | 348
15•13
49 | 340 | 336 | 342 | 330 | | Mineral C | Mogne-
sium | Wg | 0
4 m w | 0.41 | 1 | 57 | 54
4•44
19 | 120
9.87
32 | 1 | 1 | 1 | - | | | Calcium | ß | 1.05 | 1.00
1.8 | 1 | 3.59 | 3.09 | 115
5.74
19 | 1 | { | - | - | | Specific
conduct- | (micro- | mhos
at 25°C) | 1250 | 1240 | 2930 | 2170 | 2110 | 2690 | 2100 | 2090 | 2110 | 2150 | | | Ξ. | | 7.8 | & | 1 | 7.8 | 7.9 | 7.6 | 1 | 1 | 1 | 1 | | Тепр. | Sampled | , | 80 | 81 | 87 | 88 | 88 | 86 | 1 | 88 | 88 | 88 | | State Well | - | Date Sampled Agy. | 14S/13E-12N 1 M
7-19-60 5050 | -12N 1 M
4-26-62 5050 | -12N 1 M
8-13-63 5050 | 14S/13E-21N 1 M
8-15-51 5050 | -21N 1 M | 7- 7-53 5050 | -21N 1 M
7-28-55 5050 | _21N 1 M
10-11-55 5050 | -21N 1 M
6-26-56 5050 | -21N 1 M
7-31-57 5050 | | State Well | Temp | | Specific conduct- | | Mineral Co | Mineral Constituents in | | Eĕĕ | milligrams per liter
equivalents per million
percent reactance value | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral constituents in parts per million | neral constituents
parts per million | ents in
lion | | |---------------------------------|---------|-------------|-------------------|-----------------|------------------|-------------------------|------------------|----------------|--
--|--|---------------|---------------|---|---|-----------------|-----------| | | Sampled | Ξ. | (micro- | Calcium | Magne-
sium | Sodium | Potas- | Carban-
ate | Bicar-
bonate | Sulfate | Chlo- | Ni-
trate | Fluo-
ride | Boron | Sili: | Computed | TOTAL | | Date Sampled Agy.
Time Coll. | | | mhas
ot 25 C) | კ | 6
W | 2 | ~ | 00 | нсо з | 504 | ō | NO 3 | u. | 60 | SIO 2 | Evap 180°C | 03 CaCO 3 | | 145/13E-21N 1 M
6-25-58 5050 | 88 | 7.6 | 2300 | 3.89
16 | 84
6.91
28 | 322
14•00
56 | 0.15 | 0 | 210 | 874
18•20
71 | 3 • 9 5
1 5 | 1.7 | 9 | 3.50 | 46 | 1659 | 540 | | -21N 1 M
7-14-59 5050 | 80 | 8 . 2 | 2210 | 3.54 | 73 | 342
14•87
61 | 0.10 | 0 | 246
4.03
16 | 818
17.03
69 | 123
3.47
14 | 0 .2 | 0 4 | 3.00 | 43 | 1599 | 477 | | -21N 1 M
7-19-60. 5050 | 8 5 | 8 • 0 | 2540 | 132 | 140
11.51 | 274
11•91
40 | 0.13 | 0 | 222
3•64
12 | 1120 | 132
3•72
12 | 4.6 | 0 • 2 | 3.10 | 21 | 1971 | 906 | | -21N 1 M | 06 | 8 . 4 | 1760 | 1.90 | 23 | 320
13.91
78 | 0
0
0
0 | 6
0.20
1 | 165
2.70
16 | 584
12•16
71 | 74
2.09
12 | 2 • 2 0 • 0 4 | 0 • | 1 • 90 | 4 | 1178 | 190 | | -21N 1 M
6-19-62 5050 | 91 | 1 | 1760 | 1 | 1 | 298
12•96 | 0 8 9 | 1 0 | 1 | 612 | 76 | 1 | i
i | 1 • 80 | ‡ | | 208 | | 145/13E-25N 1 M
8-15-51 5050 | 80 | 7.3 | 1990 | 34 | 13 | 375 | 1 | 1 | 172 | 637 | 141
3.98 | i | i | 1.60 | 1
8 | | 139 | | -25N 1 M
8-11-52 5050 | 06 | ω
•
π | 1970 | 34
1.70
8 | 17 | 390
16•96
84 | 0 0 | 0.20 | 160 | 622
12.95
65 | 141
3•98
20 | 0.03 | 9
• | 2 • 70 | 0 4 | 1337 | 155 | | 7- 7-53 5050 | 06 | 7.6 | 1900 | 1.60 | 1,40 | 366
15.91
84 | 0.10 | 0 | 178
2.92
15 | 591
12.30
64 | 139
3•92
20 | 1.1 | 9 | 1.10 | 47 | 1266 | 150 | | -25N 1 M
7-20-54 5050 | 89 | 8 • 1 | 1930 | 1.75 | 1.23 | 365
15.87
84 | 0
0
0 | 0 | 175
2•87
15 | 592
12.33
64 | 139
3•92
20 | 1.7 | 0 | 1.50 | 4 | 1285 | 149 | | 7-28-55 5050 | 06 | 1 | 1940 | 1 | i | 387 | 1 | 1 | 1 | 1 | 139 | 1 | 1 | 1.90 | 1 | | | | DWR 1982 | | | STATE | OF CALIFOR | NIA - THE F | RESOURCES | AGENCY C |)F CALIFO | RNIA - DE | PARTMENT (| STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | ESOURCES | | | | | | # CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | TOTAL | 25
CaCO 3 | 149 | 192 | 198 | 272 | 297 | 283 | 392 | 517 | 533 | 155 | |--|-----------------|-------------------|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------| | ants in
ian | Computed | Evap 180°C | | | | 1392 | 1484 | 1483 | 1636 | | | | | neral constituents
parts per millian | ± 8 | SIO 2 | 1 | į. | 1 | 94 | 47 | 94 | 8 4 | 1 | ł | - | | Mineral constituents in
parts per millian | Boran | ω | 1 | 1.43 | 1.90 | 2.10 | 2 • 50 | 2.70 | 1.90 | 2.40 | 2.20 | 2.50 | | | Fluoride | u. | 1 | 1 | 1 | 9 | 9 | 0 • 7 | 4.0 | 1 | 1 | : | | | Ni-
trate | ν
0
2 | 1 | ł | 1 | 4.3 | 7.0 | 6.2 | 7 • 8
0 • 13 | 1 | 1 | | | | Chlo | ō | 130 | 156 | 1.27 | 175
4•94
23 | 197 | 178 | 222 6 26 25 | 232 | 218 | 3.72 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | 804 | 1 | ŀ | 1 | 614
12•78
61 | 657
13.68
61 | 691
14•39
64 | 741 | 882
18•36 | 1 | 749 | | milligrams per liter
equivalents per mill
percent reactance v | Bicor- | HCO 3 | 1 | 1 | 1 | 198
3 • 25
15 | 187
3•06
14 | 180
2•95
13 | 151
2.47
10 | 1 | 1 | 156
2•56 | | E & & | Carban- | ် ဗွ | | 1 | 1 | 0 | 0 | 0 | 0.27 | ł | i | 0 | | _ | Potas- | ¥ | 1 | ł | 1 | 0.10 | 0 0 0 | 0.08 | 0 0 0 | 6.10 | 1 | - | | Mineral Constituents in | Sodium | ž | 365 | 377 | 366 | 362
15•74 | 383
16.65 | 377 | 408
17•74
69 | 384 | 390 | 425
18•48 | | Minerol Co | Magne- | \$ | • | 1 2 | ! | 2 94
2 80
13 | 3.04 | 36 2.96 13 | 54
4.44
17 | 1 | • | 1.40 | | | Calcium | 3 | 1 | 1 | ; | 53
2.64
12 | 58
2.89
13 | 54 2.69 | 68
3.39
13 | 1 | 1 | 34 | | Specific
conduct- | ance
(micro- | mhos
at 25°C) | 1860 | 2010 | 1960 | 2120 | 2150 | 2200 | 2410 | 2610 | 2600 | 2170 | | | I, | ۵ | 1 | 1 | 1 | 7.8 | 8 • 2 | 8 • 2 | 4 • 8 | 1 | 1 | 7•4 | | Тетр. | Sampled | | 89 | 88 | 89 | 88 | 89 | 1 | 88 | 87 | 86 | 92 | | State Well | Jaguioki | Date Sampled Agy. | 145/13E-25N 1 M
10-11-55 5050 | -25N 1 M
6-29-56 5050 | -25N 1 M
7-31-57 5050 | -25N 1 M
6-25-58 5050 | 7-14-59 5050 | -25N 1 M
7-19-60 5050 | -25N 1 M
8-25-61 5050 | -25N 1 M
4-26-62 5050 | -25N 1 M
8-13-63 5050 | 145/13E-26M 1 M
8-15-51 5000 | | | | | Specific | | | | | Ē | milligrams per liter | ar liter | | | | Mineral constituents in | onstitue | nts in | | |---------------------------------|--------------|-------|------------------|--------------------|--------------------|----------------------------|------------|----------------|----------------------------|--|--|----------|----------|-------------------------|-------------------|-----------------|--------------| | State Well | Temp. | | conduct- | | Mineral C | Mineral Constituents in | | | uivalents p
rcent react | equivalents per million
percent reactance value | | | | parts p | parts per million | | | | | Sompled | Ξ, | ance
(micro- | Calcium | Mogne- | Sodium | Potas- | Carbon-
ote | Bicar-
bonate | Sulfate | Chlo- | rate . | Fluoride | Boron | ii B | TDS
Computed | TOTAL | | Date Sampled Agy. | | | mhas
at 25°C) | S | Б.
W | ž | ¥ | 9 | HCO 3 | 504 | ס | NO 3 | u. | 80 | SIO 2 | Evap 180°C | as
CoCO 3 | | 145/13E-29Q 1 M
8-16-51 5000 | 9 S | 7.6 | 2160 | 19 | 0.41 | 460 | 1 | 0 | 254 | 13.89 | 3.72 | 1 | 1 | 3.60 | 1 | | 8 9 | | 145/13E-30N 1 M
8-16-51 5000 | M 87 | 7.6 | 1920 | 2.10 | 1.97 | 342 | 1 | 0 | 204 | 658 | 2.68 | 1 | 1 | 2.60 | 1 | | 204 | | 145/13E-300 1 M
8-16-51 5000 | ω
ω
ΣΟ | 7.3 | 1740 | 57 | 3.62 | 285 | 1 | 0 | 198 | 652 | 2.26 | 1 | 1 | 2 • 30 | 1 | | 323 | | 145/13E-35E 1 M
8-15-51 5000 | M 93 | 7.3 | 2160 | 36 | 1.48 | 392 | ! | 0 | 160 | 746 | 130 | 1 | 1 | 1 • 80 | { | | 164 | | 145/14E- 7M 1 M
8-13-51 5000 | M 87 | 7.7 | 2100 | i | 1 | 445 | 1 | 0 | 210 | 470 | 9.93 | l | 1 | 1.50 | 1 | | 146 | | 14S/14E~ 9E 1 M
7-14~59 5050 | 0 M | 7 • 7 | 3520 | 3.99
12 | 22
1.81
5 | 642
27•91
83 | 0.10 | 0 | 180
2.95
9 | 487
10•14
30 | 752
21•21
62 | 1.7 | 4 | 1.50 | 45 | 2124 | 290 | | - 9E 1 M
7-19-60 5050 | Σ0 | 7.3 | 3770 | 280
13•97 | 146
12.01
27 | 414
18.00
41 | 0.31 | 0 | 220
3•61
8 | 1150
23.94
54 | 601 | 1.1 | 1.0 | 1.40 | 73 | 2788 | 1300 | | - 9E 1 M
8-25-61 5125 | 5 7 8 7 8 | 88 | 3840 | 302
15.07 | 138
11•35
25 | 43 2
18•78
41 | 0.31 | 0 | 3.13 | 1180
24.57
56 | 570
16•07 | 0 9 0 0 | 0 • 2 | 1.70 | 8 9 | 2801 | 1322 | | - 9E 1 M
4-26-62 5050 | M 78 | 7 • 8 | 3910 | 275
13•72
35 | 134
11•02
28 | 317
13•78
35 | 16
0.41 | 0 | 218 | 861
17.93
47 | 584
16•47
43 | 90.0 | 0 • 2 | 1.79 | 9 | 2356 | 1238 | | - 9E 1 M
8-13-63 5050 | Σ 0 | 1 | 4190 | 1 | \$
1 | 439 | 1 | 1 | 1 | 1 | 631 | 1 | 1 | 1 • 80 | 1 | | 1390 | | DWR 1982 | | | STATE | OF CALIFO | RNIA - THE | RESOURCES | AGENCY | OF CALIFO | RNIA - DE | PARTMENT | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | ESOURCES | | | | | | TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER | | TOTAL | 50 | 10003 | 1630 | 917 | 188 | 171 | | 175 | 181 | 236 | 219 | 188 | |--|------------------|-------------------|------------|---------------------------------|---------------------------------|---------------------|--------------------|--------------|----------|--------------------------|-----------------------|--------------------------|---------------------------------| | ents in
ion | Computed | 9 | Evap 160 C | | 4446 | 1635 | 1287 | | | | | 1280 | | | neral canstituents
parts per millian | : <u>i</u> 8 | 9 | 202 | 1 | 24 | 41 | 89 | 1 | - | 1 | į | 41 | 1 | | Mineral constituents in parts per million | Boron | c | n | 1.90 | 1.40 | 1.30 | 2.50 | 1.50 | [| 1.23 | 1.50 | 1.50 | 2.50 | | | Fluo- | | - | 1 | 0.5 | 9 • 0 | 0 • | 1 | 1 | ì | 1 | 9 | 1 | | | N:
frote | 2 | NO.3 | ł | 5.4 | 0.0 | 2.3 | 1 | 1 | - | ! | 3 • 0 | 1 | | | Chloride | į | Ū | 844 | 2310
65.14
86 | 388
10•94
43 | 192
5•41
27 | 159 | 152 | 3.38 | 152 | 155
4•37
22 | 13.25 | | milligrams per liter
equivolents per millian
percent reactance value | Sulfate | | 50 4 | 1 | 398
8•29
11 | 551
11.47
45 | 535
11.14 | 1 | ! | 1 | i i | 561
11.68
60 | 580 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar-
banete | | HCO 3 | 1 | 126 | 184
3 • 02
12 | 198
3•25
16 | 1 | 1 | 1 | 1 | 204
3•34
17 | 186
3.05 | | EĕĞ | Carbon- | 3 (| 60 | 1 | 0 | 0 | 0 | į | i | 1 | 1 | 0 | 0 | | e | Potos- | | ¥ | 1 | 0.33 | 0.08 | 0.08 | 1 | 1 | 1 | 1 | 0.10
1 | 1 | | Mineral Constituents in | Sodium | | Ž | 496 | 1260
54.78
75 | 492
21•39
85 |
361
15.70
82 | 361 | 346 | 321 | 342 | 337 | 490 | | Mineral C | Magne- | | Wg | 1 | 3.21 | 1.07 | 1.07 | 1 | 8 | - | į. | 18
1•48 | † | | | Colcium | | ვ | 1 | 303
15•12
21 | 2.69 | 2.35 | 1 | 1 | 1 | 1 | 2.89 | 1 | | Specific
canduct- | micro- | mhas | or 23 C) | 4800 | 7540 | 2200 | 1970 | 1860 | 1840 | 1760 | 1850 | 1860 | 2490 | | | Ŧ, | <u> </u> | | 7.1 | 8 | &
• | 7.6 | 1 | 1 | 1 | 1 | 7.7 | 7.7 | | Temp. | when | | | 1 2 | 85 | 82 | 82 | 82 | 82 | 80 | 82 | 82 | 893 | | State Well | | Date Sampled Agy. | | 145/14E- 9E 1 M
7-28-64 5050 | 145/14E* 9M 1 M
8-23-51 5000 | 10-14-52 5050 | 7-53 5050 | 7-28-55 5050 | - 9M 1 M | - 9M 1 M
8-23-56 5050 | - 9M 1 M
1-57 5050 | - 9M 1 M
6-24-58 5050 | 145/14E-10N 1 M
8-13-51 5000 | | 6 | | Date | | 145/ | 145/ | 10- | 7- | 7 | 10- | 1 00 | ,
& | 9 | 145/8- | FRESNO - MADERA AREA | State Well | Temp. | | Specific conduct- | | Mineral Co | Mineral Canstituents in | | E & 6 | milligrams per liter
equivalents per millian | milligrams per liter
equivalents per millian | | | | Mineral constituents in parts per million | neral constituents
parts per millian | ants in
ion | | |---------------------------------|-------|----------|-------------------|------------|------------------|-------------------------|----------------|-----------------|---|---|--|-------------|----------|---|---|----------------|--------| | Number | when | r | ance | Cateium | Magne- | Sodium | Patas- | ģ | Bicar- | Suffate | Chlo- | ż | Fluo- | Boron | Sili | <u>IDS</u> | TOTAL | | Date Sampled Agy.
Time Call. | 3 0 | <u>o</u> | mhas
at 25 C) | ی | E 4 | ž | Ē 2 | e C | e CO | ç | Ē | o S | <u> </u> | cc | 8 5 | Evan 180 | CoCO 2 | | 14S/14E-12N 1 M
5-18-51 5050 | C 80 | 7.7 | 2520 | 1.55 | 0.49 | 506
22.00
91 | £ 60 | | 2 • 84 | 544 | 20 975
443 | 1.0 | 1 | 1.61 | 1 | 1553 | 102 | | -12N 1 M
5-19-51 5050 | 75 | о́
• | 2560 | 000 | 0.58 | 558
24.26
94 | m 80
• 0 | 18
0•60
2 | 155
2 • 54
10 | 240
11.24
45 | 382
10•77
43 | η
•
• | ł | 1.82 | ,t | 1651 | 7.5 | | -12N 1 M
8-13-51. 5000 | 78 | 7.5 | 1790 | 1 | ā | 385 | i | 0 | 174 | 590 | 178 | 1 | 1 | 1.90 | 1 | | R/ | | -12N 1 M
11-13-51 5050 | 79 | ж
О | 1860 | 1.30 | 0.33 | 385
16•74
90 | 0.13 | 0 | 174
2.85
16 | 514
10.70
59 | 4
• 6
0 5
0 5
0 5 | 3.0 | ω
• | 0 0 | 69 | 1257 | 92 | | -12N 1 N
8-12-52 5050 | 42 | აე
" | 1960 | 1.25 | 0.33 | 377
16.39 | 0 1 0
1 1 | 0 | 176
2•88
16 | 525
10.93 | 156
4•40
24 | 0 | 0
• | 1.40 | 89 | 1247 | 5/ | | -12N 1 M | 1 | 7 • 8 | 1850 | 1.30 | 0.
4 %
2 % | 385
16•74
91 | 0.10
1 | 0 | 176
2 • 88
16 | 507
10•56
59 | 157 | 0 | 0 | 999 | Ø
9 | 1239 | 0 2 | | -12N 1 H
7-20-54 5050 | İ | 20. | 1980 | 1.45 | 0
4 % | 409
17 • 78
90 | 0
• 10
1 | C . 27 | 167
2•74
14 | 526
10.95 | 131
5•10
27 | 1.5 | 4.0 | 1.20 | 67 | 1313 | 89 | | -12N 1 M
7-28-55 5050 | 1 | 1 | 2050 | i
E | 1 | 420 | i i | 1 | - | 1 | 200 | į. | 1 | 1 • 60 | - | | 91 | | -12N 1 M | 1 | 1 | 2040 | t
i | 1 | 414 | 1 | 1 | 1 | ł | 211 | 1 | ł | 1 | - 1 | | .76 | | -12N 1 M
7-31-57 5050 | 1 | - | 2110 | l | 1 | 413 | 1 | 1 | - | 1 | 228 | 1 | 1 | 1.00 | + | | 140 | | DWR 1982 | | | STATE | OF CALIFOR | NIA - THE | RESOURCES | AGENCY | OF CALIFC | DENIA - DE | PARTMENT | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | ESOURCES | | | | | | # TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER | | TOTAL | %
CoCO 3 | , c 1 | 943 | O
C | ر
ار
ار | 8 2 4 | 840 | | α | 76 | αŞ | |--|------------------|----------------------|------------------------|---|----------------------------|---|-----------------------|--------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------| | nts in
on | Computed | Evap 180°C | 0001 | 3006 | 2891 | 3107 | 2750 | 2129 | | 1206 | | issi | | neral canstituents
parts per million | : 8
: 8 | SIG 2 | ρ ο ο | 7.2 | 22 | 6/2 | 4 | c) | | 2 | 1 | 63 | | Mineral canstituents in
parts per million | Boron | 60 | 1.50 | ή.
•
• | 1.64 | 7 • 46 | 1.64 | i•69 | Ĭ•60 | 1 • 30 | n
• | 1.20 | | | Fluo-
ride | u. | O • O | 1 | i
i | 1 | 1 | 1 | 1 | 4.0 | 4
1 | 0.7 | | | rote trote | ς
O
Z | 4.5 | 11.0
0.18 | 10.0 | 0 T C C C C C C C C C C C C C C C C C C | 4
• 0
• 0 | 0 + 0 | 1 | 0 • 1 | ; | 0.0 | | | Chlo- | ō | 200
7. yū | 1080 | 1060
29.87
63 | 1100
31.00
61 | 1040 | 1070 | 1046 | 532
15.00 | 236 | 23y
6•74
34 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | SO 4 | 576
11.999
52 | 742
15.45 | 673
14.01 | 750 | 614
12.78
28 | 571
11.687
26 | 720 | 118
2•46
12 | 570 | 00°
10•51
52 | | milligrams per liter
equivalents per mill
percent reactance ve | Bicor-
bonote | HCO 3 | 178
2.92
13 | 3.62 | 221
3•62 | 222 | 212 | 221
3•62 | 2.51 | 180
2 • 95
14 | 176 | 172
2•82
14 | | E & C. | Carbon-
ote | S | 0 | 0 | 0 | 0 | 0 | J | 5 | 0 | 0 | 0 | | | Potas-
sivm | × | 0.20 | 0.31 | 0.31 | 14
0•36 | 1.
0.28
1 | 14 0 • 36 | 1 | 0.08 | l | 0.10 | | Mineral Canstituents in | Sodium | ž | 19.35 | 737 32.04 | 671
29•18
6 2 | 32.52 | 573
29.26
64 | 540
27.83
62 | 30.44 | 355
15•44
89 | 405 | 430
18•70
92 | | Mineral C | Mogne-
sium | W | 7.00 | 117 | 96
7.93 | 126
10.36 | 108
8 • 88
19 | 8 55
19 | ! | 0
2
4 8 5 | 1 | 0 • 3 3 | | | Colcium | ვ | 2.59 | 9 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 189
9.43
20 | 174
8.68
17 | 152
7.58
16 | 165
8 • 23
18 | 1 | 29
1.45 | 1 | 26
1•30
6 | | Specific
canduct | ance
(micra- | mhas
at 25°C) | 2320 | 4810 | 4620 | 4800 | 4480 | 4550 | 4150 | 1700 | 1308 | 2390 | | | Ξ. | | 7.6 | 7.3 | 7.3 | 7 • 4 | 7 • 2 | 7.8 | 7.3 | α
• 5 | 7.6 | 7.9 | | Temp. | Sompled | ° . | 38 | 74 | 74 | 74 | 8 9 | 74 | 79 | 78 | 42 | 78 | | | | Agy.
Coll. | 1 1 X 5050 | 2 M
5000 | 2 M
5000 | 2 M
5000 | 1 2 M
5000 | 2 M
5000 | 2 M
5000 | 1 M
5000 | 2 M
5000 | 2 M
5050 | | State Well | | Date Sampled
Time | 145/14E-12N
6-24-58 | 145/14E-12N 2 M
5-18-51 5000 | -12N 2 M
5-18-51 5000 | -12N 2 M
5-18-51 5000 | -12N 2
5-19-51 500 | -12N 2 M
5-20-51 5000 | -12N 2 M
8-13-51 5000 | 145/15E-13E 1 M
8-23-51 5000 | 145/15E-18E 2 M
8-13-51 5000 | -13E 2 M
8-12-52 5050 | FRESNO - MADERA AREA | Specific Mine conduct- | Mineral Constituents in | 1 | | milligrams per liter
equivalents per million
percent reactance value | milligrams per liter
equivalents per million
percent reactance value | | | | Mineral canstituents in
parts per millian | neral canstituents
parts per millian | ints in | | |------------------------|------------------------------|----------------|----------------|--|--|--|--|--|--|---|------------
-------------------| | micra- Colcium sium | Sodium | Patas-
sium | Carban.
ate | Bicar.
banate | Sulfate | Chlo-
ride | rg t | Fluo. | Boron | ≅ 8 | Camputed | TOTAL
hardness | | at 25°C) Co Mg | Ž | ¥ | co 3 | нсо з | SO 4 | Ü | NO 3 | L. | 89 | SIO 2 | Evap 180 C | CoCO 3 | | 1380 | 275
11.96 | Ĭ. | 1 | 3.05 | 400
• 83 | 1.69 | 1 | 1 | 1.90 | 1 | | 140 | | 1940 | 1
1 | t | 0 | 176 | 650 | 152 | ł | 1 | 1.60 | 1 | | 162 | | 1530 1.50 0. | .41 13.48 | 1 | 0 | 145 | 530 | 1.97 | 1 | å
i | 0 8 0 | ł | 1085 | 9 % | | 1460 32 0• | .41 12.22
3 85 | 0.18 | 0 | 184
3•02
21 | 4 to 20 2 | 2 • 4 3
1 7 | 2 · 1
0 · 0 3 | ίη
• | 1.50 | 74 | 1011 | 101 | | 1460 31 0.55 0.11 | .49 12.09
3 85 | 0.10 | 0 | 1,89
3 • 10
21 | 434
9 • 04
62 | 2
8 8 9
9 9 9 9 | 0 | 0 • | 1.70 | 72 | 1006 | 102 | | 1400 33
1.65 0. | 5 282
•41 12•26
3 85 | 0 10 | 0 | 182
2•98
21 | 443
9 • 22
64 | 2.20
15 | 1 • 4 | 0 | 1.40 | 7.5 | 1011 | 105 | | 1470 32 0.
1.60 0. | .58 11.83
4 84 | 0.10 | 0 • 13
1 | 179
2•93
21 | 404
8•41
60 | 2.28
16 | 10.0 | ٠ | 1.50 | 72 | 9 7 6 | 109 | | 1460 32 0•
1.60 0• | 6 266
•49 11•57
4 84 | 0.10 | 0 | 181
2•97
21 | 445
9 • 20
64 | 2.09 | 1.1 | η
• | 1.40 | 71 | 7 0 7 | 105 | | 1500 | 273 | 1 | f
B | 1 | 1 | 2.17 | 1 | 1 | 1.40 | 1 | | 103 | | 1790 | 375 | 1 | 0 | 178 | 13.32 | 160 | ł | 1 | 2 • 20 | 1 | | 9 | |
E OF CALIFORNI | 375
16.31
THE RESOURCE | | S AGENCY | S AGENCY OF CALIFO | 2 • 92 S AGENCY OF CALIFORNIA - DE | 0 178 640
2.92 13.32
3 AGENCY OF CALIFORNIA - DEPARTMENT | 0 178 640 160
2.92 13.32 4.51
S AGENCY OF CALIFORNIA - DEPARTMENT OF WATER R | 0 178 640 160 2.92 13.32 4.51 SAGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOUR | | 1 | 5 - 20 | 5 - 20 | # TABLE E-2 CONFINED AUUIFER MINERAL ANALYSES OF GROUND WATER | | TOTAL | 5 (| Caco 3 | 345 | 545 | 346 | 399 | 413 | 411 | 505 | 494 | 491 | アケビ | |--|-------------------|--------------|------------|------------------------|---------------------------------|-------------------------|----------------------|----------------|----------|---|--------------|-----------------------|----------------------| | ints in | Camputed | | Evap 180 C | | | 2075 | 2086 | | | | | 2525 | 3024 | | neral canstituents
parts per millian | Sili- | | SIO 2 | - | 1 | 4 | 8 4 | 1 | 1 | - | 1 | 44 | 44 | | Mineral canstituents in
parts per million | Boron | | 20 | 3.40 | 5.10 | 2.40 | 2.60 | 3.50 | ! | 3 • 50 | 3.40 | 9.60 | 4.40 | | | Fluo- | | . | 1 | 1 | 9 | 0 | 1 | E
t | - | 1 | 9.0 | 0.7 | | | N:
trote | Ç | NO 3 | - | - | 9 • ċ
0 • 1 · 6
1 | 9 • ë
0 • 16
1 | - | 1 | 1 | 1 | 8
• 1 • 0 | 16.0
0.26
1 | | | Chloride | | Ū | 205 | 300.000 | 178
5•02
16 | 175 | 185 | 187 | 236 | 200 | 242
0 • 8 2
1 8 | 271
7.64
17 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | | 50 4 | 1210 | 1760 | 1090
22.69
73 | 1080
22.49
73 | 1 | 1 | 1 | 1 | 1310
27.27
73 | 1625
33.63
75 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar- | | HCO 3 | 218. | 3.70 | 196
3.21
10 | 194
3•18
10 | 1 | 1 | - | ł | 202
3 • 31 | 217
3.56 | | Eĕč | Carbon- | | CO 3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | O | | | Patas- | | × | 1 | 1 | 0 20 | 0.18 | ŀ | 1 | 1 | 1 | 10
0.26
1 | 0.23 | | Mineral Canstituents in | Sodium | : | Ž | 594 | 737 | 539
23.44
74 | 540
23.48
74 | 584 | 578 | 614 | 610 | 648
28•18
74 | 32.85
32.85
73 | | | Magne- | | Wg | - | 1 | 52 4 28 14 | 4.00
4.00
13 | 1 |)
I | 1 | 8 | 58
4•77
12 | 74
6.09
14 | | | Calcium | | ථ | 1 | - | 3.64 | 3.94 | 1 | } | ! | 1 | 101
5.04
13 | 118
5•89
13 | | Specific
conduct- | ance
(micro- | mhas | af 25 C) | 2926 | 3785 | 2890 | 2830 | 3080 | 3080 | 3540 | 3300 | 3560 | 4030 | | | Ξ | a. | | 7.4 | 7.2 | 7.5 | 7.3 | 1 | i i | ł | 1 | 7.2 | 2
•
2 | | Тетр. | when | · L | | 83 | e0
80 | 9 C | 81 | 82 | 82 | 8 1 | 80 | 82 | 82 | | _ | | Agy. | | E 1 M
5000 | N 1 M
5000 | N 1 K | 1N 1 X | 1M 1 M
5050 | IN I M | N 1 N S C S C S C S C S C S C S C S C S C S | N 1 M | - 1N 1 H
58 5050 | - 1N 1 M | | State Well | age of the second | Date Sampled | lime | 15s/i2E- 18
8-15-51 | 155/12E- 1N 1 M
8-15-51 5000 | 8-12-52 | 7- 7-53 | 7-28-55 50 | 1:-12-55 | - 1N 1 M
6-29-56 5050 | 7-31-57 5050 | - 1N
6-25-58 | 7-14-59 | | No. 2 No. 3 No. 3 No. 3 No. 3 No. 4 No. 5 | | | Mineral Canstitu | Mineral Canstitu | nstitu | ents in | Potos. | eq pe | milligrams per liter
equivalents per mil
percent reactance v | milligrams per liter equivalents per million percent reactance value | Chio | ż | ir
o | Mineral constituents in parts per million | parts per million | on TDS | TOTAL | |---|--------|----------|------------------|------------------|----------------------|-------------------|-----------|-------|--|--|------------------------|--------------|---------|---|-------------------|------------------------------|----------------| | 7 0.23 0.26 3.28 37.68 9.19 0.8 5.30 42 3407 6 0.23 0.20 3.28 37.68 9.19 0.37 7 0 196 1300 205 1 3.60 8 0.21 27.07 5.78 1 1.90 8 0.269 11.66 2.65 1 1.80 9 0.242 1320 206 1.80 10 0.98 5.64 1.80 10 0.98 5.64 1.80 74 72.90 10 0.05 0.330 215 5.64 1 2.00 10 0.88 0.99 0.93 0.2 0.2 1.80 74 729 11 0.05 0.300 12.70 2.54 2.00 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | | I. | . 0 | Colcium
S | Mogne-
sium
Mg | Sodium | sium
X | CO 3 | bonote
HCO 3 | Sulfote
SO 4 | ş ş z | NO State | j j | Boron | SiO 2 | Computed Computed Evap 180 C | hardness
as | | 627 | 80 | | 4560 | 1125.59 | 7
• 4 | 0 | - 2 | .2 | 20 | 1810
37.68
74 | 326 | 23.0
0.37 | • | ·Ω | 45 | 3407 | 009 | | 15.22 | 7.2 | 0.1 | 2950 | 1 | i | 627 | i | 0 | 196
3•21 | 1300 | 205 | | 1 | 3.60 | | | 375 | | 12.85 | 7 • 8 | ω | 1740 | | * i | 350 | 1 | 0 | 164 | 560 | 9.
2.
6.0
8.0 | 1 | 1 | 1.90 | 1 | | 195 | | | 7 • 6 | 9 | 1740 | 1 | 1 1 | \sim | İ | 0 | 160 | 690 | 8 5 6 4 0 | 1 | 1 | 1 • 80 | - | | 210 | | 0 198 540 90 0 198 540 90 | 7.6 | .0 | 2797 | i | 1 | 644 | 1 | 0 | 242 | 1320 | 200 | i
i | 1 | 4.10 | 1 | | 300 | | 0.80 0.41 9.57 0.05 | 7.9 | 2 | 1650 | 1 | i i | 1 | 1 | 0 | 3.25 | 540 | • | 1 | 1 | 1 | 1 | | 155 | | 340 0 164 610 90 2.00
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2 | ო
• | | 1040 | 16 | 0 • 4 1 7 | 220
9•57
88 | • | 0 | 330 | 215
4•48
41 | 7 M D
M D | 0 • 5 | • | 1 • 80 | 42 | 729 | 61 | | 205 0 186 590 50 2.40 2.40 13.91 0 156 650 100 2.00 2.00 13.91 2.56 13.53 2.82 | 7 | <u>س</u> | 1780 | 1 | 1 | 4 | 1 | 0 | 164 | \sim | 90 2 • 54 | 1 | 1 | 2 • 00 | 1 | | 120 | | 320 0 156 650 100 2.00 2.00 13.91 | 7.6 | 9 | 1540 | 3 | 8 1 | 205
8•91 | 1 | 0 | 186 | -1 | 50 | 1 | 1 | 2.40 | 1 | | 250 | | | 7.6 | v0 | 1770 | 1 | \$
1 | 320 | 1 | 0 | 156 | C) | 100 | ! | 1 | 2 • 00 | | | 160 | # TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | TOTAL | 03°C) | 71 | 265 | 100 | 110 | 001 | 155 | | 127 | 112 | 136 | |--|------------------|--------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|-------------------------|--------------------------|----------|--------------------------|--------------------------| | ants in
ion | Camputed | Evap 180°C | 720 | | | | 1000 | 1074 | | | | | | neral constituents
parts per million | : S | SIO 2 | ł | 1 | 1 | 1 | 30 | 0.0 | - | 1 | 1 | 1 | | Mineral constituents in
parts per million | Boron | 60 | 1 | 2.10 | 2.00 | 1 • 90 | 1.80 | 1.30 | 2.20 | 1 | 0 6 • 2 | 2 • 00 | | | Fluo-
ride | u. | 1 | 1 | 1 | 1 | 0 • 7 | 9 • 0 | - | ì | 1 | 1 | | | Ni.
trate | NO 3 | 1 | † | i | İ | 0 | 0 | } | 1 | ł | 1 | | | Chloride | ō | 1.72 | 45 | 1.13 | 2.40 | 74
2.09
13 | 2.62 | 2.17 | 2.09 | 2 .40 | 2.03 | | milligrams per liter
equivalents per million
percent reactance value | Sulfate | 50 4 | 340 | 680
14•16 | 580 | 640 | 528
11.62 | 547
11•39
72 | 1 | } | 1 | 1 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar-
banate | HCO 3 | 130 | 134 | 140 | 124 2 • 03 | 118
1•93
12 | 110
1.80
11 | 1 | ł | 1 | | | E & g | Carban-
ote | 8 | 0 | 0 | 0 | 1 | ၁ | 0 | i | } | 1 | - | | - | Patas- | × | 0.13 | 1 | } | 1 | 0.08 | 0 0 0 | 1 | ; | 1 | } | | onstituents ir | Sodium | Z | 220 | 275 | 245 | 320
13•91 | 285
12•44
82 | 290
12.61
80 | 306 | 288 | 325 | 281 | | Mineral Constituents in | Magne-
sium | w
6W | 0 • 4 | 1 | 1 | ł | 0
4
9
8 | 11
C•90 | 1 | ì | ! | ł | | | Calcium | 3 | 20 | 1 | ł | 1 | 42
2•10
14 | 44
2.20
14 | ; | 1 | 1 | 1 | | Specific
conduct- | ance
(micro- | mhas
at 25 C) | 1100 | 1600 | 1340 | 1880 | 1570 | 1530 | 1580 | 1550 | 1640 | 1530 | | | Ŧ, | | 1 | 7.5 | 7.9 | 7.4 | 8 • 1 | 7.5 | 1 | ! | 1 | 1 | | Тотр. | Sampled | , o | 65 | 87 | 66 | 80 | 80 | 8 6 | 88 | 89
80 | 80 | 87 | | State Well | | Date Sampled, Agy. | 155/14E-15E 4 M
12-22-50 5001 | 155/14E-30E 1 M
8-14-51 5000 | 155/14E-31N 2 M
8-14-51 5000 | 155/14E-36G 2 M
8-14-51 5050 | -360 2 M
8-14-52 5050 | -360 2 M
- 8-53 5050 | -360 2 M
7-28-55 5050 | -360 2 M | -360 2 M
6-26-56 5050 | -360 2 M
7-31-57 5050 | | | | ۵ | 155. | 158 | 158 | 155 | œ | -2 | 7. | 10 | • | . 2 | FRESNO - MADERA AREA | State Well | Temp | | Specific conduct- | | Mineral Co | Mineral Canstituents in | | 18 8 | milligrams per liter
equivalents per millian | er liter
ser millian | | | | Mineral constituents in parts per million | neral constituents
parts per million | ion | | |---------------------------------|---------|---------|-------------------|-------------------|------------------|-------------------------|----------------|-----------|---|--|-------------------|---|--------|---|---|------------|-----------| | Number | Sampled | Ι | ance micro- | Calcium | Mogne- | Sodium | Polas- | Carbon- | Bicar. | Bicar. Suffate | Chlo | Z. Z. | Fluo. | Boron | Sili | Computed | TOTAL | | Date Sampled Agy. | u.
O | ٥. | mhas
at 25 C) | S | ø.
W | Z | × | ° o | HCO 3 | 50 4 | ū | NO S | is. | 85 | SIO 2 | Evap 180°C | CoCO 3 | | 153/14E-36Q 2 M
6-25-58 5050 | 83 | 7.5 | 1580 | 35
1•75
12 | 0.41 | 289
12•57
85 | 0.05 | 0 | 114 | 518
10•78
71 | 85
2.40
16 | 2.6 | ω
• | 1.60 | 28 | 1023 | 108 | | -360 2 M | 87 | 0 | 1650 | 1 90
1 12 | 0.08 | 308
13.39 | 0.05 | 0 | 264
4•33
28 | 419
8 • 72
56 | 2.57 | 0 • 1 | ∞
• | 2.10 | 32 | 1024 | <u>بر</u> | | -360 2 M
7-31-62 5050 | 88 | 1 | 1640 | 1 | ! | 274 | 0 0 0 5 | 1 | ! | 564 | 2.43 | 1 | 1 | 2.20 | 1 | | 130 | | -360 2 M
8-13-63 5050 | 00 / | 1 | 1650 | i | ! | 361 | 1 | 1 | 1 | <u> </u> | 2.37 | 1 | 1 | 2.00 | t
1 | | 133 | | 16S/14E- 2J 1 M
8-23-51 5050 | 00 | 80
• | 1780 | 3.29 | 1.40 | 335
14.57 | 0.05 | 0 | 124
2•03
11 | 703
14•64
79 | 1 • 92
1 0 1 0 | 0 | V • 0 | 7.4 | 0 4 | 1257 | 235 | | 16S/14E-14N 1 M
8-15-51 5050 | 80 | 7.4 | 1540 | 109 | 3.04 | 180 | 1 | 0 | 134 | 652 | 1 + 40 | 1 | 1 | 1 • 50 | 1 | | 454 | | -14N 1 M
8-14-52 5050 | ω
ω | 8 • 1 | 1580 | 115
5•74
34 | 32
2.63
16 | 190
8•26
49 | 0
• 10
1 | 0 | 134 2 • 20 13 | 658
13•70
81 | 37 | •
•
0 | 0 - 2 | 1 • 90 | 31 | 1135 | 419 | | 16S/14E-23N 1 M
8-15-51 5050 | 87 | 7.5 | 1790 | 138 | 5.10 | 195 | - | 0 | 160 | 756 | 1.78 | 1 | ! | 1.30 | 1 | | 000 | | 16S/15E-20G 3 M
8-15-51 5050 | 84 | 7•1 | 1370 | 57 | 24 | 210 | 1 | 0 | . 129 | 10.39 | 1 . 56 | } | ! | 2.20 | 1 | | 241 | | 165/15E-23F 1 M | 78 | 7.2 | 1770 | 109 | 73 | 188 | 1 | 0 | 153 | 714 | 95
2.68 | † | 1 | 1.30 | 1 | | 572 | | WR 1982 | | | STATE | OF CALIFOR | RNIA - THE | RESOURCES | AGENCY | OF CALIFO | DRNIA - DE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | JE WATER RE | SOURCES | | | | | | # TABLE E-2 CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER | | | - | 365 | 805 | 623 | 6 615 | νυ
4 | 80 8 | 803 | 773 | 120 | 312 | |----------------|--|--|---|--------------------------------
--|---|--|---|--
--|--|---| | Camputed | | | | | | 123 | | | | | | | | Sili | 3 | SIO ₂ | 1 | 1 | 1 | 98 | { | i | - | 1 | - | 1 | | Boran | | 89 | 2.10 | 1.10 | 0 • 50 | 0.40 | 1 • 70 | 09.0 | 0 80 | 06 • 0 | 2 • 30 | 2.70 | | Fluo- | | u. | i | 1 | 1 | 0 | - | 1 | 1 | 1 | 1 | 1 | | Ni- | | ε
ON | 1 | i i | 1 | 1 • 5 | 1 | 1 | 1 | ; | 1 | 1 | | Chlo | | ū | 1.64 | 1.80 | 1.89 | 2.17 | 84 | 102 | 100 | 2.37 | 126
3 • 55 | 3 • 0 8 co | | Sulfate | | 504 | 505 | 736 | 475 | 672 | 713 | 13.70 | 680 | 734 | 616 | 617 | | Bicar- | | нсо з | 158 | 228
3•74 | 234 | 204 | 176 | 226 | 3.70 | 228 | 148 | 194
3.18 | | ė | | °00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Polas- | | ¥ | | 1 | 1 | 0.10 | 1 | 1 | 1 | 1 | 1 | - | | Sodium | | Na | 186 | 136 | 3.96 | 160 | 215 | 104 | 114 | 156 | 400 | 300 | | Magne- | | Mg | 50 | 135 | 103 | 90 7 • 40 38 | 74 | 141 | 136 | 132 | 9 | 60
50
40
40 | | Calcium | | ပိ | 3.19 | 100 | 3,99 | 98
4.89
25 | 95 | 91 | 94 | 95 | 1 65 | 54 | | ance
micra- | mhas | at 25 C) | 1380 | 1770 | 1370 | 1620 | 1770 | 1730 | 1760 | 1810 | 1870 | 1810 | | I | a | | 7.3 | 7.4 | 7.6 | ω
 | 7.3 | 7.5 | 7.3 | 7.4 | 7.3 | 7.3 | | when | , L | | 84 | 76 | 81 | 8 5 | 48 | 76 | 77 | 7.7 | 102 | 80 | | Number | pled. | | 65/15E-310 1 M
8-14-51 5050 | 75/15±- 50 1 M
8-14-51 5050 | 75/15E- 6M 1 M
8-14-51 5050 | 75/15E- 6N 1 M
8-22-51 5000 | 75/15E- 60 1 M
8-14-51 5050 | 75/15E- 7N 1 M
8-14-51 5050 | 75/15E- 8N 1 M
8-14-51 5050 | 75/15E- 8P 1 M
8-14-51 5050 | 78/15E-13N 1 M
8-14-51 5050 | 175/15E-14E 1 M
8-14-51 5050 | | | when ance Magne Potas Carbon Bicar Chlo Ni Fluo Sili 105 | when and the continuous signary of signary of the continuous signary of the continuous signary of t | Agy. e mhas Coldium Sodium Sodium Silm Corbination Computed Coldium Silm Computed Computed Chilo- Ni- Fluo- River Sili- IDS Agy. ° F mhas mhas Na K CO3 HCO3 SO4 CI NO3 F B SIO2 Even 180°C | Agy. | Defect Calcolium Magne Sodium | when same bands when polices Calcium sium Social sium sium Polices Carbon of each polices Sulfice bands Chlo- ride sium sium Polices Carbon of each polices Sulfice bands Chlo- ride sium sium of each polices Sulfice bands Chlo- ride sium sium of each polices Sulfice bands Chlo- ride sium sium of each polices Sulfice of each polices Sulfice sium of eac | Sample Part Sample Part Sadium Sadium Sadium Sadium Part Sadiu | when bases Problem is a composed of same and states are same as a composed of same and same as a composed of | wheth principles Office of the principles States of the principles All | Second Part Column Magnet Section Magnet Magnet Section Magnet Ma | Second Color Mapper C | No. Color Color No. | | Temp. | | Specific
canduct-
ance | | Mineral Ca | Mineral Canstituents in | Potos | eq carbon. | milligrams per liter
equivalents per millian
percent reactance value | milligrams per liter
equivalents per millian
percent reactance value | Chlo | Ż | Flua- | Mineral canstituents in parts per millian | neral canstituents parts per millian | VSI VSI | TOTAL | |---------|--------|---|--|--------------------|-------------------------|-------------|------------|--|--|-------------------|----------------------|-----------|---|--------------------------------------|------------|--------------------------| | Sampled | ±_ | (micra-
mhos
at 2S ^C) | Calcium | mais
@W | Sodium | , × | GO g | banate
HCO 3 | Sulfate
SO 4 | ęp D | at N
S | ebir
T | B | sio 2 | ر.
0° ه | hardness
as
CaCO 3 | | 06 | 8
• 3 | 1750 | 2.50 | 3.37 | 280
12•17
67 | 0.08 | 0 | 178
2•92
16 | 596
12•41
68 | 105
2.96
16 | 3.1 | 9.0 | 2.20 | 30 | 1198 | 294 | | 86 | 7.2 | 1820 | 3.75 | 3.78 | 245 | - | 0 | 153 | 695 | 2 • 48 | i
i | 1 | 3.10 | - | | 376 | | 80 | 7 • 8 | 1790 | 3.59 | 41
3•37
18 | 260
11.30
62 | 0.10 | 0 | 142
2•33
12 | 671
13.97
75 | 2.40 | 2.6 | 4.0 | 3.00 | 27 | 1236 | 348 | | 9 | 7.9 | 1600 | 59
2.94
16 | 50
4 • 11
23 | 246
10•70
60 | 0.10 | 0 | 168
2•75
15 | 597
12.43
70 | 2 • 5 4
1 4 | 5 0 0 0 0 8 | 0
• | 0.27 | 32 | 1166 | 800 | | | 78 7.4 | 2160 | 117 | 139 | 186 | i | 0 | 213 | 881 | 146 | i
t | 1 | 1 • 30 | 1 | | 864 | | CT1 | 78 8.1 | 2290 | 125 | 132
10•86
40 | 221
9•61
36 | 0 • 13 | 0 | 196
3•21
12 | 900
18•74
71 | 158 | 10.0 | 0 • • | 1 • 90 | ים ריו | 1683 | .0
.0 | | | 0 8 | 2020 | 109 | 110 | 182 | 1 | 0 | 3.25 | 840 | 3.44 | 1 | 1 | 2.20 | 1 | | 725 | | 1.03 | 78 8•0 | 1760 | 3.94 | 121 9.95 | 166 | 0
0
0 | 0 | 234
3 • 84
19 | 645
13.43
66 | 2.96 | 6 • 6
0 • 11
1 | 0
4 | 1 • 16 | 36 | 1278 | 695 | | 1~ | 77 7.3 | 1670 | 3.44 | 13.73 | 165 | ; | 0 | 264 | 626 | 76 | 1 | 1 | 1 • 50 | 1 | | 859 | | 7 8 | 3 7.1 | 2540 | 138 | 162 | 200 | 1 | 0 | 200 ° 6 4 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° | 988 | 229 | 1 | 1 | 1.90 | 1 | | 1011 | | | | STATE | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | RNIA - THE | RESOURCES | AGENCY | OF CALIFO | DENIA DE | PARTMENT | OF WATER RI | ESOURCES | | | | |] | STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARIME # TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA | | TOTAL | S (| 19703 | 956 | 763 | 444 | 4
2 | 869 | 556 | 1100 | 706 | 1001 | 168 | |--|-----------------|-------------------|------------------|---------------------------------|---------------------------------|---------------------------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | ion | TDS | | Evap 180 C | | | | 1247 | | | | | | | | neral constituents
parts per million | Silii | | 310 2 | 1 | i | 1 | 0 | 1 | 1 | 1 | - | 1 | 1 | | Mineral constituents in
parts per million | Boron | | 20 | 2.00 | 2 • 00 | 3.00 | 2.50 | 2.70 | 4.60 | 3.70 | 3.70 | 4 • 20 | 1.50 | | | Fluo-
ride | | - | 1 | 1 | i
t | 4 | 1 | Į. | 1 | 1 | 1 | 1 | | | rote | 9 | E 02 | 1 | 1 | 1 | 0 • 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Chloride | | 5 | 225 | 162 | 3.07 | 108
3.05
16 | 170
4.79 | 158 | 7.47 | 217 | 232 | 76 | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | | 50 4 | 947 | 838
17•45 | 711 | 644
13•41
70 | 823 | 1030 | 1420
29.56 | 1190 | 1410 | 10.08 | | milligrams per liter
equivalents per mill
percent reactance v | Bicar- | | HCO ₃ | 216 | 189 | 164 | 164
2•69
14 | 216 | 200 | 178 | 175 | 158
2.59 | 94 | | E & 8 | Carbon- | , | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Potas- | | × | 1 | 1 | 1 | 0.10 | 1 | 1 | 1 | 1 | 1 | - | | anstituents ir | Sodium | | Z | 200 | 200 | 245 | 245
10•65
56 | 230 | 365 | 355 | 340 | 385 | 10.00 | | Mineral Canstituents in | Magne- | | Mg | 12.66 | 107 | 4 93 | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 101 | 5.67 | 15.50 | 121 | 128 | 8 | | | Calcium | | ვ | 129 | 129 | 3.94 | 3.84 | 113 | 109 | 202 | 162
8 08 | 210 | 2.69 | | Specific
conduct- | ance
(micro- | mhos | of 25 C | 2450 | 2220 | 1800 | 1780 | 2150 | 2500 | 3280 | 2840 | 3220 | 1300 | | | I | ۵. | | 7•3 | 7.1 | 7.2 | 7.7 | 7.3 | 7.0 | 7.1 | 6 • 9 | 6 • 9 | 7.0 | | Temp. | when | , P | | 80 | 4 8 | 80 | 88 | 84 | 8 8 | 8 3 | 86 | 86 | 36 | | State Well | Number | Date Sampled Agy. | lime | 175/15E-210 1 M
8-14-51 5050 | 175/15E-22B 1 M
8-14-51 5050 | 17S/15E-23N 1 M
8-14-51 5050 | -23N 1 M.
8-13-52 5050 | 175/15E-27B 1 M
8-14-51 5050 | 175/15E-27K 1 M
8-14-51 5050 | 17S/15E-27Q 1 M
8-14-51 5050 | 17S/15E-27R 1 M
8-14-51 5050 | 17S/15E-35M 1 M
8-14-51 5050 | 17S/16E-26N 1 M
8-15-51 5050 | | | | ٠ | | 17 | 17 | 17 | | 17 | 17 | 17 | 17 | 17 | 17 | | H-W-1-19 | | | Specific | | | 1 | | Ē | milligrams per liter | er liter | | | | Mineral constituents in | onstitue | nts in | | |---------------------------------|---------|-------------|------------------|---------------------|----------------|-------------------------|----------------|----------------|-------------------------|--|---|--------------|--------|-------------------------|-------------------|-----------------|--------| | Number | Temp. | | canduct- | | Mineral | Mineral Constituents in | | be | percent reactance volue | ance volue | | | | parts p | parts per million | | | | _ - | Sompled | Ξ. | (micro- | Calcium | Magne-
sium | Sodium | Patas-
sium | Carban-
ate | Bicar-
banate | Sulfate | Chlo-
ride | Ni-
trate | Fluo | Boron | : ii: 8 | TDS
Computed | TOTAL | | Date Sampled Agy. Time Call. | ° | | mhos
at 25 C) | კ | Wa | ₽ | × | 00 | нсо з | 504 | CI | NO 3 | F | 89 | SIO 2 | Evap 180°C | coco 3 | | 175/16E-29N 1 M
8-15-51 5050 | 88 | χ
• • • | 1360 | 2.69 | 0.58 | 220 | 1 | 0 | 57 | 504 | 2 • 14 | 1 | 1 | 1.80 | 1 | | 164 | | 17S/16E-30A 4 M
7-26-52 5001 | 6 | - | 2000 | 3 • 69
20
20 | 0.25 | 340
14•78
78 | 0.13 | 0.50 | 25
0•41
2 | 640
13.32
71 | 160
4 • 51
24 | 0 • 2 | 1 | 1 | i i | 1249 | 197 | | -30A 4 M | 80 | ł | 0007 | 1 | ! | 1 | 1 | ł | - | l
I | 1 | ŀ | + | 1 | 1 | | | | 175/16E-30A 5 M
7-26-52 5001 | 9.5 | 1 | 1400 | 1.63 | 0.16 | 260
11.30 | 0 0 0 5 | 0 | 1.15 | 490
10.20
77 | 1.97 | 0 • 2 | 1 | 1 | 1 | 892 | 16 | | 175/16E-30A 6 M
7-26-52 5001 | 80 | 1 | 1900 | 1.65 | 0.16 | 360 | 0.05 | 0 | 110
1.80
10 | 320 | 9 | 0 • 5 | 1 | 1.20 | 1 | 1102 | 9.1 | | 175/16E-30N 1 M
8-14-51 5050 | 06 | 6.9 | 1730 | 81 | 1.56 | 270 | - | 0 | 1.29 | 650 | 2.79 | 1 | 1 | 1.50 | 1 | | 280 | | 175/16E-32N 1 M
8-15-51 5050 | 60 | 6.9 | 1710 | 3.69 | 10 | 295 | 1 | 0 | 1 • 36 | 634 | 2
• 1 0 2
• 8 8 | ł | 1 | 2 • 20 | - | | 226 | | -32N 1 M
8-13-52 5050 | 9 2 | 7.7 | 1700 | 3.54 | 11 0.90 | 281
12.22
73 | 0 0 0 | 0 | 80
1 • 31
8 | 630
13•12
76 | 101 | 0.1 | O
• | 2 • 20 | 28 | 1166 | 222 | | 175/16E-33N 1 M
8-15-51 5050 | 101 | 6.7 | 1630 | 36 | 4.8 | 330 | 1 | 0 | 1 • 31 | 500 | 3.45 | 1 | 1 | 1 . 80 | 1 | | 107 | | 175/17E-31Q 1 M
8-15-51 5050 | ω
Ω | φ
•
• | 1150 | 54 | 12 | 175 | 1 | 0 | 86 | 428
8•91 | 41 | 1 | 1 | 0 8 | 1 | | 184 | | DWR 1982 | | | STATE | STATE OF CALIFORNIA | RNIA - THE | RESOURCES | AGENCY | OF CALIFC | DRNIA - DE | THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES | JE WATER RE | SOURCES | | | | | 7 | # TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER | | TOTAL | caco 3 | 27 | | |--|------------------|---------------------------------|---------------------------------|-----| | ents in
lian | Computed | | | | | neral constituents
parts per millian | : <u> </u> 8 | SIO 2 | 1 | | | Mineral constituents in parts per millian | Boran | ω. | 0
0 | | | | Fluo- | Ľ. | 1 | - 1 | | | Ni.
Irote | NO 3 | 1 | | | | Chlo | ō | 0.00 | | | milligrams per liter
equivalents per millian
percent reactance value | Sulfate | 504 | 351 | | | milligrams per liter
equivalents per mill
percent reactance v | Bicar-
banale | HCO 3 | 1.10 | | | E @ Q. | Carban- | 9 | 0 | | | | Patas- | ¥ | 1 | | | Mineral Constituents in | Sodium | ž | 189 7 • 83 | | | Mineral C | Mogne- | Wg | 0 | | | Specific conduct- | Calcium | J | 1
4 2
5 9 | | | | ance
(micro- | mhos
at 25 C) | 9
4 | | | | Ξ, | 1 | 1 | | | Temp. | Sompled | a, | 98 | | | State Well | | Date Sampled Agy.
Time Coll. | 175/17E-33N80 M
9-25-29 5050 | | | | Sompled | Agy. Coll. | φ
ω | | QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT TRACE ELEMENT ANALYSES OF GROUND WATER | | | | | | | | | 3 | 5 | | í | | | | | | | | | | | |------------------------------------|---------------------|--------------------|-----------------------|-----------------|------------------------|--------------|-----------------|----------------|----------------------|-----------------|-----------------|-------------|------------------------|------------------------|-------------------------|----------------|-----------|------------------|-----------------|--------------|---| | | | | | | | | | | | Constituents In | rts In Parts | Per Billion | co | | | | | | | | | | State Well Number | Use | Date | Alumi-
num
(Al) | Arsenic
(As) | Beryl-
lrum
(Be) | Bismuth (Bi) | Cadmium
(Cd) | Cabolf
(Ca) | Chra-
mum
(Cr) | Copper
(Cu) | Iran Go
(Fe) | Gallium G | Germa-
nium
(Ge) | Manga-
nese
(Mn) | Malyb-
denum
(Ma) | Nickel
(Ni) | [8] (a) | Titonium
(Ti) | Vanadium
(V) | Zinc
(Zn) | T | | 11S/14E-33P1-M | Irr. | 19/11 /6 | | | | | | | | | 0,0 | | | | | | | | | | _ | | 11S/17E-25B1-M | Mun. | 3/19/61 | 00.00 | 12S/14E-27J2-M | Dom. | 19/11/6 | | | | | | | | | <u>۔۔</u> | | | | | | | | | | | | 14S/25E-35QS1-M | Spring | 19/01/9 | 15 | | < 0.57 | 62.0 v | 4.1.4 | v 1, t | v 1.4. | 4 1.¢ | 73 | 5.7 | € 0.29 | 17 | 7.1 | 1.9 | A 1.4 | < 0.57 | 57 | < 5.7 | | | 14s/26E-32HS1-M | Spring | 19/72/9 | 74 | | 4 0.57 | 4 0.29 | 4.1.4
A 1.4 | 4 1.4 | 4.1.4. | 4 1.4 | <u>v</u>
8 | 5.7 | 0.29 |
16 | 62.0 | 2,3 | A 1.4 | × 0.57 | 21 | < 5.7 | | | 15S/17E-10R1-M | in. | 7/28/64 | & | | | | | | | | 8 | | | 0.0 | | | | | | | | | 15S/25E-3DS1-M | Spring | 6/10/64 | 88 | | < 0.57 | 4 0.29 | 4.1.4
A.1.4 | 4 1.t | A 1.t | 1.4 | v
001 | 5.7 | 0.29 | ₹. | 0.29 | 2.0 | 4 1.4 | 6.9 | 83 | < 5.7 | | | 17s/23E-8J2-M | Dom. | 3/26/64 | 07 | 21S/16E-1N1-M | Abnd. | 3/17/64 \$ 3.3 | | | 4 1,3 | - 79.0 > | × 3.3 | 4 3,3 | v
333 | 3.3 | 240 | 13 | ₹0.67 |
& | 79.0 | 2.5 | ۸
3,3 | 4 1.3 | × 0.67 | A 13 | | | 21S/16E-2R1-M | į | 3/18/64 < 3.3 | | | A 1.3 | - 79.0 × | A 3.3 | A 3.3 | v
3.3 | 3.3 | 6.7 | ე
13 | 19.0 | 9.3 | 79°0 | 2.5 | 3.3 | 4 1.3 | < 0.67 | < 13 | | | 21S/18E-17M1-M | Ė. | 5/21/64 | 8 | 21S/20E-22M2-M | Dom. | 19/11/7 | 91 | 24S/2ZE-35N1-M | Irr & Stock | 1/29/67 | 35 | 190 | 4 1,3 | - 0.67 | × 3.3 | 4 3,3 | v
3°3 | 3.3 | 35 | ુ
જા | 3.3 | | 8 | 1.2 | ۸
3.3 | ۸
1.3 | ≥ 0,67 | 15 | | | 26S/27E-9G1-M | Dom & Stock 8/26/64 | _{49/92/8} | 8.7 | 91 | 4 1,3 | - 0.67 | 4 3.3 | 4 3,3 | v 3.3 | 3.3 | 15 | | × 0.67 × | 3.3 | 14 | 1,4 | A 3.3 | 4 1,3 | 79.0 > | 4 13 | | | 29S/27E-21R1-M | Dom. | 2/ 7/64 | | | | | | - | | | | 0.0 | | | | | | | | | | | 29S/29E-34N1-M | Dom. | 12/11/63 | 3.7 | | 4 1.5 | × 0.77 | 3.8 | A 3.8 | v 3.8 | 3.8 | 9.5 | 15 | 2.4 | 55 | 7.4 | 3.1 | , 3.8
 | 4 1.5 | ~ 0.77 | < 15 | | | 32S/29E-35M1-M | in. | 19/82/8 | | 0 | | | | | | _ | | | | | | | | | | | | | 32S/31E-36C1-M | Dom. | 2/ 3/64 < 3.3 | 4 3.3 | | 4 1.3 | - 79.0 × | × 3.3 | 4 3.3 | 4 3.3 v | < 3.3 | 4.7 | 13
A | × 0.67 | 7.1 | 6.7 | 1.2 | × 3.3 | A 1.3 | 5.7 | < 13 | _ | | 32S/32E-13F1-M | Dona. | 11/18/63 | 30 | | 4 1.0 | < 0.50 | < 2.5 | < 2.5 | < 2.5 × | < 2.5 | <u>v</u> | ۷
9 | 4 0.50 × | 2.5 | 0.4 | 2.0 | 4 2.5 | 1.0 | 7.0 | a 10 | | | 32S/32E-26Q1-M | ļīr. | 11/18/63 | 1,4 | | 4 1,0 | < 0.50 | < 2.5 | < 2.5 | 4 2.5 A | : 2.5 | 5.0 | 9 | 4 0.50 A | 2.5 | 0.6 | 1.4 | 4 2.5 | 0.1 | 0.6 | a 10 | | | 32S/32E-28H1-M | Stock | 11/18/63 | 3.9 | | 4 1.0 | < 0.50 | < 2.5 | < 2.5 | 4 2.5 A | : 2.5 | 7 [†] | 91 | × 0.50 × | 2,5 | < 0.50 × | 8.0 | < 2.5 → | 4 1.0 | 15 | A 10 | | | 32S/32E-34G2-M | Don. | 2/ 3/64 < 3.3 | 3.3 | | 4 1,3 | - 75.0 > | 3.3 | 4 3,3 | 4 3,3 | < 3.3 < < | 3,3 | 13. | × 0.67 | 17 | - 0.67 | 98.0 | 4 3.3 | < 1.3 | < 0.67 | 199 | | | 32S/33E-2TD2-M | Don. | 11/18/63 | 0.9 | | 4 1.0 | < 0.50 | < 2.5 × | < 2.5 | 4 2.5 ▲ | 4 2,5 << | ₹ 78 | ۷
9 | × 0.50 × | 2.5 | < 0.50 | 2.7 | < 2.5 | A 1.0 | 1,2 | v 10 | | | 32S/33E-29F1-M | Fi. | 12/ 9/63 | 1.8 | • | 4 1.3 | - 79.0 > | 4 3.3 | 4 3,3 | 4 3,3 | 4 3.3 | 1.7 | 13 | × 0.67 | 3,3 | 8.0 | 1.3 | 4 3.3 | A 1.3 | ∠ 0.67 | < 13 | | | 32S/34E-34B1-M | Dom. | 2/ 3/64 < 3.3 | < 3.3 | | 4 1,3 | - 0.67 | ۸
3.3 | 4 3,3 | 4 3,3 | < 3.3 | ٧ 6.4 | 13 | ₹0.67 | п | 3,1 | 1.7 | 4 3,3 | × 1.3 | 2.7 | < 13 | More than the service to the court | | | | | | | 1 | | 1 | 1 | 1 | 1 | | 1 | 1 | | | | | | 1 | > Mare than the amount indicated. TABLE E-4 #### QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT #### ANALYSES OF MISCELLANEOUS CONSTITUENTS | | | CONS | TITUENTS IN PA | RTS PER MILLION (ppm) | |-------------------|---------|--|-----------------|---| | STATE WELL NUMBER | DATE | Alkyl-
Benzene-
Sulfonate
(ABS) | Lithium
(Li) | Nutrients1/ | | 4s/ 9E-22Cl-M | 6-30-64 | 4 . 6 | 0.00 | NH ₄ as N - 0.00
NO ₂ as N - 0.00
NO ₃ as N - 11
Organic N as N - 0.1 | | 13S/20E-30Q1-M | 6-11-64 | 0.0 | | | | 30Q2 -M | 6-11-64 | 0.0 | | | | 21S/27E-21K1-M | 8-11-64 | 0.0 | | | | 22El-M | 8-11-64 | 0.1 | | | | 22Jl -M | 8-11-64 | 0.0 | | | | 23L1 -M | 8-11-64 | 0.0 | | | | 26F2 -M | 8-11-64 | 0.0 | | | | 26Pl -M | 8-11-64 | 0.0 | | | | 27Cl-M | 8-10-64 | 0.0 | | | | 27F1 -M | 8-12-64 | 1.9 | | NH ₄ as N - 0.01
NO ₂ as N - 0.00
NO ₃ as N - 9.7
Organic N as N - 0.5
Organic & Total PO ₄ - | | 27Gl -M | 8-10-64 | 0.0 | | | | 27Ll -M | 8-10-64 | 0.0 | | Organic & Total PO4 - | | 27Rl -M | 8-11-64 | 0.0 | | | | 28Al-M | 8-10-64 | 0.0 | | | | 28K]M | 8-11-64 | 0.0 | | | | 28N1 -M | 8-11-64 | 0.0 | | | | 34Bl-M | 8-11-64 | 0.0 | | | | 34Dl -M | 8-11-64 | 0.0 | | | | 26S/27E- 9Gl-M | 8-26-64 | | 0.18 | | ^{1/} Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄) #### TABLE E-4 #### QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT #### ANALYSES OF MISCELLANEOUS CONSTITUENTS | | | CONS | TITUENTS IN PARTS | PER MILLION (ppm) | |---------------------------------|------------------|--|-------------------|-------------------------| | STATE WELL NUMBER | DATE | Alkyl-
Benzene-
Sulfonate
(ABS) | Lithium
(Li) | Nutrients $\frac{1}{2}$ | | 28 5/ 24E - 1F1-M | 6-23-64 | | 0.00 | | | 2Bl-M | 6-23-64 | | 0.00 | | | 2P1-M | 6-23-64 | | 0.00 | | | 3N1-M | 6-23-64 | | 0.00 | | | 6F1-M | 7- 9-64 | | 0.00 | | | 7Bl-M | 7- 9-64 | | 0.00 | | | 9н1 -м | 7- 9-64 | | 0.00 | | | 11F3-M | 7- 9 - 64 | | 0.00 | | | 12A1-M | 6-23-64 | | 0.00 | | | 16A1 -M | 6-23-64 | | 0.00 | | | 32P1-M | 6-23-64 | | 0.00 | | | 36Rl-M | 6-24-64 | | 0.00 | | | 28s/25E- 2Al-M | 6-23-64 | | 0.00 | | | 4F1-M | 7- 9-64 | | 0.00 | | | 4P2 -M | 6-23-64 | | 0.00 | | | 20Dl -M | 6-23 - 64 | | 0.00 | | | 24Pl-M | 6-25-64 | | 0.08 | | | 25L1 -M | 6-24-64 | | 0.00 | | | 32P1 -M | 6-24-64 | | 0.00 | | | 29S/24E- 4D1-M | 6-23-64 | | 0.00 | | | 7C1 -M | 6-23-64 | | 0.00 | | | 21B1 -M | 6-23-64 | | 0.00 | | | 24Fl -M | 6-24-64 | | 0.00 | | | 33P3 -M | 7- 9-64 | | 0.02 | | ^{1/} Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄) #### TABLE E-4 #### QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT #### ANALYSES OF MISCELLANEOUS CONSTITUENTS | · STATE WELL NUMBER | DATE | CONSTITUENTS IN PARTS PER MILLION (ppm) | | | |---------------------|---------|--|-----------------|--------------| | | | Alkyl-
Benzene-
Sulfonate
(ABS) | Lithium
(Li) | Nutrients 1/ | | 29S/25E- 3N1-M | 6-24-64 | | 0.00 | | | lon1-M | 6-24-64 | | 0.00 | | | 12N1-M | 6-23-64 | | 0.00 | | | 13R1-M | 7- 9-64 | | 0.00 | | | 32F1-M | 7- 8-64 | | 0.00 | | | 30S/24E- 3El-M | 6-24-64 | | 0.00 | | | 5L2-M | 6-24-64 | | 0.03 | | | 6н1 -м | 6-24-64 | | 0.02 | | | 8P1-M | 8-28-64 | | 0.09 | | | llGl -M | 6-25-64 | | 0.00 | | | 11J1-M | 6-24-64 | | 0.00 | | | 15D1 -M | 6-24-64 | | 0.02 | | | 30S/25E- 1H1-M | 6-25-64 | | 0.00 | | | 2Al-M | 6-23-64 | | 0.02 | | | 2KJ-M | 6-23-64 | | 0.00 | | | 7Pl-M | 6-23-64 | | 0.00 | | | 8pl-M | 6-23-64 | | 0.00 | | | 9Al -M | 6-23-64 | | 0.00 | | | 14H1 -M | 7- 7-64 | | 0.00 | | | 26Al -M | 7- 7-64 | | 0.01 | | | 31P1 -M | 6-25-64 | | 0.00 | | | 32S/29E-35Ml-M | 8-28-64 | | 0.01 | | ^{1/} Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄) # QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT # KERN COUNTY PIEZOMETER SAMPLING PROGRAM | STATE WELL NUMBER | DEPTH
TO
WATER
(FT.) | | MP
ME
-MIN.) | E C.d | PUMP
RATE
(GPM.) | REMARKS | |---|-------------------------------|----------------|--------------------|---|--|---| | 25S/23E-28
-D1-M
-D2-M
-D3-M | 40.4
111.0
190.0 | 1 1 1 | 10 | 1380 <u>b</u> /
1125 <u>b</u> /
192 | 5/50 ^a ,
5/9 ^a ,
5/3 | b/
b/
Sampled | | 25S/24E-15
-H1-M
-H2-M
-H3-M
25S/25E/22 | 87.5
139.0 | 1
1
- | | 1650
1100 <u>b</u> / | 5/9
5/11 ^a , | b/ Water muddy sampled Dry at 175'. Obstruction | | -D1-M
-D2-M
25S/26E-16 | 172.7
168.0 | -
- | 40
40 | 595
350 | 5/2
5/2 | Sampled
Sampled | | -P1-M
-P2-M
27S/23E-1 | 114.0
243.0 | 1 | 30
20 | 400
2 7 5 | 5/9
5/6 | Sampled
Sampled | | -R1-M
-R3-M
-R4-M | 112.7
210.0
206.6 | 18
21
20 | | /3100
/ 200
/ 185 | 5/105
5/90
5/7,5/ | Sampled Sampled Two rates due to different pumping depths - sampled | | -R5-M
27S/24E-1 | 201.2 | 22 | 305/ | 235 | 5/9,5/ | | | -I2-M
-L3-M
-L4-M
27S/25E-1 | 220.6
223.1
221.9 | 1
-
1 | 45
 | 430
140
140 | 5/4
5/15
5/3 | Sampled
Sampled
Sampled | | -N1-M
-N3-M
28s/22E-9 | 119.9
261.0 | 2 | 40
30 | 390
130 | 5/13
5/11 | Sampled
Sampled | | -D1-M
-D2-M
28s/24E-23 | 27.2
33.5 | - | 45
45 | 3700
4300 | 5/2
5/2 | Sampled Sampled | | -D1-M
-D2-M
-D3-M
28s/26E-21 | 180.2
182.0
180.1 | 1 | 10 | 240b/
140
280 | 5/2 ^{a,b} 5/3 5/2 | Plugged @ 300' Sampled Sampled | | -H1-M
-H2-M
-H3-M
29S/25E-12 | 159.0
205.0
239.0 | 1 | 30
30
40 | 630
400
400 | 5/31
5/27
5/4 | Sampled
Sampled | | -M3-M
-M4-M | 142.5
137.7 | - | 40
40 | 150
810 | 5/2
5/2 | Sampled
Sampled | O-ONLY ABLE TO PUMP 5 GALLONS b-FIRST 5 GALLONS c-ON AND OFF FOR THIS PERIOD d-MICROMHOS ELECTRICAL CONDUCTIVITY=KXIO6 #### TABLE E-5 # QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT ### KERN COUNTY PIEZOMETER SAMPLING PROGRAM | STATE WELL NUMBER | DEPTH
TO
WATER
(FT.) | PUMP
TIME
(HRSMIN.) | E.C. ^d | PUMP
RATE
(G.P.M.) | REMARKS | 1 | |------------------------------|-------------------------------|---------------------------|-------------------|--------------------------|-----------------------------------|--------| | 29S/27E-34 | | | | | | | | -N1-M | 73.4 | 2 30 | 220 | 5/18 | Sampled | | | -N2-M | 101.4 | - 45 | 360 |
5/2
5/2 | Sampled | | | -N3-M
-N ¹ +-M | 105.0 | 1
1 | 135
200 | 5/2
5/17 | Sampled
Sampled | | | 30S/24E-4C | 114.0 | 1 | 200 | J/ ±1 | Башртец | | | -C1-M | 66.1 | - 30 | 1300 | 5/2 | Sampled | | | -C)+-M | 74.5 | 2 20 | 400 | 5/5 | Sampled | | | -C5-M | 88.2 | 1 | 108 | 5/3 | Sampled | | | -c6-M | 92.3 | 1 20 | 97 | 5/3 | Sampled | | | 30S/26E-22 | | | | , | | | | -Pl-M | 68.0 | - 30 | 172 | 5/2 | Sampled | | | -P2-M | 69.6 | - 35 | 182 | 5/2 | Sampled | | | -P3-M
30s/28E-10 | 74.3 | - 25 | 205 | 5/2 | Sampled | | | -N1-M | 38.5 | 1 10 | 1100 | 5/6 | Obstruction @ 60' - | camnl | | -N2-M | 136.7 | 1 20 | 220 | 5/2 | Sampled | DCIMPT | | -N3-M | 125.2 | 1 | 330 | 5/3 | Sampled | | | -N4-M | 144.4 | - 30 | 220 | 5/4 | Sampled | | | 31S/25E-27 | | • | | | - | | | -F1-M | 33.6 | 1 | 2250 | 5/3 | Sampled | | | -F2-M | 67.9 | 1 25 | 2000 | 5/5 | Sampled | | | -F3-M | 68.7 | 1 10 | 880 | 5/4 | Sampled | | | -F4-M | 55.5 | 1 20 | 900 | 5/3 | Sampled | | | 32S/28E-30
-D1-M | 52.2 | 0 5 | 620 | 5/9 | Sampled | | | -D1-M
-D2-M | 178.2 | 2 5
4 20 | 360 | 5/43 | Sampled | | | -D3-M | 170.5 | 3 15 | 460 | 5/7 | Sampled | | | -D4-M | 217.2 | | | | Would not pump | | | 32S/29E-19 | , | | | | * * | | | -H2-M | 202.0 | 1 20 | 700 | 5/6 | Sampled | | | - Н3-М | 324.2 | 1 35 | 320 | 5/7 | Sampled | | | -H4-M | 326.0 | | | | Obstruction - could | not p | | 11N/19W-7 | D | | | | No sestar | | | -R2-S | Dry
465.2 | | ~- | | No water | | | -R3-S
-R ¹ 4-S | 464.3 | | | | Too deep to pump Too deep to pump | | | -1/4-12 | 404.3 | | | | 100 deep to pump | | o-ONLY ABLE TO PUMP 5 GALLONS b-FIRST 5 GALLONS c-ON AND OFF FOR THIS PERIOD d-MICROMHOS ELECTRICAL CONDUCTIVITY=KXIO6 ## QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT ### WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA | STATE WELL NUMBER WELL USE | DEVIATION | STATUS | |-----------------------------------|--|--| | 4S/9E-22Cl-M
Drainage | $NO_3 \frac{1}{=} 60 \text{ ppm}^2/$ $ABS_3 = 4.6 \text{ ppm}$ | This well is near the Ceres
Sewage Treatment Plant and
appears to be affected by it.
A detailed investigation will
be instituted for this area. | | 7S/15E-30E1-M
Irrigation | High EC4/
676 mu5/in 1963
879 mu in 1964
Area EC = 200 to
300 mu | Above normal EC values in ground water limited to small (1 sq. mi.) area. No source for high values could be located. | | 9S/9E-2Ll-M
Irrigation & stock | EC increasing
964 mu in 1961
1660 mu in 1962
2050 mu in 1 9 63 | Increase appears to be due
to the influence of the highly
mineralized perched water
table | | llS/10E-23Kl-M
Irrigation | NO ₃ = 94 ppm | Cause being investigated | | 12S/15E-4F1-M
Irrigation | EC increasing from 380 in 1957 to 634 in 1964 | Cause being investigated | | 12S/21E-17L1-M
Irrigation | $NO_3 = 41 ppm$ | Cause being investigated | | 13S/19E-24Q1-M
Irrigation | $NO_3 = 47 \text{ ppm}$ | This well was previously polluted. Pollution abatement has resulted in a reduction of the total dissolved solids but during the same period the nitrates have increased. The reason for this will be investigated. | | 175/23E-8J2(8H1)6/-M
Domestic | High NO ₃
40 ppm in 1962
Area NO ₃ = <101/ppm | NO3 concentrations in immediate area found to be greater than 100 ppm. No cause determined. Further investigation underway. | ^{1/} NO3 = Nitrate ^{2/} ppm = parts per million 3/ ABS = alkyl benzene sulfonate (detergent surfactant) 4/ EC = Electrical Conductivity in micromhos at 25°C mu = Micromhos well number in () is number previously reported < = less than #### TABLE E-6 # QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT # WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA | STATE WELL NUMBER
WELL USE | DEVIATION | STATUS | |---|---|--| | 18S/26E-10M1(10N1)-M
Irrigation | High NO3
78 ppm in 1963
Area NO3 = 10 ppm | High NO3 concentrations apparently caused by percolation of nitrogen supplemented irrigation water. Depth to water approximately 10 ft. NO3 concentrations in ground water found to be greater than 100 ppm. | | 18S/26E-36C1-M
Domestic & irrigation | $NO_3 = 44$ ppm | Cause being investigated | | 18S/27E-10C2-M
Domestic | $NO_3 = 52 ppm$ | Cause being investigated | | 21S/27E-27F1-M | ABS = 1.9 ppm in
1964, 0.44 ppm in
1963
NO ₃ = 43 ppm | Source of ABS and high NO ₃ is Porterville Sewage Treatment Plant. ABS found in 10 wells. Office report to be published in 1965. | | 24S/22E-35Nl -M
Irrigation & stock | Arsenic = 0.19 ppm
in 1964, 0.25 ppm
in 1963 | Cause and areal extent bein investigated. | | 28S/25E-4F1-M
Irrigation | $NO_3 = 81 ppm$ | Cause being investigated | | 28S/25E-4P2-M
Domestic | $NO_3 = 47 ppm$ | Cause being investigated | | 28S/25E-9E2-M
Domestic | $NO_3 = 77 ppm$ | Cause being investigated | | 28S/25E-24P1-M
Domestic & irrigation | $NO_3 = 54 ppm$ | Cause being investigated | #### TABLE E-6 # QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT # WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA | STATE WELL NUMBER
WELL USE | DEVIATION | STATUS | |------------------------------------|--|---| | 305/28E-10N1 ·M
Test Well | NO3 = 43 ppm | This well is near the Bakersfield Sewage Treatment Plant ponds. An investigation of the area is being conducted to determine the effect of the sewage treatment plant's discharges on the ground water. | | 32S/29E-35M1(35M2)-M
Irrigation | High NO ₃
159 ppm in 1962
227 ppm in 1964 | NO3 concentration greater
than 60 ppm found only in
small area (1 sq. mi.).
Due to complex conditions
no definite source found. | 0 0420 Mariposa Bypass near Crane Ranch 0 0770 Delta-Mendota Canal to Mendota I 10 3105 Stanislaus River near Mouth 10 3115 Stanislaus River at Koetitz Rand 30 3125 Stanislaus River at Ripon 30 3145 Stanislaus River at Riverbank NO 3175 Stanislaus River at Orange Blos 30 4105 Tuolumne River at Tuolumne City 80 4120 Tuolumne River at Modesto 30 4130 Dry Creek near Modesto 0 4150 Tuolumne River at Hickman Bridg 30 4165 Tuolumne River at Roberts Ferry 30 4175 Tuolumne River at LaGrange Brid 30 5138 Merced River near Livingston 30 5155 Merced River at Cressey 30 5170 Merced River below Snelling 30 5570 Bear Creek below Bear Reservoir 30 6170 Owens Creek below Owens Reserve 30 7020 San Joaquin River near Vernalis 30 7040 San Joaquin River at Maze Road 30 7060 San Joaquin River at Hetch Hetch 30 7070 San Joaquin River at West Stan 30 7080 San Joaquin River at Grayson 30 7200 San Joaquin River at Patterson 80 7250 San Joaquin River at Crows Land 30 7300 San Joaquin River near Newman 30 7375 San Joaquin River near Fremont 80 7400 San Joaquin River near Stevins 180 7575 San Joaquin River above Sand S BO 7610 San Joaquin River near Dos Pal BO 7710 San Joaquin River near Mendota BO 7885 San Joaquin River below Friant BO 8720 Orestimba Creek near Crows Lan B5 1250 Maxwell Creek near Coultervill * Not shown #### SURFACE WATER MEASUREMENT STATIONS | Б | | Nar osa Bypass . Panch | 85 | 3900 | North Fork Merced Raver near . (te: .11) | |----|--------|---|----|------|--| | ВО | | Delta-Mendota Canal - J. ta Pool | В5 | 5400 | Bear Creek near Catheys Valley | | ВО | - | Stan 4 aus River hobr Mout | 85 | 6100 | Burns Creek below Burns Reservoir | | 80 | | Stanislaus River at Koetitz Ranch | 85 | 6400 | Burns Creek near Hornitos | | BO | 125 | Sminista s R ver ar Ripon | В6 | 2100 | Mariposa Creek below Mariposa Reservoir | | Во | 45 | Stanielaus R ver at Riverbank | Вь | 2400 | Mariposa Creek near Catheys Valley | | 80 | | Stanistaus River at Orange Blossom Bridge | В6 | 4200 | Chowchilla River near Raymond | | 80 | 41 | Tuolumne River at Tuolumne City | 86 | 4260 | Striped Rock Creek near Raymond | | BG | 4 2 | Tuniunne Paver at Modesto | В6 | 4300 | West Fork Chowchilla Rivor near Mariposa | | BO | 4 (3) | Dry tro > near Modesto | 56 | 4360 | Middle Fork Chowchilla River near Nipinnawas | | 80 | 4,5 | Tu , - 1 River at Hickman Bridge | B6 | 4400 | East Fork Chowchilla River hear Ahwahnee | | BO | 416. | Tuniumne River at Robert: Perry Bridge | Вь | 7300 | Maama Creek near Oakhurst | | ВО | 4 75 | Tuolumne River at LaGrange Bridge | В6 | 7325 | Lewis Fork Freeno River near Oakhurst | | Bu | | Merced River near Livingston | Вь | 7920 | Big Creek Diversion near Fish Camp | | 80 | | Merced Naver at Cressey | В7 | 1100 | Daily Content Millerton Lake | | во | 12 | Merced River below Smelling | В7 | 1121 | Inflow to Millerton Lake | | 80 | c : 7 | Bear Creek below Bear Reservoir | 89 | 5925 | Delta-Mendota Canal near Tracy | | 80 | = 170 | Ovens Creek below Owens Peservoir | CO | 1120 | South Fork Kings River below Empire Weir #2 | | BO | ~ 120 | San Joaquin River near Vernalis | CQ | 2602 | Cross Creek below Lakeland Canal =2 | | BO | ° 140 | San Joaquin River at Maze Road Bridge | CO | 3110 | Tulare Lake | | 80 | 7 160 | San Joaquin River at Hetch Hetchy
Aqueduct Crossing | CO | 3130 | Elk Bayou near Tulare | | BO | 7070 | San Josquin River at West Stanislaus I.D. Intake | CO | 3169 | Tule River below Porterville | | BO | 2 7817 | San Joaquin River at Grayson | co | 3182 | Porter Slough at Porterville | | 80 | 7200 | San Joaquin River at Patterson Bridge | CO | 3187 | Porter Slough near Porterville | | 80 | 7250 | San Joaquin River at Crows Landing | CO | 3913 | Friant-Kern Canal Delivery to Pozter Slough | | 80 | 7300 | San Joaquin River near Newman | ¢o | 3923 | Friant-Kern Canal Delivery to Tule River | | 30 | 7375 | San Joaquin River near Fremont Ford Bridge | CO | 3925 | Hubbs-Miner Ditch at Porterville | | BO | 7400 | San Joaquan Raver near Stevanson | CO | 3940 | Rhodes-Fine Oitch near Porterville | | BO | | San Joaquin River above Sand Slough | CO | 394B | Woods-Central Ditch near Porterville | | BO | 7610 | San Joaquin River near Dos Palos | 60 | 3960 | Poplar Ditch near Porterville | | ВО | 7710 | San Joaquin River near Mendota | co | 3965 | Vandalla Ditch near Porterville | | 80 | 7885 | San Joaquin Piver below Friant | CO | 3970 | Campbell Moreland Ditch above Porterville | | 80 | B720 | Orestimba Creek near Crows Landing | CO | 3984 | Porter Slough Ditch at Porterville | | 85 | 1250 | Maxweil Creek near Coulterville | co | 5150 | Kern River near Bakersfield | | | | | C3 | 2100 | North Fork Tule River at Springville | | | | | | | | * Not shown on Plate as station is outside of district boundary. #### **LEGEND** DISTRICT OR AREA BOUNDARIES. NUMBERS INDICATE CODE CLASSIFICATION. DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF - 5.0 FEET OR MORE IN THE UNCONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964. STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT **HYDROLOGIC DATA 1964** GROUND WATER LEVEL CHANGES IN DISTRICTS OR AREAS UNCONFINED AND SEMICONFINED AQUIFERS **SPRING 1963 — SPRING 1964** #### LEGEND ~ DISTRICT OR AREA BOUNDARIES. NUMBERS INDICATE CODE CLASSIFICATION. DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF +5.0 FEET OR MORE IN THE CONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964. DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF -5.0 FEET OR MORE IN THE CONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964. STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 GROUND WATER LEVEL CHANGES IN DISTRICTS OR AREAS CONFINED AND SEMICONFINED AQUIFERS **SPRING 1963 — SPRING 1964** SCALE OF MILES 12 Σ כ 4 ۵ Ø Q Ø S W Ш Z Z 0 4 Ш ## MILL CREEK GROUND WATER AREA AREA 12825 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 305' TULARE GROUND WATER AREA AREA 12107 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 363' ## ELK BAYOU GROUND WATER AREA AREA 67.6 SQUARE MILES AVERAGE GROUNG SURFACE ELEVATION 295 ROUND STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY Σ ٥ ø Ö Ø Ö ø j Z Z 0 Ш ## ARVIN-EDISON GROUND WATER AREA AREA 205.18 SQUARE MILES NOTE: SEE PLATE C-4 FOR GROUND WATER AREA LOCATION STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY #### MIDDLE DEER CREEK GROUND WATER AREA AVERAGE BROUGG SURFACE ELEVATION PAGE LOWER DEER CREEK GROUND WATER AREA SYTRAGE BROUND SURFACE ELEVATION POT 110 PERSONAL ENGRACES RABY 19-48 1940 NOTE SEE PLATE C-4 FOR GROUND MATER AREA LOCATION > STATE OF CALIFORNIA THE RESOURCES ASSPCT DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY | | ∑
+
0 | |---|---| | | 0
0
0
0
0
0
0
1
1 | |
CONNECTS MEASUREMENTS MADE AT INTERVALS | ليا
ليا
لد | |
OF ONE YEAR OR MORE GROUND LEVEL | Z | | | Z
C

 | STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 MERCED IRRIGATION DISTRICT 15-22 091 WELL 75/HE-INI, MDR &M GROUND SURFACE SLEVATION IIS 120 --------- DELTA-MENDOTA AREA -SHALLOW ZONE (5-22 II) WELL 35/6E-IBNI, N O B &M FRESNO (ARIGATION DISTRICT (S-22 IS) DELTA-MENDOTA AREA-DEEP ZONE (\$-22 II) MADERA IRRIGATION DISTRICT (5-22 13) CHOWCHILLA WATER DISTRICT (5-2212) WELL IDS/ISE-23KI, M D 8 8M GROUND SURFACE ELEVATION 194 STATE OF CALIFORNIA THE RESOURCES AGENCY HYDROLOGIC DATA 1964 LEGENO FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT Σ ⊃ 40 Ø Ö Ö S Ш Ш Z Z 0 **∢** > Ш # EXETER IRRIGATION DISTRICT (5-22.26) WELL 185/27E-2901, M.D.B.A.M. GROUND SURFACE ELEVATION 446 ### LINDSAY-STRATHMORE IRRIGATION DISTRICT (5-22.27) LEGEND ----- CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE --- GROUND LEVEL STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 ### KAWEAH DELTA WATER CONSERVATION DISTRICT (5-22.24) ### ALTA IRRIGATION DISTRICT (5-22.19) #### IVANHOE IRRIGATION DISTRICT (5-22.23) WELL 175/25E-36MI, M. D. G. & M. ORANGE COVE IRRIGATION DISTRICT (5-22.21) WELL 165/25E - 4C2, M. D. B. B. M. SROUND EURFACE ELEVATION 418' STONE CORRAL IRRIGATION DISTRICT (5-22.22) WELL 165/26E-32RL M.O. B.B.M. GROUND SURFACE ELEVATION 406 ### TULARE IRRIGATION DISTRICT (5-22.25) WELL 203/23E-9JI, M. D. B. & M. PROUND SURFACE ELEVATION ZAB ### EXETER IRRIGATION DISTRICT (5-22.26) WELL 185/27E-290, MORAM GROUND SURFACE ELEVATION 446 ### LINDSAY - STRATHMORE IRRIGATION DISTRICT (5-22.27) WELL 205/27E-681, M.O.B. 8 M. #### LEGEND STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT Σ 4 ۵ 0 0 Q Ö 0 j Ш Ш L Z Z 0 4 > Ы Ш STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 SAUCELITO IRRIGATION DISTRICT (5-2232) WELL 225/26E-1511. # 0 85# GARDED SURFACE ELEVATION 17+ 130 110 10 DELAND-EARLIMART INRIGATION DISTRICT (5-22 35) WELL 205/26E-32GI, MD 8 8 W ____ GROUND LEYEL NORTH KERN WATER STORAGE DISTRICT (5-22 37) WELL 275/25E-22AI, M D 8 & M SECUND SURFACE ELEVATION SOZ > STATE OF CALIFORNIA THE RESOURCES AGENCE DEPARTMENT OF WATER RESOURCES FLUCTUATION OF WATER LEVEL IN SELECTED WELLS IN SAN JOAQUIN VALLEY SAN JOAQUIN DISTRICT HYOROLOGIC DATA 1964 O Ü ゴ Z Z 0 ∢ LEGEND CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE ___ _ OROUND LEVEL STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 LEGEND O WELL LOCATIONS STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 LOCATION OF SELECTED WELLS FRESNO-MADERA AREA SCALE OF MILES ## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW ## RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL 1.1.1 17 1978 NOV 11 REC'D LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS Book Slip-25m-6,'66 (G3855s4)458 Nº 482511 California. Dept. of Water Resources. Bulletin. C2 A2 no.130:64 TC824 PHYSICAL SCIENCES LIBRARY v.4 c.2 LIBRARY UNIVERSITY OF CALIFORNIA DAVIS Call Number: 482511 California. Dept. of Water Resources. Bulletin. TC824 C2 A2 no.130:64